437
Views
6
CrossRef citations to date
0
Altmetric
Article

Biosynthesis of zinc oxide nanoparticles using bacteria: a study on the characterization and application for electrochemical determination of bisphenol A

, , &
Pages 1249-1257 | Received 19 Apr 2020, Accepted 07 Sep 2020, Published online: 24 Oct 2020

References

  • Zheng, Y.; Huang, Y.; Shi, H.; Fu, L. Green Biosynthesis of ZnO Nanoparticles by Plectranthus Amboinicus Leaf Extract and Their Application for Electrochemical Determination of Norfloxacin. Inorg. Nano-Met. Chem. 2019, 49, 277–282. DOI: 10.1080/24701556.2019.1661441.
  • Miri, A.; Mahdinejad, N.; Ebrahimy, O.; Khatami, M.; Sarani, M. Zinc Oxide Nanoparticles: Biosynthesis, Characterization, Antifungal and Cytotoxic Activity. Mater. Sci. Eng.: C 2019, 104, 109981 DOI: 10.1016/j.msec.2019.109981.
  • Shetti, N.; P.; Bukkitgar, S.; D.; Kakarla, R.; R.; Reddy, C.; Aminabhavi, T.; M. ZnO-Based Nanostructured Electrodes for Electrochemical Sensors and Biosensors in Biomedical Applications. Biosens. Bioelectron 2019, 141, 111417. DOI: 10.1016/j.bios.2019.111417.
  • Hatami, Z.; Ragheb, E.; Jalali, F.; Tabrizi, M.; A.; Shamsipur, M. Zinc Oxide-Gold Nanocomposite as a Proper Platform for Label-Free DNA Biosensor. Bioelectrochemistry 2020, 133, 107458. DOI: 10.1016/j.bioelechem.2020.107458.
  • Hoon Seo, K.; Markus, J.; Soshnikova, V.; Oh, K.; H.; Anandapadmanaban, G.; Elizabeth Jimenez Perez, Z.; Mathiyalagan, R.; Kim, Y. J.; Yang, D.; C. Facile and Green Synthesis of Zinc Oxide Particles by Stevia Rebaudiana and Its in Vitro Photocatalytic Activity. Inorg. Nano-Met. Chem. 2019, 49, 1–6. DOI: 10.1080/24701556.2019.1580291.
  • Bashari, A.; Salehi Koohestani, A.; H.; Salamatipour, N. Eco-Friendly Dual-Functional Textiles: Green Water-Repellent & anti-Bacterial. Fibers Polym. 2020, 21, 317–323. DOI: 10.1007/s12221-020-9568-6.
  • Vicente, A.; Sohm, B.; Flayac, J.; Rousselle, P.; Bauda, P.; Pagnout, C. Toxicity Mechanisms of ZnO UV-filters used in sunscreens toward the model cyanobacteria Synechococcus elongatus PCC 7942. Environ. Sci. Pollut. Res. 2019, 26, 22450–22463. DOI: 10.1007/s11356-019-05057-6.
  • Dodero, A.; Alloisio, M.; Vicini, S.; Castellano, M. Preparation of Composite Alginate-Based Electrospun Membranes Loaded with ZnO Nanoparticles. Carbohydr. Polym. 2020, 227, 115371 DOI: 10.1016/j.carbpol.2019.115371.
  • Kumar, S.; Boro, J.; C.; Ray, D.; Mukherjee, A.; Dutta, J. Bionanocomposite Films of Agar Incorporated with ZnO Nanoparticles as an Active Packaging Material for Shelf Life Extension of Green grape. Heliyon 2019, 5, e01867. DOI: 10.1016/j.heliyon.2019.e01867.
