716
Views
19
CrossRef citations to date
0
Altmetric
Review

Actinomycetes mediated synthesis, characterization, and applications of metallic nanoparticles

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1386-1395 | Received 07 Jul 2020, Accepted 07 Sep 2020, Published online: 23 Oct 2020

References

  • Golinska, P.; Wypij, M.; Ingle, A. P.; Gupta, I.; Dahm, H.; Rai, M. Biogenic Synthesis of Metal Nanoparticles from Actinomycetes: Biomedical Applications and Cytotoxicity . Appl. Microbiol. Biotechnol. 2014, 98, 8083–8097. DOI: 10.1007/s00253-014-5953-7.
  • Sharma, D.; Kanchi, S.; Bisetty, K. Biogenic Synthesis of Nanoparticles: A Review. Arabian J. Chem. 2019, 12, 3576–3600. DOI: 10.1016/j.arabjc.2015.11.002.
  • Tikariha, S.; Singh, S.; Banerjee, S.; Vidyarthi, W. S. Biosynthesis of Gold Nanoparticles, Scope and Application: A Review. Int. J. Pharm. Sci. 2012, 3, 1603–1615.
  • Kumar, P. S.; Balachandran, C.; Duraipandiyan, V.; Ramasamy, D.; Ignacimuthu, S.; Al-Dhabi, N. A. Extracellular Biosynthesis of Silver Nanoparticle Using Streptomyces sp. 09 PBT 005 and Its Antibacterial and Cytotoxic Properties. Appl. Nanosci. 2015, 5, 169–180.
  • Basavaraj, U.; Kumar, P.; Sabiha, T. S.; Rupali, S.; Samprita, B. Synthesis and Characterization of Silver Nanoparticles. Int. J. Pharm. Bio Sci. 2012, 2, 10–14.
  • Salem, S. S.; Fouda, A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace Elem. Res. 2020. doi: 10.1007/s12011-020-02138-3
  • Sastry, M.; Ahmad, A.; Khan, M. I.; Kumar, R. Biosynthesis of Metal Nanoparticles Using Fungi and Actinomycete. Curr. Sci. 2003, 85, 162–170.
  • Hutchison, J. E. Greener Nanoscience: A Proactive Approach to Advancing Applications and Reducing Implications of Nanotechnology. ACS Nano 2008, 2, 395–402. DOI: 10.1021/nn800131j.
  • Fu, L.; Fu, Z. Plectranthus amboinicus Leaf Extract–Assisted Biosynthesis of ZnO Nanoparticles and Their Photocatalytic Activity. Ceram. Int. 2015, 41, 2492–2496. DOI: 10.1016/j.ceramint.2014.10.069.
  • Manimaran, M.; Kannabiran, K. Actinomycetes-Mediated Biogenic Synthesis of Metal and Metal Oxide Nanoparticles: progress and Challenges. Lett. Appl. Microbiol. 2017, 64, 401–408. DOI: 10.1111/lam.12730.
  • Zheng, Y.; Huang, Y.; Shi, H.; Fu, L. Green Biosynthesis of ZnO Nanoparticles by Plectranthus amboinicus Leaf Extract and Their Application for Electrochemical Determination of Norfloxacin. Inorg. Nano Met. Chem. 2019, 49, 277–282.
  • Ying, J.; Zheng, Y.; Zhang, H.; Fu, L, Hangzhou Dianzi University. Room Temperature Biosynthesis of Gold Nanoparticles with Lycoris aurea Leaf Extract for the Electrochemical Determination of Aspirin. RQUIM 2019, 19, 585–592. DOI: 10.24275/rmiq/Mat741.
  • Menon, S.; Rajesh Kumar, S.; Venkat Kumar, S. A Review on Biogenic Synthesis of Gold Nanoparticles, Characterization, and Its Applications. Resour. Effic. Technol. 2017, 3, 516–527. DOI: 10.1016/j.reffit.2017.08.002.
  • Ameen, F.; AlYahya, S.; Govarthanan, M.; ALjahdali, N.; Al-Enazi, N.; Alsamhary, K.; Alshehri, W. A.; Alwakeel, S. S.; Alharbi, S. A. Soil Bacteria Cupriavidus sp. Mediates the Extracellular Synthesis of Antibacterial Silver Nanoparticles. J. Mol. Struct. 2020, 1202, 127233. DOI: 10.1016/j.molstruc.2019.127233.
