266
Views
5
CrossRef citations to date
0
Altmetric
Article

Green biosynthesis of silver nanoparticles using Dregea volubilis flowers: Characterization and evaluation of antioxidant, antidiabetic and antibacterial activity

, , , , &
Pages 1066-1079 | Received 16 May 2020, Accepted 02 Aug 2020, Published online: 03 Sep 2020

References

  • Pandian, A. M. K.; Karthikeyan, C.; Rajasimman, M. Isotherm and Kinetic Studies on Nano-Sorption of Malachite Green onto Aspergillus flavus Mediated Synthesis of Silver Nano Particles. Environ. Nanotechnol. Monit. Manag. 2016, 6, 139–151. DOI: 10.1016/j.enmm.2016.10.001.
  • David, L.; Moldovan, B.; Vulcu, A.; Olenic, L.; Perde-Schrepler, M.; Fischer-Fodor, E.; Florea, A.; Crisan, M.; Chiorean, I.; Clichici, S.; Filip, G. A. Green Synthesis, Characterization and anti-Inflammatory Activity of Silver Nanoparticles Using European Black Elderberry Fruits Extract. Colloids Surf. B Biointerfaces 2014, 122, 767–777. DOI: 10.1016/j.colsurfb.2014.08.018.
  • Iravani, S. Green Synthesis of Metal Nanoparticles Using Plants. Green Chem. 2011, 13, 2638–2650. DOI: 10.1039/c1gc15386b.
  • Ravindran, A.; Chandran, P.; Khan, S. S. Biofunctionalized Silver Nanoparticles: Advances and Prospects. Colloids Surf. B Biointerfaces 2013, 105, 342–352. DOI: 10.1016/j.colsurfb.2012.07.036.
  • Maddinedi, S. B.; Mandal, B. K.; Maddili, S. K. Biofabrication of Size Controllable Silver nanoparticles - A Green Approach. J. Photochem. Photobiol. B 2017, 167, 236–241. DOI: 10.1016/j.jphotobiol.2017.01.003.
  • Saratale, R. G.; Karuppusamy, I.; Saratale, G. D.; Pugazhendhi, A.; Kumar, G.; Park, Y.; Ghodake, G. S.; Bharagava, R. N.; Banu, J. R.; Shin, H. S. A Comprehensive Review on Green Nanomaterials Using Biological Systems: Recent Perception and Their Future Applications. Colloids Surf. B Biointerfaces 2018, 170, 20–35. DOI: 10.1016/j.colsurfb.2018.05.045.
  • Saratale, R. G.; Saratale, G. D.; Shin, H. S.; Jacob, J. M.; Pugazhendhi, A.; Bhaisare, M.; Kumar, G. New Insights on the Green Synthesis Ofmetallic Nanoparticles Using Plant and Waste Biomaterials: current Knowledge, Their Agricultural and Environmental Applications. Environ. Sci. Pollut. Res. 2018, 25, 10164–10183. DOI: 10.1007/s11356-017-9912-6.
  • Bar, H.; Bhui, D. K.; Sahoo, G. P.; Sarkar, P.; Pyne, S.; Misra, A. Green Synthesis of Silver Nanoparticles Using Seed Extract of Jatropha curcas. Colloids Surf. A 2009, 348, 212–216. DOI: 10.1016/j.colsurfa.2009.07.021.
  • Siddiqi, K. S.; Husen, A.; Rao, R. A. K. A Review on Biosynthesis of Silver Nanoparticles and Their Biocidal Properties. J. Nanobiotechnol. 2018, 16, 1–28.
  • Dipankar, C.; Murugan, S. The Green Synthesis, Characterization and Evaluation of the Biological Activities of Silver Nanoparticles Synthesized from Iresine herbstii Leaf Aqueous Extracts. Colloids Surf. B Biointerfaces 2012, 98, 112–119. DOI: 10.1016/j.colsurfb.2012.04.006.
  • Das, B.; De, A.; Das, M.; Das, S.; Samanta, A. A New Exploration of Dregea volubilis Flowers: Focusing on Antioxidant and Antidiabetic Properties. S. Afr. J. Bot. 2017, 109, 16–24. DOI: 10.1016/j.sajb.2016.12.003.
  • Balan, K.; Qing, W.; Wang, Y.; Liu, X.; Palvannan, T.; Wang, Y.; Ma, F.; Zhang, Y. Antidiabetic Activity of Silver Nanoparticles from Green Synthesis Using Lonicera japonica Leaf Extract. RSC Adv. 2016, 6, 40162–40168. DOI: 10.1039/C5RA24391B.
