389
Views
7
CrossRef citations to date
0
Altmetric
Article

Synthesis of biodegradable semolina starch plastic films reinforced with biogenically synthesized ZnO nanoparticles

ORCID Icon, , , &
Pages 985-994 | Received 16 May 2020, Accepted 26 Jul 2020, Published online: 02 Sep 2020

References

  • Din, M. I.; Ghaffar, T.; Najeeb, J.; Hussain, Z.; Khalid, R.; Zahid, H. Potential Perspectives of Biodegradable Plastics for Food Packaging Application-Review of Properties and Recent Developments. Food Addit. Contam Part A Chem. Anal. Control Expo Risk Assess 2020, 37, 665–680. DOI: 10.1080/19440049.2020.1718219.
  • Souza, V. G. L.; Rodrigues, C.; Valente, S.; Pimenta, C.; Pires, J. R. A.; Alves, M. M.; Santos, C. F.; Coelhoso, I. M.; Fernando, A. L. Eco-Friendly Zno/Chitosan Bionanocomposites Films for Packaging of Fresh Poultry Meat. Coatings 2020, 10, 110. DOI: 10.3390/coatings10020110.
  • Liu, C.; Huang, J.; Zheng, X.; Liu, S.; Lu, K.; Tang, K.; Liu, J. Heat Sealable Soluble Soybean Polysaccharide/Gelatin Blend Edible Films for Food Packaging Applications. Food Packag. Shelf Life 2020, 24, 100485. DOI: 10.1016/j.fpsl.2020.100485.
  • Jafarzadeh, S.; Ariffin, F.; Mahmud, S.; Alias, A. K.; Najafi, A.; Ahmad, M. Characterization of Semolina Biopolymer Films Enriched with Zinc Oxide Nano Rods. Ital. J. Food Sci. 2017, 29.
  • Kiro, A.; Bajpai, J.; Bajpai, A. Designing of Silk and Zno Based Antibacterial and Noncytotoxic Bionanocomposite Films and Study of Their Mechanical and uv Absorption Behavior. J. Mech. Behav. Biomed. 2017, 65, 281–294. DOI: 10.1016/j.jmbbm.2016.08.029.
  • Ramesan, M.; Jayakrishnan, P.; Sampreeth, T.; Pradyumnan, P. Temperature-Dependent ac Electrical Conductivity, Thermal Stability and Different dc Conductivity Modelling of Novel Poly (Vinyl Cinnamate)/Zinc Oxide Nanocomposites. J. Therm. Anal. Calorim. 2017, 129, 135–145. DOI: 10.1007/s10973-017-6140-8.
  • Ramesan, M.; Greeshma, K.; Parvathi, K.; Anilkumar, T. Structural, Electrical, Thermal, and Gas Sensing Properties of New Conductive Blend Nanocomposites Based on Polypyrrole/Phenothiazine/Silver‐Doped Zinc Oxide. J. Vinyl Addit. Technol. 2020, 26, 187–195. DOI: 10.1002/vnl.21732.
  • Ramesan, M.; Siji, C.; Kalaprasad, G.; Bahuleyan, B.; Al-Maghrabi, M. Effect of Silver Doped Zinc Oxide as Nanofiller for the Development of Biopolymer Nanocomposites from Chitin and Cashew Gum. J. Polym. Environ. 2018, 26, 2983–2991. DOI: 10.1007/s10924-018-1187-6.
  • Din, M. I.; Najeeb, J.; Hussain, Z.; Khalid, R.; Ahmad, G. Biogenic Scale up Synthesis of Zno Nano-Flowers with Superior Nano-Photocatalytic Performance. Inorg. Nano-Met. Chem. 2020, 50, 613–619.
  • Din, M. I.; Tariq, M.; Hussain, Z.; Khalid, R. Single Step Green Synthesis of Nickel and Nickel Oxide Nanoparticles from Hordeum Vulgare for Photocatalytic Degradation of Methylene Blue Dye. Inorg. Nano-Met. Chem. 2020, 50, 292–297.
  • Hasanuzzaman, M.; Islam, W.; Islam, M. Phytochemical Screening of Syzygium Cumini (l.) Extracts in Different Solvents. J. Bio-Sci. 2018, 24, 11–14. DOI: 10.3329/jbs.v24i0.37483.