  • Tanwar, J.; Sharma, M.; Parmar, A.; Tehri, N.; Verma, N.; Gahlaut, A.; Hooda, V. Antibacterial Potential of Silver Nanoparticles against Multidrug Resistant Bacterial Isolates from Blood Cultures Inorg. Nano Met. Chem. 2020, 50, 1–7.
  • Tehri, N.; Kaur, R.; Maity, M.; Chauhan, A.; Hooda, V.; Vashishth, A.; Kumar, G. Biosynthesis, Characterization, Bactericidal and Sporicidal Activity of Silver Nanoparticles Using the Leaves Extract of Litchi chinensis. Prep. Biochem. Biotechnol. 2020, 50, 1–9.
  • Li, X.; Huizhong, X.; Chen, Z. S.; Chen, G. Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J. Nanomater. 2011, 2011, 1–16.
  • Ahmad, A.; Senapati, S.; Khan, M. I.; Kumar, R.; Sastry, M. Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp. Langmuir 2003, 19, 3550–3553. DOI: 10.1021/la026772l.
  • Akhtar, M. S.; Panwar, J.; Yun, Y. S. Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts. ACS Sustainable Chem. Eng. 2013, 1, 591–602. DOI: 10.1021/sc300118u.
  • Vahabi, K.; Mansoori, G. A.; Karimi, S. Biosynthesis of Silver Nanoparticles by Fungus Trichoderma Reesei (a Route for Large-Scale Production of AgNPs). Insciences J. 2011, 1, 65–79.
  • Vithiya, K.; Sen, S. Biosynthesis of Nanoparticles. Int. J. Pharm. Sci. Res. 2011, 2, 2781–2785.
  • Zotchev, S. B. Marine Actinomycetes as an Emerging Resource for the Drug Development Pipeline. J. Biotechnol. 2012, 158, 168–175. DOI: 10.1016/j.jbiotec.2011.06.002.
  • Manivasagan, P.; Venkatesan, J.; Kumar, S. Biosynthesis, Antimicrobial and Cytotoxic Effect of Silver Nanoparticles Using a Novel Nocardiopsis sp. MBRC-1. BioMed. Res. Int. 2013, 2013, 1–9.
  • Pattekari, P.; Zheng, Z.; Zhang, X.; Levchenko, T.; Torchilin, V.; Lvov, Y. Top-down and Bottom-up Approaches in Production of Aqueous Nanocolloids of Low Solubility Drug Paclitaxel. Phys. Chem. Chem. Phys. 2011, 13, 9014–9019. DOI: 10.1039/c0cp02549f.
  • Chokkareddy, R.; Thondavada, N.; Kabane, B.; Redhi, G. G. Current Advances in Biosynthesis of Silver Nanoparticles and Their Applications. In Green Metal Nanoparticles: Synthesis, Characterization and Their Applications; Kanchi, S., Ahmed, S., Eds. Wiley-Scrivener Publishing LLC, U.S., 2018; pp 165–198.
  • Edison, L. K.; Pradeep, N. S. Actinobacterial Nanoparticles: Green Synthesis, Evaluation and Applications. In Green Nanoparticles. Nanotechnology in the Life Sciences; Patra J., Fraceto L., Das G., Campos E., Eds.; Springer, Switzerland, 2020; pp 371–384
  • Prabhu, S.; Poulose, E. K. Silver Nanoparticles: Mechanism of Antimicrobial Action, Synthesis, Medical Applications, and Toxicity Effects. Int. Nano Lett. 2012, 2, 32.
  • Mohanta, Y. K.; Behera, S. K. Biosynthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles by Streptomyces sp. SS2. Bioprocess. Biosyst. Eng. 2014, 37, 2263–2269. DOI: 10.1007/s00449-014-1205-6.
  • Silva-Vinhote, N. M.; Caballero, N. E. D.; de Amorim Silva, T.; Quelemes, P. V.; de Araújo, A. R.; Mazarin de Moraes, A. C.; et al. Extracellular Biogenic Synthesis of Silver Nanoparticles by Actinomycetes from Amazonic Biome and Its Antimicrobial Efficiency. Afr. J. Biotechnol. 2017, 16, 2072–2082.
