1,134
Views
9
CrossRef citations to date
0
Altmetric
Articles

Rapid green synthesis of noncytotoxic iron oxide nanoparticles using aqueous leaf extract of Thymbra spicata and evaluation of their antibacterial, antibiofilm, and antioxidant activity

ORCID Icon & ORCID Icon
Pages 683-692 | Received 22 Apr 2020, Accepted 12 Jul 2020, Published online: 06 Aug 2020

References

  • Silva, G. A. Introduction to Nanotechnology and Its Applications to Medicine. Surg. Neurol. 2004, 61, 216–220. DOI: 10.1016/j.surneu.2003.09.036.
  • Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arabian J. Chem. 2019, 12, 908–931. DOI: 10.1016/j.arabjc.2017.05.011.
  • Albanese, A.; Tang, P. S.; Chan, W. C. The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16. DOI: 10.1146/annurev-bioeng-071811-150124.
  • Tartaj, P.; Morales, M. D. P.; Veintemillas-Verdaguer, S.; Gonz Lez-Carre O. T.; Serna, C. J. The Preparation of Magnetic Nanoparticles for Applications in Biomedicine. J. Phys. D: Appl. Phys. 2003, 36, R182–R197. DOI: 10.1088/0022-3727/36/13/202.
  • Siddiqi, K. S.; Ur Rahman, A.; Tajuddin; Husen, A. Biogenic Fabrication of Iron/Iron Oxide Nanoparticles and Their Application. Nanoscale Res. Lett. 2016, 11, 498. DOI: 10.1186/s11671-016-1714-0.
  • Sabareeswaran, A.; Ansar, E. B.; Varma, P. R. V. H.; Mohanan, P. V.; Kumary, T. V. Effect of Surface-Modified Superparamagnetic Iron Oxide Nanoparticles (SPIONS) on Mast Cell Infiltration: An Acute In Vivo Study. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 1523–1533. DOI: 10.1016/j.nano.2016.02.018.
  • Muthukumar, H.; Chandrasekaran, N. I.; Mohammed, S. N.; Pichiah, S.; Manickam, M. Iron Oxide Nano-Material: Physicochemical Traits and In Vitro Antibacterial Propensity Against Multidrug Resistant Bacteria. J. Ind. Eng. Chem. 2017, 45, 121–130. DOI: 10.1016/j.jiec.2016.09.014.
  • Dil, E. A.; Asfaram, A.; Sadeghfar, F. Magnetic Dispersive Micro-Solid Phase Extraction with the CuO/ZnO@Fe3O4-CNTs Nanocomposite Sorbent for the Rapid Pre-Concentration of Chlorogenic Acid in the Medical Extract of Plants, Food, and Water Samples. Analyst 2019, 144, 2684–2695. DOI: 10.1039/c8an02484g.
  • Cai, J.; Chen, S.; Ji, M.; Hu, J.; Ma, Y.; Qi, L. Organic Additive-Free Synthesis of Mesocrystalline Hematite Nanoplates via Two-Dimensional Oriented Attachment. Cryst. Eng. Comm. 2014, 16, 1553–1559. DOI: 10.1039/C3CE41716F.
  • Devi, H. S.; Boda, M. A.; Shah, M. A.; Parveen, S.; Wani, A. H. Green Synthesis of Iron Oxide Nanoparticles using Platanus orientalis Leaf Extract for Antifungal Activity. Green Process. Synth. 2019, 8, 38–45. DOI: 10.1515/gps-2017-0145.
  • Lee, S.-W.; Woo, K.-J.; Kim, C.-S. Crystallographic and Magnetic Properties of Iron Oxide Nanoparticles for Applications in Biomedicine. J. Magn. 2004, 9, 83–85. DOI: 10.4283/JMAG.2004.9.3.083.
  • Arabkhani, P.; Asfaram, A. Development of a Novel Three-Dimensional Magnetic Polymer Aerogel as an Efficient Adsorbent for Malachite Green Removal. J. Hazard. Mater. 2020, 384, 121394. DOI: 10.1016/j.jhazmat.2019.121394.