  • Prasad, R.; Swamy, V. S.; Prasad, K. S.; Varma, A. Biogenic Synthesis of Silver Nanoparticles from the Leaf Extract of Syzygium Cumini (l.) and Its Antibacterial Activity. Int J Pharma. Bio. Sci. 2013, 2013, 1–6. DOI: 10.1155/2013/431218.
  • Elansary, H. O.; Salem, M. Z. M.; Ashmawy, N. A.; Yacout, M. M. Chemical Composition, Antibacterial and Antioxidant Activities of Leaves Essential Oils from Syzygium Cumini l., Cupressus Sempervirens l. And Lantana Camara l. From Egypt. J. Agric. Sci. 2012, 4.
  • Eshwarappa, R. S. B.; Iyer, R. S.; Subbaramaiah, S. R. Antioxidant Activity of Syzygium Cumini Leaf Gall Extracts. BioImpacts 2014, 4, 101–107.
  • Balyan, U.; Verma, S. P.; Sarkar, B. Phenolic Compounds from Syzygium Cumini (l.) Skeels Leaves: Extraction and Membrane Purification. J. Appl. Res. Med. Aroma 2019, 12, 43–58.
  • Azima, A. S.; Noriham, A.; Manshoor, N. Phenolics, Antioxidants and Color Properties of Aqueous Pigmented Plant Extracts: Ardisia Colorata Var. Elliptica, Clitoria Ternatea, Garcinia Mangostana and Syzygium Cumini. J. Funct. Foods 2017, 38, 232–241. DOI: 10.1016/j.jff.2017.09.018.
  • Kumar, A.; Ilavarasan, R.; Jayachandran, T.; Deecaraman, M.; Kumar, R. M.; Aravindan, P.; Padmanabhan, N.; Krishan, M. Anti-Inflammatory Activity of Syzygium Cumini Seed. Afr. J. Biotechnol. 2008, 7.
  • Oleyaei, S. A.; Zahedi, Y.; Ghanbarzadeh, B.; Moayedi, A. A. Modification of Physicochemical and Thermal Properties of Starch Films by Incorporation of tio2 Nanoparticles. Int. J. Biol. Macromol. 2016, 89, 256–264. DOI: 10.1016/j.ijbiomac.2016.04.078.
  • Kanmani, P.; Rhim, J.-W. Properties and Characterization of Bionanocomposite Films Prepared with Various Biopolymers and Zno Nanoparticles. Carbohydr. Polym. 2014, 106, 190–199. DOI: 10.1016/j.carbpol.2014.02.007.
  • Sanuja, S.; Agalya, A.; Umapathy, M. J. Synthesis and Characterization of Zinc Oxide–Neem Oil–Chitosan Bionanocomposite for Food Packaging Application. Int. J. Biol. Macromol. 2015, 74, 76–84. DOI: 10.1016/j.ijbiomac.2014.11.036.
  • Jayasuriya, A. C.; Aryaei, A.; Jayatissa, A. H. Zno Nanoparticles Induced Effects on Nanomechanical Behavior and Cell Viability of Chitosan Films. Mater Sci Eng C Mater Biol Appl. 2013, 33, 3688–3696. DOI: 10.1016/j.msec.2013.04.057.
  • Abdenour, Y.; Mourad, L.; Sihem, T.; Zakia, A.; Ghania, O. Physicochemical and Rheological Properties and Bread-Making Potential of Durum Flour and Semolina. J. Food Agric. Environ. 2017, 15, 14–20.
  • Oladunmoye, O. O.; Aworh, O. C.; Maziya‐Dixon, B.; Erukainure, O. L.; Elemo, G. N. Chemical and Functional Properties of Cassava Starch, Durum Wheat Semolina Flour, and Their Blends. Food Sci. Nutr. 2014, 2, 132–138. DOI: 10.1002/fsn3.83.
  • Lin, O. H.; Akil, H. M.; Mahmud, S. Effect of Particle Morphology on the Properties of Polypropylene/Nanometric Zinc Oxide (pp/Nanozno) Composites. Adv. Compos. Lett. 2009, 18, 096369350901800. DOI: 10.1177/096369350901800302.