  • Aswani, T.; Reshmi, S.; Suchithra, T. V. Actinomycetes: Its Realm in Nanotechnology. In Microbial Nanobionics. Nanotechnology in the Life Sciences; Prasad R., Eds.; Springer, Switzerland, 2019; pp 127–140
  • Abdeen, S.; Geo, S.; Sukanya; Praseetha, P. K.; Dhanya, R. P. Biosynthesis of Silver Nanoparticles from Actinomycetes for Therapeutic Applications. Int. J. Nano Dimens. 2014, 5, 155–162.
  • Anandaradje, A.; Meyappan, V.; Kumar, I.; Sakthivel, N. Microbial Synthesis of Silver Nanoparticles and Their Biological Potential. In Nanoparticles in Medicine; Shukla A., Eds.; Springer, Singapore, 2020; pp 99–133
  • Okami, Y.; Beppu, T.; Ogawara, H. Biology of Actinomycetes; Japan Scientific Societies Press: Tokyo, 1988, pp 88–508
  • Manivasagan, P.; Venkatesan, J.; Sivakumar, K.; Kim, S. Actinobacteria Mediated Synthesis of Nanoparticles and Their Biological Properties: A Review. Crit. Rev. Microbiol. 2014, 42, 1–13. DOI: 10.3109/1040841X.2014.917069.
  • Bhosale, R. S.; Hajare, K. Y.; Mulay, B.; Mujumdar, S.; Kothawade, M. Biosynthesis, Characterization and Study of Antimicrobial Effect of Silver Nanoparticles by Actinomycetes spp. Int. J. Curr. Microbiol. Appl. Sci. 2015, 2, 144–151.
  • Abd-Elnaby, H. M.; Abo-Elala, G. M.; Abdel-Raouf, U. M.; Hamed, M. M. Antibacterial and Anticancer Activity of Extracellular Synthesized Silver Nanoparticles from Marine Streptomyces rochei MHM13. Egypt. J. Aquat. Res. 2016, 42, 301–312. DOI: 10.1016/j.ejar.2016.05.004.
  • Balagurunathan, R.; Manikkam, R.; Babu, R.; Devadasan, V. Biosynthesis of Gold Nanoparticles by Actinomycete Streptomyces viridogens Strain HM10. Indian J. Biochem Biophys. 2011, 48, 331–335.
  • Waghmare, S. S.; Deshmukh, A. M.; Sadowski, Z. Biosynthesis, Optimization, Purification and Characterization of Gold Nanoparticles. Afr. J. Microbiol. Res. 2014, 8, 138–146.
  • Składanowski, M.; Wypij, M.; Laskowski, D.; Golińska, P.; Dahm, H.; Rai, M. Silver and Gold Nanoparticles Synthesized from Streptomyces sp. isolated from Acid Forest Soil with Special Reference to Its Antibacterial Activity against Pathogens. J. Clust. Sci. 2017, 28, 59–79. DOI: 10.1007/s10876-016-1043-6.
  • Samundeeswari, A.; Dhas, S. P.; Nirmala, J.; John, S. P.; Mukherjee, A.; Chandrasekaran, N. Biosynthesis of Silver Nanoparticles Using Actinobacterium Streptomyces albogriseolus and Its Antibacterial Activity. Biotechnol. Appl. Biochem. 2012, 59, 503–507. DOI: 10.1002/bab.1054.
  • Prabhu, K. V.; Sundaramoorthi, C.; Devarasu, S. Biosynthesis of Silver Nanoparticles from Streptomyces aureofaciens. J. Pharm. Res. 2011, 4, 820–822.
  • Ahmad, A.; Senapati, S.; Khan, M. I.; Kumar, R.; Ramani, R.; Srinivas, V.; Sastry, M. Intracellular Synthesis of Gold Nanoparticles by a Novel Alkalotolerant Actinomycete, Rhodococcus Species. Nanotechnology 2003, 14, 824–828. DOI: 10.1088/0957-4484/14/7/323.
  • Sowani, H.; Mohite, P.; Munot, H.; Shouche, Y.; Bapat, T.; Kumar, A. R.; Kulkarni, M.; Zinjarde, S. Green Synthesis of Gold and Silver Nanoparticles by an Actinomycete Gordoniaamicalis HS-11: Mechanistic Aspects and Biological Application. Process Biochem. 2016, 51, 374–383. DOI: 10.1016/j.procbio.2015.12.013.