  • Pires, L. A.; de Azevedo Silva, L. J.; Ferrairo, B. M.; Erbereli, R.; Lovo, J. F. P.; Ponce Gomes, O.; Rubo, J. H.; Lisboa-Filho, P. N.; Griggs, J. A.; Fortulan, C. A.; et al. Effects of ZnO/TiO2 Nanoparticle and TiO2 Nanotube Additions to Dense Polycrystalline Hydroxyapatite Bioceramic from Bovine bones. Dent. Mater. 2020, 36, e38–e46. DOI: 10.1016/j.dental.2019.11.006.
  • Akbarian, M.; Mahjoub, S.; Elahi, S.; M.; Zabihi, E.; Tashakkorian, H. Green Synthesis, Formulation and Biological Evaluation of a Novel ZnO Nanocarrier Loaded with Paclitaxel as Drug Delivery System on MCF-7 Cell Line. Colloids Surf. B 2020, 186, 110686. DOI: 10.1016/j.colsurfb.2019.110686.
  • Akbar, S.; Tauseef, I.; Subhan, F.; Sultana, N.; Khan, I.; Ahmed, U.; Haleem, K. S. An Overview of the Plant-Mediated Synthesis of Zinc Oxide Nanoparticles and Their Antimicrobial Potential. Inorg. Nano-Met. Chem. 2020, 50, 257–271. DOI: 10.1080/24701556.2019.1711121.
  • Raliya, R.; Tarafdar, J. C. ZnO Nanoparticle Biosynthesis and Its Effect on Phosphorous-Mobilizing Enzyme Secretion and Gum Contents in Clusterbean (Cyamopsis Tetragonoloba L). Agric. Res. 2013, 2, 48–57. DOI: 10.1007/s40003-012-0049-z.
  • Rajapriya, M.; Sharmili, S.; A.; Baskar, R.; Balaji, R.; Alharbi, N.; S.; Kadaikunnan, S.; Khaled, J.; M.; Alanzi, K.; F.; Vaseeharan, B. Synthesis and Characterization of Zinc Oxide Nanoparticles Using Cynara Scolymus Leaves: Enhanced Hemolytic, Antimicrobial, Antiproliferative, and Photocatalytic Activity. J. Cluster Sci. 2020, 31, 791–801. DOI: 10.1007/s10876-019-01686-6.
  • Abdullah, F.; H.; Abu Bakar, N.; H.; H.; Abu Bakar, M. Low Temperature Biosynthesis of Crystalline Zinc Oxide Nanoparticles from Musa acuminata Peel Extract for Visible-Light Degradation of Methylene Blue. Optik 2020, 206, 164279. DOI: 10.1016/j.ijleo.2020.164279.
  • Arya, A.; Mishra, V.; Chundawat, T. S. Green Synthesis of Silver Nanoparticles from Green Algae (Botryococcus Braunii) and Its Catalytic Behavior for the Synthesis of Benzimidazoles. Chem. Data Collect. 2019, 20, 100190. DOI: 10.1016/j.cdc.2019.100190.
  • Alex, A.; V Chandrasekaran, N.; Mukherjee, A. Novel Enzymatic Synthesis of Core/Shell AgNP/AuNC Bimetallic Nanostructure and Its Catalytic Applications. J. Mol. Liq. 2020, 301, 112463. DOI: 10.1016/j.molliq.2020.112463.
  • Singh, D. Cyanobacteria as a Source of Nanoparticle: Application and Future Projections. In Advances in Cyanobacterial Biology; Kumar, A., Singh, A. K., Choudhary, K. K., Ed.;Woodhead Publishing, Elsevier, Cambridge, United Kingdom, 2019; pp 183–198. DOI: 10.1016/B978-0-12-819311-2.00021-8.
  • Gond, S.; K.; Mishra, A.; Verma, S.; K.; Sharma, V.; K.; Kharwar, R. N. Synthesis and Characterization of Antimicrobial Silver Nanoparticles by an Endophytic Fungus Isolated from Nyctanthes Arbor-Tristis. Proc. Natl. Acad. Sci, India, Sect. B Biol. Sci. 2020, 90, 641–645. DOI: 10.1007/s40011-019-01137-2.