  • Akhavan, A.; Khoylou, F.; Ataeivarjovi, E. Preparation and Characterization of Gamma Irradiated Starch/Pva/Zno Nanocomposite Films. Radiat. Phys. Chem. 2017, 138, 49–53. DOI: 10.1016/j.radphyschem.2017.02.057.
  • Mirjalili, F.; Yassini Ardekani, A. Preparation and Characterization of Starch Film Accompanied with Zno Nanoparticles. J. Food Process Eng. 2017, 40, e12561. DOI: 10.1111/jfpe.12561.
  • Nafchi, A. M.; Nassiri, R.; Sheibani, S.; Ariffin, F.; Karim, A. Preparation and Characterization of Bionanocomposite Films Filled with Nanorod-Rich Zinc Oxide. Carbohydr. Polym. 2013, 96, 233–239. DOI: 10.1016/j.carbpol.2013.03.055.
  • Kotharangannagari, V. K.; Krishnan, K. Biodegradable Hybrid Nanocomposites of Starch/Lysine and Zno Nanoparticles with Shape Memory Properties. Mater. Design 2016, 109, 590–595. DOI: 10.1016/j.matdes.2016.07.046.
  • Ramesan, M. T.; Varghese, M.; P, J.; Periyat, P. Silver‐Doped Zinc Oxide as a Nanofiller for Development of Poly (Vinyl Alcohol)/Poly (Vinyl Pyrrolidone) Blend Nanocomposites. Adv. Polym. Technol. 2018, 37, 137–143. DOI: 10.1002/adv.21650.
  • Ostafińska, A.; Mikešová, J.; Krejčíková, S.; Nevoralová, M.; Šturcová, A.; Zhigunov, A.; Michálková, D.; Šlouf, M. Thermoplastic Starch Composites with tio2 Particles: Preparation, Morphology, Rheology and Mechanical Properties. Int. J. Biol. Macromol. 2017, 101, 273–282. DOI: 10.1016/j.ijbiomac.2017.03.104.
  • Rojas-Graü, M. A.; Raybaudi-Massilia, R. M.; Soliva-Fortuny, R. C.; Avena-Bustillos, R. J.; McHugh, T. H.; Martín-Belloso, O. Apple Puree-Alginate Edible Coating as Carrier of Antimicrobial Agents to Prolong Shelf-Life of Fresh-Cut Apples. Postharvest Biol. Technol. 2007, 45, 254–264. DOI: 10.1016/j.postharvbio.2007.01.017.
  • Savaris, M.; Braga, G. L.; dos Santos, V.; Carvalho, G. A.; Falavigna, A.; Machado, D. C.; Viezzer, C.; Brandalise, R. N. Biocompatibility Assessment of Poly (Lactic Acid) Films after Sterilization with Ethylene Oxide in Histological Study in Vivo with Wistar Rats and Cellular Adhesion of Fibroblasts in Vitro. Int. J. Polym. Sci. 2017, 2017, 1–9. DOI: 10.1155/2017/7158650.
  • Zia, K. M.; Zuber, M.; Barikani, M.; Hussain, R.; Jamil, T.; Anjum, S. Cytotoxicity and Mechanical Behavior of Chitin–Bentonite Clay Based Polyurethane Bio-Nanocomposites. Int. J. Biol. Macromol. 2011, 49, 1131–1136. DOI: 10.1016/j.ijbiomac.2011.09.010.
  • Chinaglia, S.; Tosin, M.; Degli-Innocenti, F. Biodegradation Rate of Biodegradable Plastics at Molecular Level. Polym. Degrad. Stabil. 2018, 147, 237–244. DOI: 10.1016/j.polymdegradstab.2017.12.011.
  • Panchakarla, L.; Govindaraj, A.; Rao, C. Formation of Zno Nanoparticles by the Reaction of Zinc Metal with Aliphatic Alcohols. J. Clust. Sci. 2007, 18, 660–670. DOI: 10.1007/s10876-007-0129-6.
  • Talam, S.; Karumuri, S. R.; Gunnam, N. Synthesis, Characterization, and Spectroscopic Properties of Zno Nanoparticles. ISRN Nanotech. 2012, 2012, 1–6. DOI: 10.5402/2012/372505.
