100
Views
2
CrossRef citations to date
0
Altmetric
Article

Sol-gel synthesis and luminescent performance of Eu3+, Lu3+ co-doped Ca0.3Sr0.7Mo1-xWxO4 red-emitting phosphor

, , , &
Pages 1297-1305 | Received 25 May 2020, Accepted 07 Sep 2020, Published online: 21 Oct 2020

References

  • Su, B. B.; Xie, H. D.; Tan, Y. R.; Zhao, Y. J.; Yang, Q. C.; Zhang, S. J. Luminescent Properties, Energy Transfer, and Thermal Stability of Double Perovskites La2MgTiO6:Sm3+, Eu3+. J. Lumin. 2018, 204, 457–463. DOI: 10.1016/j.jlumin.2018.08.013.
  • Xia, Z. G.; Liu, Q. L. Progress in Discovery and Structural Design of Color Conversion Phosphors for LEDs. Prog. Mater. Sci. 2016, 84, 59–117. DOI: 10.1016/j.pmatsci.2016.09.007.
  • Xia, Z. G.; Wu, W. Preparation and Luminescence Properties of Ce3+ and Ce3+/Tb3+-Activated Y4Si2O7N2 Phosphors. Dalton Trans. 2013, 42, 12989–12997. DOI: 10.1039/c3dt51470f.
  • He, G.; Mei, L.; Wang, L.; Liu, G.; Li, J. Synthesis and Luminescence Properties of Nano-Microstructured Y3Al5O12: Ce3+ Microspheres by Controlled Glass Crystallization. Cryst. Growth Des. 2011, 11, 5355–5361. DOI: 10.1021/cg200939p.
  • Kasuya, R.; Kawano, A.; Isobe, T.; Kuma, H.; Katano, J. Characteristic Optical Properties of Transparent Color Conversion Film Prepared from YAG: Ce3+ Nanoparticles. Appl. Phys. Lett. 2007, 91, 111916. DOI: 10.1063/1.2785131.
  • Sivakumar, V.; Varadaraju, U. Intense Red Phosphor for White LEDs Based on Blue GaN LEDs. J. Electrochem. Soc. 2006, 153, H54–H57. DOI: 10.1149/1.2163781.
  • Haque, M. M.; Lee, H. I.; Kim, D. K. Luminescent Properties of Eu3+-Activated Molybdate-Based Novel Red-Emitting Phosphors for LEDs. J. Alloys Compd. 2009, 481, 792–796. DOI: 10.1016/j.jallcom.2009.03.083.
  • Haque, M. M.; Kim, D. K. Luminescent Properties of Eu3+ Activated MLa2(MoO4)4 Based (M = Ba, Sr and Ca) Novel Red-Emitting Phosphors. Mater. Lett. 2009, 63, 793–796. DOI: 10.1016/j.matlet.2009.01.018.
  • Guzik, M.; Tomaszewicz, E.; Guyot, Y.; Legendziewicz, J.; Boulon, G. Eu3+ Luminescence from Different Sites in a Scheelite-Type Cadmium Molybdate Red Phosphor with Vacancies. J. Mater. Chem. C 2015, 3, 8582–8594. DOI: 10.1039/C5TC01109D.
  • Zhang, X.; Zhou, C.; Song, J.; Zhou, L.; Gong, M. High-Brightness and Thermal Stable Sr3La(PO4)3:Eu3+ Red Phosphor for NUV Light-Emitting Diodes. J. Alloys Compd. 2014, 592, 283–287. DOI: 10.1016/j.jallcom.2014.01.018.
  • Ko, Y. H.; Lee, S. H.; Yu, J. S. Luminescence Properties of Europium Ions-Doped Yttrium Silicate (Y2SiO5:Eu3+) Nanocrystalline Phosphors: Effect of Eu3+ Ion Concentration and Thermal Annealing. J. Nanosci. Nanotechnol. 2013, 13, 3230–3235. DOI: 10.1166/jnn.2013.7144.