  • Subashini, J.; Kannabiran, K. Antimicrobial Activity of Streptomyces sp. VITBT7 and Its Synthesized Silver Nanoparticles against Medically Important Fungal and Bacterial Pathogens. Der. Pharmacia Lett. 2013, 5, 192–200.
  • Prakash, D.; Mahale, V.; Bankar, A.; Nawani, N.; Mahale, V.; Prakash, D. Biosynthesis of Colloidal Gold Nanoparticles by Streptomyces sp. NK52 and Its Anti-Lipid Peroxidation Activity. Indian J. Exp. Biol. 2013, 51, 969–972.
  • Manivasagan, P.; Kang, K. H.; Kim, D. G.; Kim, S. K. Production of Polysaccharide-Based Bioflocculant for the Synthesis of Silver Nanoparticles by Streptomyces sp. Int. J. Biol. Macromol. 2015, 77, 159–167. DOI: 10.1016/j.ijbiomac.2015.03.022.
  • Verma, V. C.; Anand, S.; Ulrichs, C. Biogenic Gold Nanotriangles from Saccharomonospora sp., an Endophytic Actinomycetes of Azadirachta indica A. Juss. Int. Nano. Lett. 2013, 3, 21.
  • Prakasham, R. S.; Kumar, B. S.; Kumar, Y. S.; Kumar, K. P. Production and Characterization of Protein Encapsulated Silver Nanoparticles by Marine Isolate Streptomyces parvulus SSNP11. Indian J. Microbiol. 2014, 54, 329–336. DOI: 10.1007/s12088-014-0452-1.
  • Waghmare, S. S.; Deshmukh, A. M.; Kulkarni, W.; Oswaldo, L. A. Biosynthesis and Characterization of Manganese and Zinc Nanoparticles. Univ. J. Environ. Res. Technol. 2011, 1, 64–69.
  • Kumar, P. S.; Viveka, S.; Prakash, S.; Jasminebeaula, S.; Uloganathan, R. Antimicrobial Activity of Extracellularly Synthesized Silver Nanoparticles from Marine Derived Streptomyces rochei. Int. J. Pharm. Bio Sci. 2012, 3, 188–197.
  • Zonooz, N. F.; Salouti, M. Extracellular Biosynthesis of Silver Nanoparticles Using Cell Filtrate of Streptomyces sp. ERI-3. Scientia Iranica 2011, 18, 1631–1635. DOI: 10.1016/j.scient.2011.11.029.
  • Sundaramoorthi, C.; Devarasu, S.; Prabhu, K. V. Antimicrobial and Wound Healing Activity of Silver Nanoparticles Synthesized from Streptomyces aureofaciens. Int. J. Pharm. Res. Dev. 2011, 12, 69–75.
  • Sukanya, M. K.; Saju, K. A.; Praseetha, P. K.; Sakthivel, G. Therapeutic Potential of Biologically Reduced Silver Nanoparticles from Actinomycete Cultures. J. Nanosci. 2013, 2013, 1–8. DOI: 10.1155/2013/940719.
  • Karthik, L.; Kumar, G.; Kirthi, A. V.; Rahuman, A. A.; Bhaskara, R. Streptomyces sp. LK3 Mediated Synthesis of Silver Nanoparticles and Its Biomedical Application. Bioprocess Biosyst. Eng. 2014, 37, 261–267. DOI: 10.1007/s00449-013-0994-3.
  • Hassan, S. E.-D.; Salem, S. S.; Fouda, A.; Awad, M. A.; El-Gamal, M. S.; Abdo, A. M. New Approach for Antimicrobial Activity and Bio-Control of Various Pathogens by Biosynthesized Copper Nanoparticles Using Endophytic Actinomycetes. J. Radiat. Res. Appl. Sci. 2018, 11, 262–270. DOI: 10.1016/j.jrras.2018.05.003.