  • Sahu, N. P.; Panda, N.; Mandal, N. B.; Banerjee, S.; Koike, K.; Nikaido, T. Polyoxypregnane Glycosides from the Flowers of Dregea volubilis. Phytochemistry 2002, 61, 383–388. DOI: 10.1016/S0031-9422(02)00260-1.
  • Panda, N.; Mondal, N. B.; Banerjee, S.; Sahu, N. P.; Koike, K.; Nikaido, T.; Weber, M.; Luger, P. Polyhydroxy Pregnanes from Dregea volubilis. Tetrahedron 2003, 59, 8399–8403. DOI: 10.1016/j.tet.2003.08.063.
  • Das, B.; De, A.; Das, P.; Nanda, A.; Samanta, A. Pharmacognostic Studies on Flowers of Dregea volubilis: Evaluation for Authentication and Standardization. Asian J. Pharm. Clin. Res. 2019, 12, 79–89.
  • Mandal, D.; Dash, S. K.; Das, B.; Chattopadhyay, S.; Ghosh, T.; Das, D.; Roy, S. Bio-Fabricated Silver Nanoparticles Preferentially Targets Gram Positive Depending on Cell Surface Charge. Biomed. Pharmacother. 2016, 83, 548–558. DOI: 10.1016/j.biopha.2016.07.011.
  • Nadagouda, M. N.; Iyanna, N.; Lalley, J.; Han, C.; Dionysiou, D. D.; Varma, R. S. Synthesis of Silver and Gold Nanoparticles Using Antioxidants from Blackberry, Blueberry, Pomegranate, and Turmeric Extracts. ACS Sustainable Chem. Eng. 2014, 2, 1717–1723. DOI: 10.1021/sc500237k.
  • Nisha, S. N.; Aysha, O. S.; Rahaman, J. S. N.; Kumar, P. V.; Valli, S.; Nirmala, P.; Reena, A. Lemon Peels Mediated Synthesis of Silver Nanoparticles and Its Antidermatophytic Activity. Spectrochim. Acta Part A 2014, 124, 194–198.
  • Cumberland, S. A.; Lead, J. R. Synthesis of NOM-Capped Silver Nanoparticles: Size, Morphology, Stability, and NOM Binding Characteristics. ACS Sustainable Chem. Eng. 2013, 1, 817–825. DOI: 10.1021/sc400063r.
  • Khlifi, D.; Hayouni, E. A.; Valentin, A.; Cazaux, S.; Moukarzel, B.; Hamdi, M.; Bouajila, J. LC-MS Analysis, Anticancer, Antioxidant and Antimalarial Activities of Cynodon dactylon L. extracts. Ind. Crops Prod. 2013, 45, 240–247. DOI: 10.1016/j.indcrop.2012.12.030.
  • Hammi, K. M.; Jdey, A.; Abdelly, C.; Majdoub, H.; Ksouri, R. Optimization of Ultrasound-Assisted Extraction of Antioxidant Compounds from Tunisian Zizyphus lotus Fruits Using Response Surface Methodology. Food Chem. 2015, 184, 80–89. DOI: 10.1016/j.foodchem.2015.03.047.
  • Bolivar, P.; Cruz-Paredes, C.; Hernández, L. R.; Juárez, Z. N.; Sánchez-Arreola, E.; Av-Gay, Y.; Bach, H. Antimicrobial, anti-Inflammatory, Antiparasitic, and Cytotoxic Activities of Galium mexicanum. J. Ethnopharmacol. 2011, 137, 141–147. DOI: 10.1016/j.jep.2011.04.069.
  • Ashokkumar, S.; Ravi, S.; Kathiravan, V.; Velmurugan, S. Synthesis, Characterization and Catalytic Activity of Silver Nanoparticles Using Tribulus terrestris Leaf Extract. Spectrochim. Acta Part A 2014, 121, 88–93. DOI: 10.1016/j.saa.2013.10.073.
  • Ajitha, B.; Reddy, Y. A. K.; Reddy, P. S.; Suneetha, Y.; Jeon, H.-J.; Ahn, C. W. Instant Biosynthesis of Silver Nanoparticles Using Lawsonia inermis Leaf Extract: Innate Catalytic, Antimicrobial and Antioxidant Activities. J. Mol. Liq. 2016, 219, 474–481. DOI: 10.1016/j.molliq.2016.03.041.