  • Kumar, H.; Rani, R. Structural and Optical Characterization of Zno Nanoparticles Synthesized by Microemulsion Route. ILCPA 2013, 19, 26–36. DOI: 10.18052/www.scipress.com/ILCPA.19.26.
  • Lanje, A. S.; Sharma, S. J.; Ningthoujam, R. S.; Ahn, J.-S.; Pode, R. B. Low Temperature Dielectric Studies of Zinc Oxide (Zno) Nanoparticles Prepared by Precipitation Method. Adv. Powder Technol. 2013, 24, 331–335. DOI: 10.1016/j.apt.2012.08.005.
  • Gómez-Martínez, D.; Partal, P.; Martínez, I.; Gallegos, C. Rheological Behaviour and Physical Properties of Controlled-Release Gluten-Based Bioplastics. Bioresour. Technol. 2009, 100, 1828–1832. DOI: 10.1016/j.biortech.2008.10.016.
  • Díaz‐Visurraga, J.; Melendrez, M.; Garcia, A.; Paulraj, M.; Cardenas, G. Semitransparent Chitosan‐tio2 Nanotubes Composite Film for Food Package Applications. J. Appl. Polym. Sci. 2010, 116, NA–3515. DOI: 10.1002/app.31881.
  • Abdullah, A. H. D.; Putri, O. D.; Fikriyyah, A. K.; Nissa, R. C.; Hidayat, S.; Septiyanto, R. F.; Karina, M.; Satoto, R. Harnessing the Excellent Mechanical, Barrier and Antimicrobial Properties of Zinc Oxide (Zno) to Improve the Performance of Starch-Based Bioplastic. Polym-Plast. Technol. 2020, 59, 1259–1267. DOI: 10.1080/25740881.2020.1738466.
  • Wu, Y.; Geng, F.; Chang, P. R.; Yu, J.; Ma, X. Effect of Agar on the Microstructure and Performance of Potato Starch Film. Carbohydr. Polym. 2009, 76, 299–304. DOI: 10.1016/j.carbpol.2008.10.031.
  • Yu, J.; Yang, J.; Liu, B.; Ma, X. Preparation and Characterization of Glycerol Plasticized-Pea Starch/Zno–Carboxymethylcellulose Sodium Nanocomposites. Bioresour. Technol. 2009, 100, 2832–2841. DOI: 10.1016/j.biortech.2008.12.045.
  • Anitha, S.; Brabu, B.; Thiruvadigal, D. J.; Gopalakrishnan, C.; Natarajan, T. Optical, Bactericidal and Water Repellent Properties of Electrospun Nano-Composite Membranes of Cellulose Acetate and Zno. Carbohydr. Polym. 2012, 87, 1065–1072. DOI: 10.1016/j.carbpol.2011.08.030.
  • Jafarzadeh, S.; Ariffin, F.; Mahmud, S.; Alias, A. K.; Hosseini, S. F.; Ahmad, M. Improving the Physical and Protective Functions of Semolina Films by Embedding a Blend Nanofillers (Zno-nr and Nano-Kaolin). Food Packag. Shelf Life 2017, 12, 66–75. DOI: 10.1016/j.fpsl.2017.03.001.
  • Jafarzadeh, S.; Alias, A.; Ariffin, F.; Mahmud, S. Characterization of Semolina Protein Film with Incorporated Zinc Oxide Nano Rod Intended for Food Packaging. Pol. J. Food Nutr. Sci. 2017, 67, 183–190. DOI: 10.1515/pjfns-2016-0025.
  • Biduski, B.; da Silva, F. T.; da Silva, W. M.; El Halal, SLdM.; Pinto, V. Z.; Dias, A. R. G.; da Rosa Zavareze, E. Impact of Acid and Oxidative Modifications, Single or Dual, of Sorghum Starch on Biodegradable Films. Food Chem. 2017, 214, 53–60. DOI: 10.1016/j.foodchem.2016.07.039.
  • Zhang, R.; Wang, X.; Cheng, M. Preparation and Characterization of Potato Starch Film with Various Size of Nano-sio2. Polymers 2018, 10, 1172. DOI: 10.3390/polym10101172.