  • Unsoy, G.; Yalcin, S.; Khodadust, R.; Gunduz, G.; Gunduz, U. Synthesis Optimization and Characterization of Chitosan-Coated Iron Oxide Nanoparticles Produced for Biomedical Applications. J. Nanopart. Res. 2012, 14, 964. DOI: 10.1007/s11051-012-0964-8.
  • Lemine, O.; Omri, K.; Iglesias, M.; Velasco, V.; Crespo, P.; De La Presa, P.; El Mir, L.; Bouzid, H.; Yousif, A.; Al-Hajry, A. γ-Fe2O3 by Sol–Gel with Large Nanoparticles Size for Magnetic Hyperthermia Application. J. Alloys Compd. 2014, 607, 125–131. DOI: 10.1016/j.jallcom.2014.04.002.
  • Zhang, B.; Tu, Z.; Zhao, F.; Wang, J. Superparamagnetic Iron Oxide Nanoparticles Prepared by Using an Improved Polyol Method. Appl. Surf. Sci. 2013, 266, 375–379. DOI: 10.1016/j.apsusc.2012.12.032.
  • Ashraf, N.; Ahmad, F.; Da-Wei, L.; Zhou, R.-B.; Feng-Li, H.; Yin, D.-C. Iron/Iron Oxide Nanoparticles: Advances in Microbial Fabrication, Mechanism Study, Biomedical, And Environmental Applications. Crit. Rev. Microbiol. 2019, 45, 278–300. DOI: 10.1080/1040841X.2019.1593101.
  • Nadagouda, M. N.; Varma, R. S. A Greener Synthesis of Core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag) Nanocrystals using Aqueous Vitamin C. Cryst. Growth Des. 2007, 7, 2582–2587. DOI: 10.1021/cg070554e.
  • Bishnoi, S.; Kumar, A.; Selvaraj, R. Facile Synthesis of Magnetic Iron Oxide Nanoparticles using Inedible Cynometra Ramiflora Fruit Extract Waste and Their Photocatalytic Degradation of Methylene Blue Dye. Mater. Res. Bull. 2018, 97, 121–127. DOI: 10.1016/j.materresbull.2017.08.040.
  • Thakkar, K. N.; Mhatre, S. S.; Parikh, R. Y. Biological Synthesis of Metallic Nanoparticles. Nanomedicine 2010, 6, 257–262. DOI: 10.1016/j.nano.2009.07.002.
  • Awwad, A. M.; Salem, N. M. A Green and Facile Approach for Synthesis of Magnetite Nanoparticles. Nanosci. Nanotechnol. 2012, 2, 208–213.
  • Martínez-Cabanas, M.; López-García, M.; Barriada, J. L.; Herrero, R.; Sastre de Vicente, M. E. Green Synthesis of Iron Oxide Nanoparticles. Development of Magnetic Hybrid Materials for Efficient as(V) Removal. Chem. Eng. J. 2016, 301, 83–91. DOI: 10.1016/j.cej.2016.04.149.
  • Vasantharaj, S.; Sripriya, N.; Shanmugavel, M.; Manikandan, E.; Gnanamani, A.; Senthilkumar, P. Surface Active Gold Nanoparticles Biosynthesis by New Approach for Bionanocatalytic Activity. J. Photochem. Photobiol. B: Biol. 2018, 179, 119–125. DOI: 10.1016/j.jphotobiol.2018.01.007.
  • Kumar, B.; Smita, K.; Cumbal, L.; Debut, A. Biogenic Synthesis of Iron Oxide Nanoparticles for 2-Arylbenzimidazole Fabrication. J. Saudi Chem. Soc. 2014, 18, 364–369. DOI: 10.1016/j.jscs.2014.01.003.
  • Erci, F.; Cakir-Koc, R.; Yontem, M.; Torlak, E. Synthesis of Biologically Active Copper Oxide Nanoparticles as Promising Novel Antibacterial-Antibiofilm Agents. Prep. Biochem. Biotechnol. 2020, 50, 511–538. DOI: 10.1080/10826068.2019.1711393.
  • Gedikoğlu, A.; Sökmen, M.; Çivit, A. Evaluation of Thymus vulgaris and Thymbra spicata Essential Oils and Plant Extracts for Chemical Composition, Antioxidant, and Antimicrobial Properties. Food Sci. Nutr. 2019, 7, 1704–1714. DOI: 10.1002/fsn3.1007.