  • Mohamed, A.; A.; Fouda, A.; Abdel-Rahman, M.; A.; Hassan, S.; E.; D.; El-Gamal, M.; S.; Salem, S.; S.; Shaheen, T.,I. Fungal Strain Impacts the Shape, Bioactivity and Multifunctional Properties of Green Synthesized Zinc Oxide Nanoparticles. Biocatal. Agric. Biotechnol. 2019, 19, 101103. DOI: 10.1016/j.bcab.2019.101103.
  • Ağçeli, G.; K.; Hammachi, H.; Kodal, S. P.; Cihangir, N.; Aksu, Z. A Novel Approach to Synthesize TiO 2 Nanoparticles: Biosynthesis by Using Streptomyces sp. HC1. J. Inorg. Organomet. Polym. Mater. 2020, 30, 3221–3229. DOI: 10.1007/s10904-020-01486-w.
  • Król, A.; Railean-Plugaru, V.; Pomastowski, P.; Złoch, M.; Buszewski, B. Mechanism Study of Intracellular Zinc Oxide Nanocomposites Formation. Colloids Surf., A 2018, 553, 349–358. DOI: 10.1016/j.colsurfa.2018.05.069.
  • Ngoepe, N.; M.; Mbita, Z.; Mathipa, M.; Mketo, N.; Ntsendwana, B.; Hintsho-Mbita, N. C. Biogenic Synthesis of ZnO Nanoparticles Using Monsonia Burkeana for Use in Photocatalytic, Antibacterial and Anticancer Applications. Ceram. Int. 2018, 44, 16999–17006. DOI: 10.1016/j.ceramint.2018.06.142.
  • Kim, Y.; O.; Kim, H.; K.; Bae, K.; S.; Yu, J.; H.; Oh, T.,K. Purification and Properties of a Thermostable Phytase from Bacillus sp. DS11. Enzyme Microb. Technol. 1998, 22, 2–7. DOI: 10.1016/S0141-0229(97)00096-3.
  • Sonenshein, A.; L. CodY, A Global Regulator of Stationary Phase and Virulence in Gram-Positive bacteria. Curr. Opin. Microbiol. 2005, 8, 203–207. DOI: 10.1016/j.mib.2005.01.001.
  • Su, B.; Shao, H.; Li, N.; Chen, X.; Cai, Z.; Chen, X. A Sensitive Bisphenol A Voltammetric Sensor Relying on AuPd Nanoparticles/Graphene Composites Modified Glassy Carbon Electrode. Talanta 2017, 166, 126–132. DOI: 10.1016/j.talanta.2017.01.049.
  • Reza, K.,K.; Ali, M.,A.; Singh, M.,K.; Agrawal, V.,V.; Biradar, A.,M. Amperometric Enzymatic Determination of Bisphenol A Using an ITO Electrode Modified with Reduced Grapheme Oxide and Mn3O4 Nanoparticles in a Chitosan Matrix. Microchim. Acta 2017, 184, 1809–1816. DOI: 10.1007/s00604-017-2171-x.
  • Zhang, R.; Zhao, L.; Liu, R. Deciphering the Toxicity of Bisphenol A to Candida Rugosa Lipase through Spectrophotometric Methods. J. Photochem. Photobiol. B 2016, 163, 40–46. DOI: 10.1016/j.jphotobiol.2016.08.011.
  • Mo, R.; Liu, H.; Lai, R.; Deng, G.; Zhang, Z.; Pei, Z.; Li, H.; Xia, E. Ultrasound-Assisted Upper Liquid Microextraction Coupled to Molecular Fluorescence for Detection of Bisphenol A in Commercial Beverages. Food Anal. Methods 2017, 10, 1575–1581. DOI: 10.1007/s12161-016-0714-0.