  • AbdelHamid, A. A.; Al-Ghobashy, M. A.; Fawzy, M.; Mohamed, M. B.; Abdel-Mottaleb, M. M. S. A. Phytosynthesis of Au, Ag, and Au-Ag Bimetallic Nanoparticles Using Aqueous Extract of Sago Pondweed (Potamogeton pectinatus L.). ACS Sustainable Chem. Eng. 2013, 1, 1520–1529. DOI: 10.1021/sc4000972.
  • Wang, Z.; Fang, C.; Megharaj, M. Characterization of Iron-Polyphenol Nanoparticles Synthesized by Three Plant Extracts and Their Fenton Oxidation of Azo Dye. ACS Sustainable Chem. Eng. 2014, 2, 1022–1025. DOI: 10.1021/sc500021n.
  • Sun, Y.; Xia, Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science 2002, 298, 2176–2179. DOI: 10.1126/science.1077229.
  • Zayed, M. F.; Eisa, W. H.; Shabaka, A. A. Malva parviflora Extract Assisted Green Synthesis of Silver Nanoparticles. Spectrochim. Acta Part A 2012, 98, 423–428. DOI: 10.1016/j.saa.2012.08.072.
  • Patra, S.; Mukherjee, S.; Barui, A. K.; Ganguly, A.; Sreedhar, B.; Patra, C. R. Green Synthesis, Characterization of Gold and Silver Nanoparticles and Their Potential Application for Cancer Therapeutics. Mater. Sci. Eng. C 2015, 53, 298–309. DOI: 10.1016/j.msec.2015.04.048.
  • Lu, F.; Sun, D.; Huang, J.; Du, M.; Yang, F.; Chen, H.; Hong, Y.; Li, Q. Plant-Mediated Synthesis of Ag-Pd Alloy Nanoparticles and Their Application as Catalyst toward Selective Hydrogenation. ACS Sustainable Chem. Eng. 2014, 2, 1212–1218. DOI: 10.1021/sc500034r.
  • Yan-Yu, R.; Hui, Y.; Tao, W.; Chuang, W. Green Synthesis and Antimicrobial Activity of Monodisperse Silver Nanoparticles Synthesized Using Ginkgo biloba Leaf Extract. Phys. Lett. A 2016, 380, 3773–3777.
  • Raj, S.; Mali, S. C.; Trivedi, R. Green Synthesis and Characterization of Silver Nanoparticles Using Enicostemma axillare (Lam.) Leaf Extract. Biochem. Biophys. Res. Commun. 2018, 503, 2814–2819. DOI: 10.1016/j.bbrc.2018.08.045.
  • Vijayan, R.; Joseph, S.; Mathew, B. Costus speciosus Rhizome Extract Mediated Synthesis of Silver and Gold Nanoparticles and Their Biological and Catalytic Properties. Inorg. Nano-Met. Chem 2019, 49, 249–259. DOI: 10.1080/24701556.2019.1661439.
  • Pandey, K. B.; Rizvi, S. I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longevity 2009, 2, 270–278. DOI: 10.4161/oxim.2.5.9498.
  • Bhutto, A. A.; Kalay, Ş.; Sherazi, S. T. H.; Culha, M. Quantitative Structure-Activity Relationship between Antioxidant Capacity of Phenolic Compounds and the Plasmonic Properties of Silver Nanoparticles. Talanta 2018, 189, 174–181. DOI: 10.1016/j.talanta.2018.06.080.
  • Fatehi-Hassanabad, Z.; Chan, C. B.; Furman, B. L. Reactive Oxygen Species and Endothelial Function in Diabetes. Eur. J. Pharmacol. 2010, 636, 8–17. DOI: 10.1016/j.ejphar.2010.03.048.
  • Molyneux, P. The Use of the Stable Free Radical Diphenylpicryl-Hydrazyl (DPPH) for Estimating Antioxidant Activity. Songklanakarin J. Sci. Technol. 2004, 26, 211–219.
  • Saratale, G. D.; Saratale, R. G.; Benelli, G.; Kumar, G.; Pugazhendhi, A.; Kim, D.; Shin, H. Anti-Diabetic Potential of Silver Nanoparticles Synthesized with Argyreia nervosa Leaf Extract High Synergistic Antibacterial Activity with Standard Antibiotics against Foodborne Bacteria. J. Clust. Sci. 2017, 28, 1709–1727. DOI: 10.1007/s10876-017-1179-z.