  • Krishnan, R.; Thirumalai, J.; Banu, I. S.; Chandramohan, R. Influence of Eu3+ Ions in Na0.5La0.5MoO4: Structural and Optical Investigation. J. Mater. Sci: Mater. Electron. 2013, 24, 4774–4781. DOI: 10.1007/s10854-013-1473-y.
  • Yan, B.; Wang, C. Synthesis and Luminescence Properties of REAl3(BO3)4: Eu3+/Tb3+(RE = Y, Gd) Phosphors from Sol-Gel Composition of Hybrid Precursors. Solid State Sci. 2008, 10, 82–89. DOI: 10.1016/j.solidstatesciences.2007.07.036.
  • Chang, Y. S.; Huang, F. M.; Tsai, Y. Y.; Teoh, L. G. Synthesis and Photoluminescent Properties of YVO4: Eu3+ Nano-Crystal Phosphor Prepared by Pechini Process. J. Lumin. 2009, 129, 1181–1185. DOI: 10.1016/j.jlumin.2009.05.020.
  • Zhang, Z.; Zhang, H.; Xu, M.; Zong, X.; Han, F.; Ma, X.; Li, X.; Wang, D. Photoluminescence Properties of a Novel Red Emitting NaLaTi2O6:Eu3+ Phosphor. J. Mater. Sci: Mater. Electron. 2016, 27, 724–729. DOI: 10.1007/s10854-015-3809-2.
  • Wang, J.; Jing, X.; Yan, C.; Lin, J. Ca1 − 2xEuxLixMoO4: A Novel Red Phosphor for Solid-State Lighting Based on a GaN LED. J. Electrochem. Soc. 2005, 152, G186–G188. DOI: 10.1149/1.1856924.
  • Yang, L.; Wang, J.; Dong, X.; Liu, G.; Yu, W. Synthesis of Y2O2S:Eu3+ Luminescent Nanobelts via Electrospinning Combined with Sulfurization Technique. J. Mater. Sci. 2013, 48, 644–650. DOI: 10.1007/s10853-012-6768-5.
  • Isaev, V. A.; Ignatiev, B. V.; Lebedev, A. V.; Avenesov, S. A.; Plautskiy, P. G. The Czochralski Growth and Structural Investigations of Ba(MoO4)x(WO4)1-x Solid Solution Single Crystals. J. Cryst. Growth 2013, 363, 226–233. DOI: 10.1016/j.jcrysgro.2012.10.050.
  • Shi, P.; Xia, Z.; Molokeev, M. S.; Atuchin, V. V. Crystal Chemistry and Luminescence Properties of Red-Emitting CsGd1-xEux(MoO4)2 Solid-Solution Phosphors. Dalton Trans. 2014, 43, 9669–9676. DOI: 10.1039/c4dt00339j.
  • Cao, F. La3+ Acting on Host to Eu3+ Energy Transfer in (Ca-Sr-Eu-La)(Mo-W)O4 under NUV Excitation. J. Electrochem. Soc. 2011, 158, H997–H1001. DOI: 10.1149/1.3619774.
  • Cao, F.; Li, L.; Tian, Y.; Gao, Z.; Chen, Y.; Xiao, L.; Wu, X. Sol–Gel Synthesis of Red-Phosphors [NaxGd1−x/3−zEuz]MoyW1−yO4 Powers and Luminescence Properties. Opt. Mater. 2011, 33, 751–754. DOI: 10.1016/j.optmat.2010.12.001.
  • Cao, F.; Tian, Y.; Li, L.; Chen, Y.; Xiao, L. Preparation of Eu3+-Y3+ co-Doping Red-Emitting Phosphors for White-Light Emitting Diodes (W-LEDs) Application and Investigation of Their Optical Characteristics. J. Mater. Sci: Mater. Electron. 2011, 22, 510–514. DOI: 10.1007/s10854-010-0169-9.
