103
Views
0
CrossRef citations to date
0
Altmetric
Article

Removal of rhodamine B from aqueous solution using SrCoxBi4Ti4-xO15 aurivillius phase ceramics

&
Pages 1337-1346 | Received 06 Jun 2020, Accepted 07 Sep 2020, Published online: 22 Oct 2020

References

  • Aurivillius, B. Mixed Bismuth Oxides with Layer Lattices I. The Structure of CaNb2Bi2O9. Arkiv for Kemi 1949, 1, 463–480.
  • Hwee, N. S.; Xue, J. M.; Wang, J. High Temperature Piezoelectric Strontium Bismuth Titanate from Mechanical Activation of Mixed Oxides. Mater. Chem. Phys. 2002, 75, 131–135.
  • Cao, Z.-P.; Wang, C.-M.; Zhao, T.-L.; Yu, S.-L.; Wu, H.-Z.; Wang, Y.-M.; Wang, Q.; Liang, Y.; Wei, Y.-N.; Zhang, Y.; et al. Piezoelectric Properties and Thermal Stabilities of Strontium Bismuth Titanate (SrBi4Ti4O15). Ceram. Int. 2015, 41, 13974–13982. DOI: 10.1016/j.ceramint.2015.07.008.
  • Xu, Z.; Chu, R.; Hao, J.; Li, G.; Yin, Q. Citrate-Oxide Method to Prepare SrBi4Ti4O15 Powders and Ceramics. J. Alloy Compd. 2009, 479, 500–504. DOI: 10.1016/j.jallcom.2008.12.094.
  • Ghashang, M. An Aurivillius Perovskite Nano-Structure of SrBi4Ti4O15: Efficient Catalyst for the Preparation of Novel Dihydronaphtho[2′,1′:4,5]Thieno[2,3-d]Pyrimidin-7(6H)-One Derivatives Using HSBM Technique. J. Iran. Chem. Soc. 2018, 15, 55–60. DOI: 10.1007/s13738-017-1208-8.
  • Xie, P.; Li, Y.; Hou, Q.; Sui, K.; Liu, C.; Fu, X.; Zhang, J.; Murugadoss, V.; Fan, J.; Wang, Y.; et al. Tunneling-Induced Negative Permittivity in Ni/MnO Nanocomposites by a Bio-Gel Derived Strategy. J. Mater. Chem. C. 2020, 8, 3029–3039. DOI: 10.1039/C9TC06378A.
  • Mamatha, B.; Sarah, P. Effect of Dysprosium Substitution on Electrical Properties of SrBi4Ti4O15. Mater. Chem. Phys. 2014, 147, 375–381. DOI: 10.1016/j.matchemphys.2014.03.036.
  • Peng, D.; Zou, H.; Xu, C.; Wang, X.; Yao, X.; Lin, J.; Sun, T. Upconversion Luminescence, Ferroelectrics and Piezoelectrics of Er Doped SrBi4Ti4O15. AIP Adv. 2012, 2, 042187. DOI: 10.1063/1.4773318.
  • Simoes, A. Z.; Ramırez, M. A.; Riccardi, C. S.; Longo, E.; Varela, J. A. Effect of Oxidizing Atmosphere on the Electrical Properties of SrBi4Ti4O15 Thin Films Obtained by the Polymeric Precursor Method. Solid State Sci. 2008, 10, 1951–1957.
  • Wang, Q.; Cao, Z.-P.; Wang, C.-M.; Fu, Q.-W.; Yin, D.-F.; Tian, H.-H. Thermal Stabilities of Electromechanical Properties in Cobalt-Modified Strontium Bismuth Titanate (SrBi4Ti4O15). J. Alloy Compd. 2016, 674, 37–43. DOI: 10.1016/j.jallcom.2016.03.022.
  • Kumar, A.; Thakur, A. D. SrBi4Ti4O15 Aurivillius Phase Thin Films by Pulsed Laser Deposition Using Nd:YAG Laser. AIP Conf. Proc. 2018, 1953, 100010.
