144
Views
11
CrossRef citations to date
0
Altmetric
Articles

γ-Fe2O3@Si-(CH2)3@mel@(CH2)4SO3H as a magnetically bifunctional and retrievable nanocatalyst for green synthesis of benzo[c]acridine-8(9H)-ones and 2-amino-4H-chromenes

&
Pages 656-666 | Received 31 Mar 2020, Accepted 12 Jul 2020, Published online: 19 Aug 2020

References

  • Baguley, B. C.; Zhuang, L.; Marshall, E. M. Experimental Solid Tumour Activity of N-[2-(dimethylamino)ethyl]-acridine-4-carboxamide. Cancer Chemother. Pharmacol. 1995, 36, 244–248. DOI: 10.1007/BF00685854..
  • Delcey, M. C.; Croisy, A.; Zajdela, F.; Lhoste, J. M. Synthesis and Carcinogenic Activity of Oxidized Benzacridines: Potential Metabolites of the Strong Carcinogen 7-methylbenz[c]Acridine and of the Inactive Isomer 12-methylbenz[a]Acridine. J. Med. Chem. 1983, 26, 303–306. DOI: 10.1021/jm00356a038..
  • Spalding, D. P.; Chapin, E. C.; Mosher, H. S. Heterocyclic Basic Compounds. Xv. Benzacridine derivatives1. J. Org. Chem. 1954, 19, 357–364. DOI: 10.1021/jo01368a011.
  • Hess, P.; Lansman, J. B.; Tsien, R. W. Different Modes of Ca Channel Gating Behaviour Favoured by Dihydropyridine Ca Agonists and Antagonists. Nature 1984, 311, 538–544. DOI: 10.1038/311538a0..
  • Antonini, I.; Polucci, P.; Magnano, A.; Cacciamani, D.; Konieczny, M. T.; Ukowicz, J. P.; Martelli, S. Rational Design, Synthesis and Biological Evaluation of Thiadiazinoacridines: A New Class of Antitumor Agents. Bioorg. Med. Chem. 2003, 11, 399–405. DOI: 10.1016/S0968-0896(02)00442-X.
  • Cortés, E.; Martínez, R.; Avila, J. G.; Toscano, R. A. Synthesis and Spectra of 7‐(o‐and p‐R‐Phenyl)‐10, 10‐Dimethyl‐8, 9, 10, 11‐Tetrahydrobenz [c] Acridin‐8‐Ones. Structure Correction of 1, 2, 3, 4‐Tetrahydro‐2, 2‐Dimethyl‐5‐Aryl‐6‐Aza‐7, 8‐Benzophenanthren‐4‐Ones. J. Heterocycl. Chem. 1988, 25, 895–899. DOI: 10.1002/jhet.5570250337.
  • Wang, X. S.; Zhang, M. M.; Zeng, Z. S.; Shi, D. Q.; Tu, S. J.; Wei, X. Y.; Zong, Z. M. A Simple and Clean Procedure for the Synthesis of Polyhydroacridine and Quinoline Derivatives: Reaction of Schiff Base with 1, 3-Dicarbonyl Compounds in Aqueous Medium. Tetrahedron Lett. 2005, 46, 7169–7173. DOI: 10.1016/j.tetlet.2005.08.091.
  • Wang, X. S.; Zhang, M. M.; Zeng, Z. S.; Shi, D. Q.; Tu, S. J.; Wei, X. Y.; Zong, Z. M. A Clean Procedure for Synthesis of Benzo [c] Acridine Derivatives: Reaction of N-Arylidenenaphthalen-1-Amine with 5, 5-Dimethyl-1, 3-Cyclohexadione in Aqueous Medium. Arch. Organic Chem. 2006, 2006, 117–123. DOI: 10.3998/ark.5550190.0007.213..
  • Martínez, R.; Cortés, E.; Toscano, R. A.; Linzaga, L.; Martínez, R.; Cortés, E.; Toscano, R. A.; Linzaga, I. Synthesis and Spectra of 12‐(o‐and p‐R‐Phenyl)‐9, 9‐Dimethyl‐7, 8, 9, 10, 11, 12‐Hexahydro and 8, 9, 10, 11‐Tetrahydrobenz [a] Acridin‐11‐Ones. Structure Correction of 1, 2, 3, 4, 5, 6‐Hexahydro and 1, 2, 3, 4‐Tetrahydro‐2, 2‐Dimethyl‐5‐Aryl‐6‐Aza‐9, 10‐Benzophenanthren‐4‐Ones. II. J. Heterocycl. Chem. 1990, 27, 363–366. DOI: 10.1002/jhet.5570270248.