  • Maiolini, E.; Ferri, E. ;L.; Pitasi, A.; Montoya, A. ;D.; Giovanni, M.; Errani, E.; Girotti, S. Bisphenol A Determination in Baby Bottles by Chemiluminescence Enzyme-Linked Immunosorbent Assay, Lateral Flow Immunoassay and Liquid Chromatography Tandem Mass Spectrometry. Analyst 2014, 139, 318–324. DOI: 10.1039/C3AN00552F.
  • Deceuninck, Y.; Bichon, E.; Marchand, P.; Boquien, C.; Y.; Legrand, A.; Boscher , Antignac, J.; P.; Bizec, B.,L. Determination of Bisphenol A and Related Substitutes/Analogues in Human Breast Milk Using Gas Chromatography-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2015, 407, 2485–2497. DOI: 10.1007/s00216-015-8469-9.
  • Hou, C.; Zhao, L.; Geng, F.; Wang, D.; Guo, L. H. Donor/Acceptor Nanoparticle Pair-Based Singlet Oxygen Channeling Homogenous Chemiluminescence Immunoassay for Quantitative Determination of Bisphenol A. Anal. Bioanal. Chem. 2016, 408, 8795–8804. DOI: 10.1007/s00216-016-9584-y.
  • Chung, E.; Jeon, J.; Yu, J.; Lee, C.; Choo, J. Surface-Enhanced Raman Scattering Aptasensor for Ultrasensitive Trace Analysis of Bisphenol A. Biosens. Bioelectron. 2015, 64, 560–565. DOI: 10.1016/j.bios.2014.09.087.
  • Güney, S.; Güney, O. Development of an Electrochemical Sensor Based on Covalent Molecular Imprinting for Selective Determination of Bisphenol A. Electroanalysis 2017, 29, 2579–2590. DOI: 10.1002/elan.201700300.
  • Yola, M. L.; Gupta, V.; K.; Eren, T.; Şen, A.; E.; Atar, N. A Novel Electro Analytical Nanosensor Based on Graphene Oxide/Silver Nanoparticles for Simultaneous Determination of Quercetin and Morin. Electrochim. Acta 2014, 120, 204–211. DOI: 10.1016/j.electacta.2013.12.086.
  • Castro, L.; Blázquez, M. L.; Muñoz, J. á.; González, F. G.; Ballester, A. Mechanism and Applications of Metal Nanoparticles Prepared by Bio-Mediated Process. Rev. Adv. Sci. Eng. 2014, 3, 199–216. DOI: 10.1166/rase.2014.1064.
  • Haghshenas, E.; Madrakian, T.; Afkhami, A. A Novel Electrochemical Sensor Based on Magneto Au nanoparticles/carbon paste electrode for voltammetric determination of acetaminophen in real samples. Mater. Sci. Eng. C 2015, 57, 205–214. DOI: 10.1016/j.msec.2015.07.054.
  • Ali, K.; Dwivedi, S.; Azam, A.; Saquib, Q.; Al-Said, M.; S.; Alkhedhairy, A.; A.; Musarrat, J. Aloe Vera Extract Functionalized Zinc Oxide Nanoparticles as Nanoantibiotics against Multi-Drug Resistant Clinical Bacterial Isolates. J. Colloid Interface Sci. 2016, 475, 145–156. DOI: 10.1016/j.jcis.2016.03.021.
  • Vimala, K.; Sundarraj, S.; Paulpandi, M.; Vengatesan, S.; Kannan, S. Green Synthesized Doxorubicin Loaded Zinc Oxide Nanoparticles Regulates the Bax and Bcl-2 Expression in Breast and Colon Carcinoma. Process Biochem. 2014, 49, 160–172. DOI: 10.1016/j.procbio.2013.10.007.