  • Zou, H.; Hu, Y.; Zhu, X.; Sui, Y.; Wang, X.; Song, Z. Photoluminescence, Enhanced Ferroelectric and Dielectric Properties of Pr3+ Doped SrBi4Ti4O15 Multifunctional Ceramics. Ferroelectrics 2015, 488, 62–70. DOI: 10.1080/00150193.2015.1102004.
  • Xu, Z.; Chu, R.; Hao, J.; Yao, Z.; Li, H. Hydrothermal Preparation and Electrical Properties of Aurivillius Phase SrBi4Ti4O15 Ceramic. Ferroelectrics 2017, 516, 148–155. DOI: 10.1080/00150193.2017.1362212.
  • Ahsan, A. Fauzi Ismail, A. Nanotechnology in Water and Wastewater Treatment: Theory and Applications. Elsevier Science: Amsterdam, 2018.
  • Oves, M. Modern Age Waste Water Problems: Solutions Using Applied Nanotechnology. Springer: Berlin, 2019.
  • Kyzas, G. Z.; Mitrpoulos, A. C. Composite Nanoadsorbents. Elsevier Science: Amsterdam, 2018.
  • Miao, K.-K.; Luo, X.-L.; Wang, W.; Guo, J.-L.; Guo, S.-F.; Cao, F.-J.; Hu, Y.-Q.; Chang, P.-M.; Feng, G.-D. One-Step Synthesis of Cu–SBA-15 under Neutral Condition and Its Oxidation Catalytic Performance. Micropor. Mesopor. Mat. 2019, 289, 109640. DOI: 10.1016/j.micromeso.2019.109640.
  • Wei, H. G.; Wang, H.; Li, A.; Cui, D. P.; Zhao, Z. N.; Chu, L. Q.; Wei, X.; Wang, L.; Pan, D.; Fan, J. C.; et al. Multifunctions of Polymer Nanocomposites: Environmental Remediation, Electromagnetic Interference Shielding, and Sensing Applications. ChemNanoMat 2020, 6, 174–184. DOI: 10.1002/cnma.201900588.
  • Wang, D.; Zhao, P.; Yang, J.; Xu, G.; Yang, H.; Shi, Z.; Hu, Q.; Dong, B.; Guo, Z. Photocatalytic Degradation of Organic Dye and Phytohormone by a Cu(II) Complex Powder Catalyst with Added H2O2. Colloid. Surf. A. 2020, 603, 125147. DOI: 10.1016/j.colsurfa.2020.125147.
  • Liu, X.; Shao, Q.; Zhang, Y.; Wang, X.; Lin, J.; Gan, Y.; Dong, M.; Guo, Z. Microwave Hydrothermal Synthesized ZnIn-Layered Double Hydroxides Derived ZnIn-Layered Double Oxides for Enhanced Methylene Blue Photodegradation. Colloid. Surf. A. 2020, 592, 124588. DOI: 10.1016/j.colsurfa.2020.124588.
  • Shi, C.; Qi, H.; Sun, Z.; Qu, K.; Huang, Z.; Li, J.; Dong, M.; Guo, Z. Carbon Dot-Sensitized Urchin-like Ti3+ Self-Doped TiO2 Photocatalysts with Enhanced Photoredox Ability for Highly Efficient Removal of Cr6+ and RhB. J. Mater. Chem. C. 2020, 8, 2238–2247. DOI: 10.1039/C9TC05513D.
  • Zare, M.; Ghashang, M.; Saffar-Teluri, A. BaO-ZnO Nano-Composite Efficient Catalyst for the Photo-Catalytic Degradation of 4-Chlorophenol. Biointerface Res. Appl. Chem. 2016, 6, 1049–1052.
  • Khosravian, P.; Ghashang, M.; Ghayoor, H. Zinc Oxide/natural-Zeolite Composite Nano-Powders: Efficient Catalyst for the Amoxicillin Removal from Wastewater. Biointerface Res. Appl. Chem. 2016, 6, 1538–1540.