  • Nadaraj, V.; Selvi, S. T.; Mohan, S. Microwave-Induced Synthesis and anti-Microbial Activities of 7, 10, 11, 12-Tetrahydrobenzo [c] Acridin-8 (9H)-One Derivatives. Eur. J. Med. Chem. 2009, 44, 976–980. DOI: 10.1016/j.ejmech.2008.07.004..
  • Tu, S. J.; Jia, R. H.; Jiang, B.; Zhang, Y.; Zhang, J. Y. An Efficient One‐Pot Synthesis of Polyhydrobenzoacridine‐1‐One Derivatives under Microwave Irradiation without Catalyst. J. Heterocycl. Chem. 2006, 43, 1621–1627. DOI: 10.1002/jhet.5570430629.
  • Zang, H.; Zhang, Y.; Zang, Y.; Cheng, B.-W. An Efficient Ultrasound-promoted Method for the One-pot Synthesis of 7,10,11,12-Tetrahydrobenzo[c]Acridin-8(9H)-one Derivatives. Ultrason. Sonochem. 2010, 17, 495–499. DOI: 10.1016/j.ultsonch.2009.11.003..
  • Zang, H.; Zhang, Y.; Mo, Y.; Cheng, B. Ultrasound-Promoted One-Pot Synthesis of 7-Aryl-7, 10, 11, 12-Tetrahydrobenzo [c] Acridin-8 (9H)-One Derivatives. Synth. Commun. 2011, 41, 3207–3214. DOI: 10.1080/00397911.2010.517610.
  • Behbahani, F. K.; Farahani, M. Iron (III) Phosphate-Catalyzed Synthesis of 7, 10, 11, 12-Tetrahydrobenzo. Russ. Chem. Bull. 2015, 64, 151–153. DOI: 10.1007/s11172-015-0835-4.
  • Heravi, M.; M.; Alinejhad, H.; Derikvand, F.; Oskooie, H. A.; Baghernejad, B.; Bamoharram, F. F. NH2SO3H and H6P2W18O62· 18H2O-Catalyzed, Three-Component, One-Pot Synthesis of Benzo [c] Acridine Derivatives. Synth. Commun. 2012, 42, 2033–2039. DOI: 10.1080/00397911.2010.550704.
  • Dutta, A. K.; Gogoi, P.; Saikia, S.; Borah, R. N, N-Disulfo-1, 1, 3, 3-Tetramethylguanidinium Carboxylate Ionic Liquids as Reusable Homogeneous Catalysts for Multicomponent Synthesis of Tetrahydrobenzo [a] Xanthene and Tetrahydrobenzo [a] Acridine Derivatives. J. Mol. Liq. 2017, 225, 585–591. DOI: 10.1016/j.molliq.2016.11.112.
  • Murugesan, A.; Gengan, R. M.; Krishnan, A.; Murugesan, A.; Gengan, R. M.; Krishnan, A. Sulfonic Acid Functionalized Boron Nitride Nano Materials as a Microwave-Assisted Efficient and Highly Biologically Active One-Pot Synthesis of Piperazinyl-Quinolinyl Fused Benzo [c] Acridine Derivatives. Mat. Chem. Phys. 2017, 188, 154–167. DOI: 10.1016/j.matchemphys.2016.12.039.
  • Wan, Y.; Zhang, X. X.; Wang, C.; Zhao, L. L.; Chen, L. F.; Liu, G. X.; Huang, S. Y.; Yue, S. N.; Zhang, W. I.; Wu, H. The First Example of Glucose-Containing Brønsted Acid Synthesis and Catalysis: efficient Synthesis of Tetrahydrobenzo [α] Xanthens and Tetrahydrobenzo [α] Acridines in Water. Tetrahedron 2013, 69, 3947–3950. DOI: 10.1016/j.tet.2013.03.029.