  • Li, F.; Xie, H. D.; Xi, H. H.; Wang, X. C. Sol-gel Preparation and Luminescent Properties of Red-emitting Phosphor Sr-Ba-Mo-W-O-(Eu3+,Sm3+). Luminescence 2016, 31, 217–222. DOI: 10.1002/bio.2948.
  • Guo, H.; Yin, M.; Dong, N.; Xu, M.; Lou, L. R.; Zhang, W. P. Effect of Heat-Treatment Temperature on the Luminescent Propertiesof Lu2O3:Eu Film Prepared by Pechini Sol–Gel Method. Appl. Surf. Sci. 2005, 243, 245–250. DOI: 10.1016/j.apsusc.2004.09.069.
  • Lu, B.; Li, J. G.; Sakka, Y. Controlled Processing of (Gd,Ln)2O3:Eu (Ln = Y, Lu) Red Phosphor Particles and Compositional Effects on Photoluminescence . Sci. Technol. Adv. Mater. 2013, 14, 064202. DOI: 10.1088/1468-6996/14/6/064202.
  • Li, J. K.; Li, J. G.; Li, J.; Liu, S. H.; Li, X. D.; Sun, X. D.; Sakka, Y. Photoluminescent Properties of New up-Conversion Phosphors of Yb/Tm co-Doped (Gd1-xLux)3Al5O12 (x = 0.1-0.5) Garnet Solid Solutions. J. Alloys Compd. 2014, 582, 623–627. DOI: 10.1016/j.jallcom.2013.08.082.
  • Su, Y.; Li, L.; Li, G. Synthesis and Optimum Luminescence of CaWO4-Based Red Phosphors with Codoping of Eu3+ and Na+. Chem. Mater. 2008, 20, 6060–6067. DOI: 10.1021/cm8014435.
  • Rodriguez-Carvajal, J. Multi-Pattern Rietveld Refinement Program Fullprof. 2k, Version 3.30, Laboratiore Léon Brillouin; CEA: Saclay, France, 2005.
  • Ramarao, S.; Kiran, S. R.; Murthy, V. Structural, Lattice Vibrational, Optical and Microwave Dielectric Studies on Ca1-xSrxMoO4 Ceramics with Scheelite Structure. Mater. Res. Bull. 2014, 56, 71–79. DOI: 10.1016/j.materresbull.2014.04.064.
  • Basiev, T.; Sobol, A.; Voronko, Y. K.; Zverev, P. Spontaneous Raman Spectroscopy of Tungstate and Molybdate Crystals for Raman Lasers. Opt. Mater. 2000, 15, 205–216. DOI: 10.1016/S0925-3467(00)00037-9.
  • Thongtem, T.; Phuruangrat, A.; Thongtem, S. Characterization of MMoO4 (M = Ba, Sr and Ca) with Different Morphologies Prepared Using a Cyclic Microwave Radiation. Mater. Lett. 2008, 62, 454–457. DOI: 10.1016/j.matlet.2007.05.059.
  • Pôrto, S. L.; Longo, E.; Pizani, P. S.; Boschi, T. M.; Simões, L. G. P.; Lima, S. J. G.; Ferreira, J. M.; Soledade, L. E. B.; Espinoza, J. W. M.; Cássia-Santos, M. R.; et al. Photoluminescence in the CaxSr1−xWO4 System at Room Temperature. J. Solid State Chem. 2008, 181, 1876–1881., DOI: 10.1016/j.jssc.2008.04.015.
  • Chen, Y.; Cao, F.; Tian, Y.; Xiao, L.; Li, L. Optimized Photoluminescence by Charge Compensation in a Novel Phosphor System. Physica B 2010, 405, 435–438. DOI: 10.1016/j.physb.2009.08.308.