  • Oseghe, E. O.; Msagati, T. A. M.; Mamba, B. B.; Ofomaja, A. E. An Efficient and Stable Narrow Bandgap Carbon Dot-Brookite Composite over Other CD-TiO2 Polymorphs in Rhodamine B Degradation under LED Light. Ceram. Int. 2019, 45, 14173–14181. DOI: 10.1016/j.ceramint.2019.04.121.
  • Sundararajan, M.; Sailaja, V. J.; Kennedy, L.; Judith Vijaya, J. Photocatalytic Degradation of Rhodamine B under Visible Light Using Nanostructured Zinc Doped Cobalt Ferrite: Kinetics and Mechanism. Ceram. Int. 2017, 43, 540–548. DOI: 10.1016/j.ceramint.2016.09.191.
  • Maarisetty, D.; Sundar Baral, S. Defect-Induced Enhanced Dissociative Adsorption, Optoelectronic Properties and Interfacial Contact in Ce Doped TiO2: Solar Photocatalytic Degradation of Rhodamine B. Ceram. Int. 2019, 45, 22253–22263. DOI: 10.1016/j.ceramint.2019.07.251.
  • Arabi, M.; Ostovan, A.; Bagheri, A. R.; Guo, X.; Li, J.; Ma, J.; Chen, L. Hydrophilic Molecularly Imprinted Nanospheres for the Extraction of Rhodamine B Followed by HPLC Analysis: A Green Approach and Hazardous Waste Elimination. Talanta 2020, 215, 120933. DOI: 10.1016/j.talanta.2020.120933.
  • Kerkez, K.; Bayazit, S. S. Magnetite Decorated Multi Walled Carbon Nanotubes for Removal of Toxic Dyes from Aqueous Solutions. J. Nanopart. Res. 2014, 16, 2431–2441.
  • Peng, L.; Qin, P.; Lei, M.; Zeng, Q.; Song, H.; Yang, J.; Shao, J.; Liao, B.; Gu, J. Modifying Fe3O4 Nanoparticles with Humic Acid for Removal of Rhodamine B in water. J. Hazard. Mater. 2012, 209–210, 193–198. DOI: 10.1016/j.jhazmat.2012.01.011.
  • Oyetade, O. A.; Nyamori, V. O.; Martincigh, B. S.; Jonnalagadda, S. B. Effectiveness of Carbon Nanotube–Cobalt Ferrite Nanocomposites for the Adsorption of Rhodamine B from Aqueous Solutions. RSC Adv. 2015, 5, 22724–22739. DOI: 10.1039/C4RA15446K.
  • Madrakian, T.; Afkhami, A.; Mahmood-Kashani, H.; Ahmad, M. Adsorption of Some Cationic and Anionic Dyes on Magnetite Nanoparticles Modified Activated Carbon from Aqueous Solutions: Equilibrium and Kinetics Study. J. Iran. Chem. Soc. 2013, 10, 481–489. DOI: 10.1007/s13738-012-0182-4.
  • Wei, F.; Chen, D.; Liang, Z.; Zhao, S. Comparison Study on the Adsorption Capacity of Rhodamine B, Congo Red, and Orange II on Fe-MOFs. Nanomaterials 2018, 8, 248. DOI: 10.3390/nano8040248.
  • Huang, M.; Wang, L.; Zhang, K.; Yan, M.; Li, Y.; Zhu, Z.; Yang, J. Preparation of Three-Dimensional Flower-like Fe-Bi(OH)3 Nanocomposites and the Photocatalytic Properties for Degradation of Rhodamine B in Presence of Visible Light. Optik 2020, 216, 164876. DOI: 10.1016/j.ijleo.2020.164876.
  • Tariq, M.; Muhammad, M.; Khan, J.; Raziq, A.; Kashif Uddin, M.; Niaz, A.; Ahmed, S. S.; Rahim, A. Removal of Rhodamine B Dye from Aqueous Solutions Using photo-Fenton Processes and Novel Ni-Cu@MWCNTs Photocatalyst. J. Mol. Liq. 2020, 312, 113399. DOI: 10.1016/j.molliq.2020.113399.