  • Shen, W.; Wang, L. M.; Tian, H.; Tang, J.; Yu, J. Brønsted Acidic Imidazolium Salts Containing Perfluoroalkyl Tails Catalyzed One-Pot Synthesis of 1, 8-Dioxo-Decahydroacridines in Water. J. Fluorin Chem. 2009, 130, 522–527. DOI: 10.1016/j.jfluchem.2009.02.014.
  • Gawande, M. B.; Branco, P. S.; Varma, R. S. Nano-Magnetite (Fe3O4) as a Support for Recyclable Catalysts in the Development of Sustainable Methodologies. Chem. Soc. Rev. 2013, 42, 3371–3393. DOI: 10.1039/c3cs35480f.
  • Yan, J. M.; Zhang, X. B.; Akita, T.; Haruta, M.; Xu, Q. One-Step Seeding Growth of Magnetically Recyclable Au@ Cocore-Shell Nanoparticles: Highly Efficient Catalyst for Hydrolytic Dehydrogenation of Ammonia Borane. J. Am. Chem. Soc. 2010, 132, 5326–5327. DOI: 10.1021/ja910513h.
  • Yang, B.; Zhang, Q.; Ma, X.; Kang, J.; Shi, J.; Tang, B. Preparation of a Magnetically Recoverable Nanocatalyst via Cobalt-Doped Fe3O4 Nanoparticles and Its Application in the Hydrogenation of Nitroarenes. Nano Res. 2016, 9, 1879–1890. DOI: 10.1007/s12274-016-1080-3.
  • Shokouhimehr, M.; Piao, Y.; Kim, J.; Jang, Y.; Hyeon, T. A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxidation. Angew. Chem. Int. Ed. Engl. 2007, 46, 7039–7043. DOI: 10.1002/anie.200702386.
  • Pagoti, S.; Surana, S.; Chauhan, A.; Parasar, B.; Dash, J. Reduction of Organic Azides to Amines Using Reusable Fe3O4 Nanoparticles in Aqueous Medium. Catal. Sci. Technol. 2013, 3, 584–588. DOI: 10.1039/c2cy20776a.
  • Santos, B. F.; Silva, C. D. G.; Silva, B. A.; Katla, R.; Oliveira, A. R.; Kupfer, V. L.; Rinaldi, A. W.; Domingues, N. L. C. C.; Cross, S. Coupling Reaction Using a Recyclable Palladium Prolinate Catalyst under Mild and Green Conditions. Chem. Select. 2017, 2, 9063–9068. DOI: 10.1002/slct.201701816.
  • Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J. M. Magnetically Recoverable Nanocatalysts. Chem. Rev. 2011, 111, 3036–3075. DOI: 10.1021/cr100230z..
  • Zarei, M.; Sepehrmansourie, H.; Zolfigol, M. A.; Karamian, R.; Farida, S. H. M. Roya Karamian and Seyed Hamed Moazzami Farida., Novel Nano-Size and Crab-like Biological-Based Glycoluril with Sulfonic Acid Tags as a Reusable Catalyst: Its Application to the Synthesis of New Mono-and Bis-Spiropyrans and Their In Vitro Biological Studies. New J. Chem. 2018, 42, 14308–14317. DOI: 10.1039/C8NJ02470G.
  • Afsar, J.; Zolfigol, M. A.; Khazaei, A.; Zarei, M.; Gu, Y.; Alonso, D. A.; Khoshnood, A. Synthesis and Application of Melamine-Based Nano Catalyst with Phosphonic Acid Tags in the Synthesis of (3´-Indolyl) Pyrazolo [3, 4-b] Pyridines via Vinylogous Anomeric Based Oxidation. Mol. Catal. 2020, 482, 110666. DOI: 10.1016/j.mcat.2019.110666.
  • Moradi, S.; Zolfigol, M. A.; Zarei, M.; Alonso, D. A.; Khoshnood, A.; Tajally, A. An Efficient Catalytic Method for the Synthesis of Pyrido [2, 3‐d] Pyrimidines as Biologically Drug Candidates by Using Novel Magnetic Nanoparticles as a Reusable Catalyst. Appl.Organomet. Chem. 2018, 32, e4043. DOI: 10.1002/aoc.4043..