  • Azizi, S.; Mohamad, R.; Bahadoran, A.; Bayat, S.; Rahim, R.; A.; Ariff, A.; Saad, W.; Z. Effect of Annealing Temperature on Antimicrobial and Structural Properties of Bio-Synthesized Zinc Oxide Nanoparticles Using Flower Extract of Anchusa Italica. J. Photochem. Photobiol. B 2016, 161, 441–449. DOI: 10.1016/j.jphotobiol.2016.06.007.
  • Gawade, V.; V.; Gavade, N.; L.; Shinde, H.; M.; Babar, S.; B.; Kadam, A.; N.; Garadkar, K. M. Green Synthesis of ZnO Nanoparticles by Using Calotropis procera Leaves for the Photodegradation of Methyl Orange. J Mater Sci: Mater. Electron. 2017, 28, 14033–14039. DOI: 10.1007/s10854-017-7254-2.
  • Ristić, M.; Marciuš, M.; Petrović, Z.; Ivanda, M.; Musić, S. The Influence of Experimental Conditions on the Formation of ZnO Fibers by Electrospinning. Croat. Chem. Acta 2014, 87, 315–320. DOI: 10.5562/cca2409.
  • Ahmadzadeh, E.; Talebnia Rowshan, F.; Hosseini, M. A Biological Method for in-Situ Synthesis of Hydroxyapatite-Coated Magnetite Nanoparticles Using Enterobacter aerogenes: Characterization and Acute Toxicity Assessments. Mater. Sci. Eng. C 2017, 73, 220–224. DOI: 10.1016/j.msec.2016.12.012.
  • Mergeay, M.; Monchy, S.; Vallaeys, T.; Auquier, V.; Benotmane, A.; Bertin, P.; Taghavi, S.; Dunn, J.; van der Lelie, D.; Wattiez, R. Ralstonia metallidurans, a Bacterium Specifically Adapted to Toxic Metals: Towards a Catalogue of Metal-Responsive Genes. FEMS Microbiol. Rev. 2003, 27, 385–410. DOI: 10.1016/S0168-6445(03)00045-7.
  • Prasad, K.; Jha, A. K. ZnO Nanoparticles: Synthesis and Adsorption Study. Nat. Sci. 2009, 1, 129–135. DOI: 10.4236/ns.2009.12016.
  • Selvarajan, E.; Mohanasrinivasan, V. Biosynthesis and Characterization of ZnO Nanoparticles Using Lactobacillus plantarum VITES07. Mater. Lett. 2013, 112, 180–182. DOI: 10.1016/j.matlet.2013.09.020.
  • He, S.; Guo, Z.; Zhang, Y.; Zhang, S.; Wang, J.; Gu, N. Biosynthesis of Gold Nanoparticles Using the Bacteria Rhodopseudomonas capsulata. Mater. Lett. 2007, 61, 3984–3987. DOI: 10.1016/j.matlet.2007.01.018.
  • Amemiya, Y.; Arakaki, A.; Staniland, S. S.; Tanaka, T.; Matsunaga, T. Controlled Formation of Magnetite Crystal by Partial Oxidation of Ferrous Hydroxide in the Presence of Recombinant Magnetotactic Bacterial Protein Mms6. Biomater 2007, 28, 5381–5389. DOI: 10.1016/j.biomaterials.2007.07.051.
  • Hussein, M.; Z.; Azmin, W.; H.; Mustafa, M.; Yahaya, A. H. Bacillus cereus as a Biotemplating Agent for the Synthesis of Zinc Oxide with Raspberry- and Plate-like Structures. J. Inorg. Biochem. 2009, 103, 1145–1150. DOI: 10.1016/j.jinorgbio.2009.05.016.
  • Monshi, A.; Foroughi, M.; R.; Monshi, M. R. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World J. Nano Sci. Eng. 2012, 02, 154–160. DOI: 10.4236/wjnse.2012.23020.
  • Li, X.; Xu, H.; Chen, Z.; S.; Chen, G. Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J Nanomater. 2011, 2011, 1–16. DOI: 10.1155/2011/270974.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.