  • Sharits, A. R.; Khoury, J. F.; Woodward, P. M. Evaluating NaREMgWO6 (RE = La, Gd, Y) Doubly Ordered Double Perovskites as Eu3+ Phosphor Hosts. Inorg. Chem. 2016, 55, 12383–12390. DOI: 10.1021/acs.inorgchem.6b02295.
  • Guo, C.; Gao, F.; Xu, Y.; Liang, L.; Shi, F. G.; Yan, B. Efficient Red Phosphors Na5Ln(MoO4)4:Eu3+ (Ln = La, Gd and Y) for White LEDs. J. Phys. D: Appl. Phys. 2009, 42, 095407. DOI: 10.1088/0022-3727/42/9/095407.
  • Li, J.; Lu, C.; Lu, H.; Yang, X.; Zhu, B.; Yu, H.; Sheng, J.; Che, S. Photoluminescent Properties of the Promising Red-Emitting Phosphor LiGd1-xEux(MoO4)2 for WLEDs. Ceram. Int. 2015, 41, S725–S728. DOI: 10.1016/j.ceramint.2015.03.179.
  • Liang, D. Y.; Ding, Y.; Wang, N.; Cai, X. M.; Li, J.; Han, L. Y.; Wang, S. Q.; Han, Y. Y.; Jia, G.; Wang, L. Y. Solid-State Reaction Synthesis for Mixed-Phase Eu3+-Doped Bismuth Molybdate and Its Luminescence Properties. Mod. Phys. Lett. B 2017, 31, 1750241. DOI: 10.1142/S0217984917502414.
  • Yu, R.; Noh, H. M.; Moon, B. K.; Choi, B. C.; Jeong, J. H.; Jang, K.; Yi, S. S.; Jang, J. K. Synthesis and Luminescence Properties of a Novel Red-Emitting Phosphor Ba3La(PO4)3:Eu3+ for Solid-State Lighting. J. Alloys Compd. 2013, 576, 236–241. DOI: 10.1016/j.jallcom.2013.04.150.
  • Zhou, J.; Xia, Z.; Yang, M.; Shen, K. High Efficiency Blue-Emitting Phosphor: Ce3+-Doped Ca5.45Li3.55(SiO4)3O0.45F1.55 for near UV-Pumped Light-Emitting Diodes. J. Mater. Chem. 2012, 22, 21935–21941. DOI: 10.1039/c2jm34146h.
  • Rasu, K. K.; Balaji, D.; Babu, S. M. Photoluminescence Properties of Eu3+: RbGd(WO4)2 Red Phosphors Prepared by Sol-Gel Method. J. Lumin. 2016, 170, 825–834. DOI: 10.1016/j.jlumin.2015.09.030.
  • Li, Y. C.; Chang, Y. H.; Chang, Y. S.; Lin, Y. J.; Laing, C. H. Luminescence and Energy Transfer Properties of Gd3+ and Tb3+ in LaAlGe2O7. J. Phys. Chem. C 2007, 111, 10682–10688. DOI: 10.1021/jp0719107.
  • Guo, N.; You, H.; Jia, C.; Ouyang, R.; Wu, D. A Eu2+ and Mn2+-Coactivated Fluoro-apatite-structure Ca6Y2Na2(PO4)6F2 as a Standard White-emitting Phosphor via Energy Transfer. Dalton Trans. 2014, 43, 12373–12379. DOI: 10.1039/c4dt01021c.
  • Xue, Y. D.; Zhang, Y.; Zhang, Y.; Zheng, S. L.; Zhang, Y.; Jin, W. Electrochemical Detoxification and Recovery of Spent SCR Catalyst by in Situ Generated Reactive Oxygen Species in Alkaline Media. Chem. Eng. J. 2017, 325, 544–553. DOI: 10.1016/j.cej.2017.05.113.
  • Wanger, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corp., Physical Electronics Division: Eden Prairie, MN, 1979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.