  • Guo, N.; Liu, H.; Fu, Y.; Hu, J. Preparation of Fe2O3 Nanoparticles Doped with In2O3 and Photocatalytic Degradation Property for Rhodamine B. Optik 2020, 201, 163537. DOI: 10.1016/j.ijleo.2019.163537.
  • Zhang, L.; Li, Y.; Xiu, X.; Xin, G.; Xie, Z.; Tao, T.; Liu, B.; Chen, P.; Zhang, R.; Zheng, Y. Preparation of Vertically Aligned GaN@Ga2O3 Core-Shell Heterostructured Nanowire Arrays and Their Photocatalytic Activity for Degradation of Rhodamine B. Superlattices Microstruct 2020, 143, 106556. DOI: 10.1016/j.spmi.2020.106556.
  • Hu, H.; Zhu, M.; Xie, F.; Lei, N.; Chen, J.; Hou, Y.; Yan, H. Effect of Co2O3 Additive on Structure and Electrical Properties of 85(Bi1/2Na1/2)TiO3–12(Bi1/2K1/2)TiO3–3BaTiO3 Lead-Free Piezoceramics. J. Am. Ceram. Soc. 2009, 92, 2039–2045. DOI: 10.1111/j.1551-2916.2009.03183.x.
  • Kibasomba, P. M.; Dhlamini, S.; Maaza, M.; Liu, C.-P.; Rashad, M. M.; Rayan, D. A.; Mwakikunga, B. W. Strain and Grain Size of TiO2 Nanoparticles from TEM, Raman Spectroscopy and XRD: The Revisiting of the Williamson-Hall Plot Method. Results Phys. 2018, 9, 628–635. DOI: 10.1016/j.rinp.2018.03.008.
  • Khosravian, P.; Ghashang, M.; Ghayoor, H. Effective Removal of Penicillin from Aqueous Solution Using Zinc Oxide/natural-Zeolite Composite Nano-Powders Prepared via Ball Milling Technique. Recent Patents Nanotechnol. 2017, 11, 154–164. DOI: 10.2174/1872210511666170105141550.
  • Wood, D. L.; Tauc, J. Weak Absorption Tails in Amorphous Semiconductors. Phys. Rev. B. 1972, 5, 3144–3151. DOI: 10.1103/PhysRevB.5.3144.
  • Gaft, M.; Reisfeld, R.; Panczer, G. Modern Luminescence Spectroscopy of Minerals and Materials. Springer-Verlag: Berlin, Heidelberg, Germany; 2005.
  • Choi, E. K.; Kim, S. S.; Kim, J. K.; Bae, J. C.; Kim, W.-J.; Lee, Y.; Song, T. K. Effects of Donor Ion Doping on the Orientation and Ferroelectric Properties of Bismuth Titanate Thin Films. Jpn. J. Appl. Phys. 2004, 43, 237–241. DOI: 10.1143/JJAP.43.237.
  • Mamatha, B.; James, A. R.; Sarah, P. Dielectric and Piezoelectric Properties of SrBi4−xHoxTi4O15 (x = 0.00, 0.02, 0.04 and 0.06) Ceramics. Physica B. 2010, 405, 4772–4775. DOI: 10.1016/j.physb.2010.08.074.
  • Qiu, H.; Lv, L.; Pan, B.; Zhang, Q.-J.; Zhang, W.-M.; Zhang, Q.-X. Critical Review in Adsorption Kinetic Models. J. Zhejiang Univ. Sci. A. 2009, 10, 716–724. DOI: 10.1631/jzus.A0820524.
  • Tan, K. L.; Hameed, B. H. Insight into the Adsorption Kinetics Models for the Removal of Contaminants from Aqueous Solutions. J. Taiwan Inst. Chem. Engin. 2017, 74, 25–48. DOI: 10.1016/j.jtice.2017.01.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.