  • Chen, M. N.; Mo, L. P.; Cui, Z. S.; Zhang, Z. H.; Chen, M. N.; Mo, L. P.; Cui, Z. S.; Zhang, Z. H. Magnetic Nanocatalysts: Synthesis and Application in Multicomponent Reactions. Curr. Opin. Green Sustain. Chem. 2019, 15, 27–37. DOI: 10.1016/j.cogsc.2018.08.009.
  • Khazaei, A.; Mahmoudiani Gilan, M.; Sarmasti, N. Magnetic‐Based Picolinaldehyde–Melamine Copper Complex for the One‐Pot Synthesis of Hexahydroquinolines via Hantzsch Four‐Component Reactions. Appl. Organometal. Chem. 2018, 32, e4151. DOI: 10.1002/aoc.4151.
  • Sobhani, S.; Pakdin-Parizi, Z. Palladium-DABCO Complex Supported on γ-Fe2O3 Magnetic Nanoparticles: A New Catalyst for CC Bond Formation via Mizoroki- Heck Cross-Coupling Reaction. Appl. Catal. A Gen. 2014, 479, 112–120. DOI: 10.1016/j.apcata.2014.04.028.
  • Ghashang, M.; Mansoor, S.S.; Aswin, K.; Ghashang, M.; Mansoor, S.S.; Aswin, K. Succinimide-N-Sulfonic Acid: An Efficient and Recyclable Catalyst for the One-Pot Synthesis of Tetrahydrobenzo [c] Acridine-8 (7H)-One Derivatives. J. Saudi Chem. Soc. 2017, 21, S44–S51. DOI: 10.1016/j.jscs.2013.10.001.
  • Poor Heravi, M.R.; Aghamohammadi, P. L-Proline-Catalysed One-Pot Synthesis of Tetrahydrobenzo [c] Acridin-8 (7H)-Ones at Room Temperature. C. R. Chim. 2012, 15, 448–453. DOI: 10.1016/j.crci.2011.12.001.
  • Kemnitzer, W.; Kasibhatla, S.; Jiang, S.; Zhang, H.; Wang, Y.; Zhao, J.; Jia, S.; Herich, J.; Labreque, D.; Storer, R.; et al. Discovery of 4-Aryl-4 H-Chromenes as a New Series of Apoptosis Inducers Using a Cell-and Caspase-Based High-Throughput Screening Assay 1. Structure-Activity Relationships of the 4-Aryl Group. J. Med. Chem. 2004, 47, 6299–6310. DOI: 10.1021/jm049640t.
  • Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Reversal of Multidrug Resistance in Cancer Cells by Pyranocoumarins Isolated from Radix Peucedani. Eur. J. Med. Chem. 1993, 28, 517–520. DOI: 10.1016/0223-5234(93)90020-F.
  • Behbahani, F. K.; Ghorbani, M.; Sadeghpour, M.; Mirzaei, M. One-Pot Synthesis of 2-Amino-4H-Pyrans and 2-Amino-Tetrahydro-4H-Chromenes Using L-Proline. GUJ Sci. 2013, 44, 393. DOI: 10.1002/chin.201340142.
  • Zavar, S. A Novel Three Component Synthesis of 2-Amino-4H-Chromenes Derivatives Using Nano ZnO Catalyst. Arabian J. Chem. 2017, 10, S67–S70. DOI: 10.1016/j.arabjc.2012.07.011.
  • Ma, W.; Ebadi, A. G.; Sabil, M. S.; Javahershenas, R.; Jimenez, G. One-Pot Synthesis of 2-Amino-4H-Chromene Derivatives by MNPs@Cu as an Effective and Reusable Magnetic Nanocatalyst. RSC Adv. 2019, 9, 12801–12812. DOI: 10.1039/C9RA01679A.
  • Kumar, A.; Sudershan Rao, M. An Expeditious and Greener One-Pot Synthesis of 4H-Chromenes Catalyzed by Ba(OTf)2 in PEG-Water. Green Chem. Lett. Rev. 2012, 5, 283–290. DOI: 10.1080/17518253.2011.623683.
  • Pan, S.; Li, P.; Xu, G.; Guo, J.; Ke, L.; Xie, C.; Zhang, Z.; Hui, Y. MCM-41@Schif base-Co(OAc)2 as an Efcient Catalyst for the Synthesis of Pyran Derivatives. Res. Chem. Intermed. 2020, 46, 1353–1371. DOI: 10.1007/s11164-019-04038-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.