  • Saratale, R. G.; Saratale, G. D.; Cho, S. K.; Ghodake, G.; Kadam, A.; Kumar, S.; Mulla, S. I.; Kim, D. S.; Jeon, B. H.; Chang, J. S.; Shin, H. S. Phyto-Fabrication of Silver Nanoparticles by Acacia nilotica Leaves: Investigating Their Antineoplastic, Free Radical Scavenging Potential and Application in H2O2 Sensing. J. Taiwan. Inst. Chem. Eng. 2019, 99, 239–249. DOI: 10.1016/j.jtice.2019.03.003.
  • Saratale, R. G.; Saratale, G. D.; Ghodake, G.; Cho, S. K.; Kadam, A.; Kumar, G.; Jeon, B. H.; Pant, D.; Bhatnagar, A.; Shin, H. S. Wheat Straw Extracted Lignin in Silver Nanoparticles Synthesis: Expanding Its Prophecy towards Antineoplastic Potency and Hydrogen Peroxide Sensing Ability. Int. J. Biol. Macromol. 2019, 128, 391–400. DOI: 10.1016/j.ijbiomac.2019.01.120.
  • Saratale, R. G.; Shin, H. S.; Kumar, G.; Benelli, G.; Kim, D. S.; Saratale, G. D. Exploiting Antidiabetic Activity of Silver Nanoparticles Synthesized Using Punica granatum Leaves and Anticancer Potential against Human Liver Cancer Cells (HepG2). Artif. Cells. Nanomed. Biotechnol. 2018, 46, 211–222. DOI: 10.1080/21691401.2017.1337031.
  • Saratale, G. D.; Saratale, R. G.; Cho, S.-K.; Ghodake, G.; Bharagava, R. N.; Park, Y.; Mulla, S. I.; Kim, D.-S.; Kadam, A.; Nair, S.; Shin, H.-S. Investigation of Photocatalytic Degradation of Reactive Textile Dyes by Portulaca oleracea-Functionalized Silver Nanocomposites and Exploration of Their Antibacterial and Antidiabetic Potentials. J. Alloys Compd. 2020, 833, 155083–155090. DOI: 10.1016/j.jallcom.2020.155083.
  • Zhang, W.; Hu, S.; Yin, J.; He, W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers. J. Am. Chem. Soc. 2016, 138, 5860–5865. DOI: 10.1021/jacs.5b12070.
  • McShan, D.; Ray, P. C.; Yu, H. Molecular Toxicity Mechanism of Nanosilver. J Food Drug Anal. 2014, 22, 116–127. DOI: 10.1016/j.jfda.2014.01.010.
  • Anand, K.; Tiloke, C.; Naidoo, P.; Chuturgoon, A. A. Phytonanotherapy for Management of Diabetes Using Green Synthesis Nanoparticles. J. Photochem. Photobiol. B, Biol. 2017, 173, 626–639. DOI: 10.1016/j.jphotobiol.2017.06.028.
  • Patil, M. P.; Kim, G. Eco-Friendly Approach for Nanoparticles Synthesis and Mechanism behind Antibacterial Activity of Silver and Anticancer Activity of Gold Nanoparticles. Appl. Microbiol. Biotechnol. 2017, 101, 79–92. DOI: 10.1007/s00253-016-8012-8.
  • Kora, A. J.; Sashidhar, R. B.; Arunachalam, J. Gum Kondagogu (Cochlospermum gossypium): a Template for the Green Synthesis and Stabilization of Silver Nanoparticles with Antibacterial Application. Carbohydr. Polym. 2010, 82, 670–679. DOI: 10.1016/j.carbpol.2010.05.034.
  • Kim, M.; Jee, S. C.; Shinde, S. K.; Mistry, B. M.; Saratale, R. G.; Saratale, G. D.; Ghodake, G. S.; Kim, D. Y.; Sung, J. S.; Kadam, A. A. Green-Synthesis of Anisotropic Peptone-Silver Nanoparticles and Its Potential Application as anti-Bacterial Agent. Polymers 2019, 11, 212–271. DOI: 10.3390/polym11020271.
  • Reddy, N. J.; Vali, D. N.; Rani, M.; Rani, S. S. Evaluation of Antioxidant, Antibacterial and Cytotoxic Effects of Green Synthesized Silver Nanoparticles by Piper longum Fruit. Mater. Sci. Eng. C 2014, 34, 115–122. DOI: 10.1016/j.msec.2013.08.039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.