  • Baydar, H.; Sağdiç, O.; Özkan, G.; Karadoğan, T. Antibacterial Activity and Composition of Essential Oils from Origanum, Thymbra, and Satureja Species with Commercial Importance in Turkey. Food Control 2004, 15, 169–172. DOI: 10.1016/S0956-7135(03)00028-8.
  • Haroun, M. F.; Al-Kayali, R. S. Synergistic effect of Thymbra spicata L. Extracts with Antibiotics Against Multidrug-Resistant Staphylococcus aureus and Klebsiella pneumoniae Strains. Iran J Basic Med Sci 2016, 19, 1193–1200.
  • Ozel, M. Z.; Gogus, F.; Lewis, A. C. Subcritical Water Extraction of Essential Oils from Thymbra spicata. Food Chem. 2003, 82, 381–386. DOI: 10.1016/S0308-8146(02)00558-7.
  • Dorman, H.; Peltoketo, A.; Hiltunen, R.; Tikkanen, M. Characterisation of the Antioxidant Properties of de-Odourised Aqueous Extracts from Selected Lamiaceae Herbs. Food Chem. 2003, 83, 255–262. DOI: 10.1016/S0308-8146(03)00088-8.
  • Erci, F.; Cakir-Koc, R.; Isildak, I. Green Synthesis of Silver Nanoparticles using Thymbra Spicata L. var. spicata (Zahter) Aqueous Leaf Extract and Evaluation of Their Morphology-Dependent Antibacterial and Cytotoxic Activity. Artif. Cells. Nanomed. Biotechnol. 2018, 46, 150–158. DOI: 10.1080/21691401.2017.1415917.
  • Veisi, H.; Tamoradi, T.; Karmakar, B.; Mohammadi, P.; Hemmati, S. In Situ Biogenic Synthesis of Pd Nanoparticles over Reduced Graphene Oxide by using a Plant Extract (Thymbra Spicata) and Its Catalytic Evaluation towards Cyanation of Aryl Halides. Mater. Sci. Eng. C: Mater. Biol. Appl. 2019, 104, 109919. DOI: 10.1016/j.msec.2019.109919.
  • Hammond, S.; Lambert, P. Antimicrobial Actions; Edward Arnold Ltd.: London, 1978; pp. 4–9.
  • Kumar, K. M.; Mandal, B. K.; Kumar, K. S.; Reddy, P. S.; Sreedhar, B. Biobased Green Method to Synthesise Palladium and Iron Nanoparticles using Terminalia chebula Aqueous Extract. Spectrochim. Acta. A: Mol. Biomol. Spectrosc. 2013, 102, 128–133. DOI: 10.1016/j.saa.2012.10.015.
  • Irshad, R.; Tahir, K.; Li, B.; Ahmad, A.; R.; Siddiqui, A.; Nazir, S. Antibacterial acTIvity of Biochemically Capped Iron Oxide Nanoparticles: A View Towards Green Chemistry. J. Photochem. Photobiol. B: Biol. 2017, 170, 241–246. DOI: 10.1016/j.jphotobiol.2017.04.020.
  • Asfaram, A.; Dil, E. A.; Arabkhani, P.; Sadeghfar, F.; Ghaedi, M. CuO-GO Nanocomposite for Efficient Dispersive Micro-Solid Phase Extraction of Polycyclic Aromatic Hydrocarbons from Vegetable, Fruit, and Environmental Water Samples by Liquid Chromatographic Determination. Talanta 2020, 218, 121131. DOI: 10.1016/j.talanta.2020.121131.
  • Salem, D. M. S. A.; Ismail, M. M.; Aly-Eldeen, M. A. Biogenic Synthesis and Antimicrobial Potency of Iron Oxide (Fe3O4) Nanoparticles using Algae Harvested from the Mediterranean Sea, Egypt. Egypt. J. Aquat. Res. 2019, 45, 197–204. DOI: 10.1016/j.ejar.2019.07.002.
  • Deshmukh, A. R.; Gupta, A.; Kim, B. S. Ultrasound Assisted Green Synthesis of Silver and Iron Oxide Nanoparticles using Fenugreek Seed Extract and Their Enhanced Antibacterial and Antioxidant Activities. Biomed. Res. Int. 2019, 2019, 1714358–1714358. DOI: 10.1155/2019/1714358.