  • Gutiérrez, T. J.; Seligra, P. G.; Jaramillo, C. M.; Famá, L.; Goyanes, S. Effect of Filler Properties on the Antioxidant Response of Thermoplastic Starch Composites. Handbook of Composites from Renewable Materials, Structure and Chemistry; Wiley: Hoboken, NJ, 2016; pp. 337.
  • Bourtoom, T.; Chinnan, M. S. Preparation and Properties of Rice Starch–Chitosan Blend Biodegradable Film. LWT-Food Sci. Technol. 2008, 41, 1633–1641. DOI: 10.1016/j.lwt.2007.10.014.
  • Díez-Pascual, A. M.; Diez-Vicente, A. L. Zno-Reinforced Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) Bionanocomposites with Antimicrobial Function for Food Packaging. ACS Appl. Mater. Interfaces. 2014, 6, 9822–9834. DOI: 10.1021/am502261e.
  • Guz, L.; Famá, L.; Candal, R.; Goyanes, S. Size Effect of Zno Nanorods on Physicochemical Properties of Plasticized Starch Composites. Carbohydr. Polym. 2017, 157, 1611–1619. DOI: 10.1016/j.carbpol.2016.11.041.
  • Nafchi, A. M.; Alias, A. K.; Mahmud, S.; Robal, M. Antimicrobial, Rheological, and Physicochemical Properties of Sago Starch Films Filled with Nanorod-Rich Zinc Oxide. J. Food Eng. 2012, 113, 511–519. DOI: 10.1016/j.jfoodeng.2012.07.017.
  • Shankar, S.; Teng, X.; Li, G.; Rhim, J.-W. Preparation, Characterization, and Antimicrobial Activity of Gelatin/Zno Nanocomposite Films. Food Hydrocoll. 2015, 45, 264–271. DOI: 10.1016/j.foodhyd.2014.12.001.
  • Magesh, G.; Bhoopathi, G.; Nithya, N.; Arun, A. P.; Ranjith Kumar, E. Effect of Biopolymer Blend Matrix on Structural, Optical and Biological Properties of Chitosan–Agar Blend Zno Nanocomposites. J. Inorg. Organomet. Polym. 2018, 28, 1528–1539. DOI: 10.1007/s10904-018-0848-1.
  • Mahendiran, D.; Subash, G.; Selvan, D. A.; Rehana, D.; Kumar, R. S.; Rahiman, A. K. Biosynthesis of Zinc Oxide Nanoparticles Using Plant Extracts of Aloe Vera and Hibiscus Sabdariffa: Phytochemical, Antibacterial, Antioxidant and anti-Proliferative Studies. Bionanosci. 2017, 7, 530–545. DOI: 10.1007/s12668-017-0418-y.
  • Balraj, B.; Senthilkumar, N.; Siva, C.; Krithikadevi, R.; Julie, A.; Potheher, I. V.; Arulmozhi, M. Synthesis and Characterization of Zinc Oxide Nanoparticles Using Marine Streptomyces sp. With Its Investigations on Anticancer and Antibacterial Activity. Res. Chem. Intermed. 2017, 43, 2367–2376. DOI: 10.1007/s11164-016-2766-6.
  • Pang, M. M.; Pun, M. Y.; Ishak, Z. A. M. Degradation Studies during Water Absorption, Aerobic Biodegradation, and Soil Burial of Biobased Thermoplastic Starch from Agricultural Waste/Polypropylene Blends. J. Appl. Polym. Sci. 2013, 129, 3656–3664. DOI: 10.1002/app.39123.
  • Shah, A. A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological Degradation of Plastics: A Comprehensive Review. Biotechnol. Adv. 2008, 26, 246–265. DOI: 10.1016/j.biotechadv.2007.12.005.
  • Iovino, R.; Zullo, R.; Rao, M.; Cassar, L.; Gianfreda, L. Biodegradation of Poly (Lactic Acid)/Starch/Coir Biocomposites under Controlled Composting Conditions. Polym. Degrad. Stab. 2008, 93, 147–157. DOI: 10.1016/j.polymdegradstab.2007.10.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.