  • Markova, Z.; Novak, P.; Kaslik, J.; Plachtova, P.; Brazdova, M.; Jancula, D.; Siskova, K. M.; Machala, L.; Marsalek, B.; Zboril, R.; Varma, R. Iron (II, III)–Polyphenol Complex Nanoparticles Derived from Green Tea with Remarkable Ecotoxicological Impact. ACS Sustain. Chem. Eng. 2014, 2, 1674–1680. DOI: 10.1021/sc5001435.
  • Taylor, E. N.; Kummer, K. M.; Durmus, N. G.; Leuba, K.; Tarquinio, K. M.; Webster, T. J. Superparamagnetic Iron Oxide Nanoparticles (SPION) for the Treatment of Antibiotic-Resistant Biofilms. Small 2012, 8, 3016–3027. DOI: 10.1002/smll.201200575.
  • Arokiyaraj, S.; Saravanan, M.; Prakash, N. U.; Arasu, M. V.; Vijayakumar, B.; Vincent, S. Enhanced Antibacterial Activity of Iron Oxide Magnetic Nanoparticles Treated with Argemone Mexicana L. Leaf Extract: An In Vitro Study. Mater. Res. Bull. 2013, 48, 3323–3327. DOI: 10.1016/j.materresbull.2013.05.059.
  • Cucarella, C.; Tormo, M. A.; Ubeda, C.; Trotonda, M. P.; Monzón, M.; Peris, C.; Amorena, B.; Lasa, Í.; Penadés, J. R. Role of Biofilm-Associated Protein Bap in the Pathogenesis of Bovine Staphylococcus aureus. Infect. Immun. 2004, 72, 2177–2185. DOI: 10.1128/iai.72.4.2177-2185.2004.
  • Ramalingam, V.; Dhinesh, P.; Sundaramahalingam, S.; Rajaram, R. Green Fabrication of Iron Oxide Nanoparticles using Grey Mangrove Avicennia Marina for Antibiofilm Activity and In Vitro Toxicity. Surf. Interfaces 2019, 15, 70–77. DOI: 10.1016/j.surfin.2019.01.008.
  • Ramalingam, V.; Raja, S.; Sundaramahalingam, S.; Rajaram, R. Chemical Fabrication of Graphene Oxide Nanosheets Attenuates Biofilm Formation of Human Clinical Pathogens. Bioorg. Chem. 2019, 83, 326–335. DOI: 10.1016/j.bioorg.2018.10.052.
  • Kaweeteerawat, C.; Ivask, A.; Liu, R.; Zhang, H.; Chang, C. H.; Low-Kam, C.; Fischer, H.; Ji, Z.; Pokhrel, S.; Cohen, Y.; et al. Toxicity of Metal Oxide Nanoparticles in Escherichia coli Correlates with Conduction Band and Hydration Energies. Environ. Sci. Technol. 2015, 49, 1105–1112. DOI: 10.1021/es504259s.
  • Santoshi, V.; Banu, A.; Kurian, G. Synthesis, Characterization and Biological Evaluation of Iron Oxide Nanoparticles Prepared by Desmodium gangeticum Root Aqueous Extract. Int. J. Pharm. Pharm. Sci. 2015, 7, 75–80.
  • Daniel, S. K.; Vinothini, G.; Subramanian, N.; Nehru, K.; Sivakumar, M. Biosynthesis of Cu, ZVI, and Ag Nanoparticles using Dodonaea viscosa Extract for Antibacterial Activity against Human Pathogens. J. Nanopart. Res. 2013, 15, 1319. DOI: 10.1007/s11051-012-1319-1.
  • Namvar, F.; Rahman, H. S.; Mohamad, R.; Baharara, J.; Mahdavi, M.; Amini, E.; Chartrand, M. S.; Yeap, S. K. Cytotoxic Effect of Magnetic Iron Oxide Nanoparticles Synthesized via Seaweed Aqueous Extract. Int. J. Nanomed. 2014, 9, 2479–2488. DOI: 10.2147/IJN.S59661.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.