  • El-Naggar, N. E.; Mohamedin, A.; Hamza, S. S.; Sherief, A. D. Extracellular Biofabrication, Characterization, and Antimicrobial Efficacy of Silver Nanoparticles Loaded on Cotton Fabrics Using Newly Isolated Streptomyces sp. SSHH-1E. J. Nanomater. 2016, 2016, 1–17. DOI: 10.1155/2016/3257359.
  • Wypij, M.; Czarnecka, J.; Świecimska, M.; Dahm, H.; Rai, M.; Golinska, P. Synthesis, Characterization and Evaluation of Antimicrobial and Cytotoxic Activities of Biogenic Silver Nanoparticles Synthesized from Streptomyces xinghaiensis OF1 Strain. World J. Microbiol. Biotechnol. 2018, 34, 23 DOI: 10.1007/s11274-017-2406-3.
  • Forootanfara, H.; Zareb, B.; Fasihi-Bamd, H.; Amirpour-Rostamia, S.; Ameria, A.; MojtabaShakibaiee, M.; Namif, M. T. Biosynthesis and Characterization of Selenium Nanoparticles Produced by Terrestrial Actinomycete Streptomyces microflavus Strain FSHJ31. J. Microbiol. Biotechnol. 2014, 3, 47–53.
  • Udaya Prakash, N. K.; Bhuvaneswari, S.; Prabha, S. B.; Kavitha, K.; Sandhya, K. V.; Sathyabhuvaneshwari, P.; Bharathiraja, B. Green Synthesis of Silver Nanoparticles Using Airborne. Int. J. ChemTech Res. 2014, 6, 4123–4127.
  • Mohanpuria, P.; Rana, N. K.; Yadav, S. K. Biosynthesis of Nanoparticles: technological Concepts and Future Applications. J. Nanopart. Res. 2008, 10, 507–517. DOI: 10.1007/s11051-007-9275-x.
  • Ahmad, F.; Ashraf, N.; Ashraf, T.; Zhou, R.-B.; Yin, D.-C. Biological Synthesis of Metallic Nanoparticles (MNPs) by Plants and Microbes: Their Cellular Uptake, Biocompatibility, and Biomedical Applications. Appl. Microbiol. Biotechnol. 2019, 103, 2913–2935. DOI: 10.1007/s00253-019-09675-5.
  • Elamawi, R. M.; Al-Harbi, R. E.; Hendi, A. A. Biosynthesis and Characterization of Silver Nanoparticles Using Trichoderma longibrachiatum and Their Effect on Phytopathogenic Fungi. Egypt. J. Biol. Pest. Control 2018, 28, 28.
  • Duran, N.; Marcato, D. P.; Alves, L. O.; Desouza, H. G.; Esposito, E. Mechanistic Aspects of Biosynthesis of Silver Nanoparticles by Several Fusarium oxysporum Strains. J. Nanobiotechnol. 2005, 3, 8.
  • Stephen, L.; Upstone, U. Visible Light Absorption Spectrophotometry in Clinical Chemistry. Encyclopedia of Analytical Chemistry 2000, 1699–1714.
  • Kumar, A.; Kaur, K.; Sharma, S. Synthesis, Characterization and Antibacterial Potential of Silver Nanoparticles by Morus nigra Leaf Extract. Indian J. Pharm. Biol. Res. 2013, 1, 6–24.
  • Narasimha, G.; Janardhan, A.; Khadri, H. M.; Mallikarjuna, K. Extracellular Synthesis, Characterization and Antibacterial Activity of Silver Nanoparticles by Actinomycetes isolative. Int. J. Nano Dimension 2013, 4, 77–83.
  • Akbari, B.; Tavandashti, M. P.; Zandrahimi, M. Particle Size Characterization of Nanoparticles – A Practical Approach. Int. J. Med. Sci. Educ. 2011, 8, 48–56.
  • Mittal, A. K.; Tripathy, D.; Choudhary, A.; Aili, P. K.; Chatterjee, A.; Singh, I. P.; Banerjee, U. C. Bio-synthesis of Silver Nanoparticles using Potentilla fulgens Wall. ex Hook. and Its Therapeutic Evaluation as Anticancer and Antimicrobial Agent. Mater. Sci. Eng. 2015, 53, 120–127. DOI: 10.1016/j.msec.2015.04.038.
  • Rao, A.; Schoenenberger, M, M.; Gnecco, E.; Glatzel, T.; Meyer, E.; Brändlin, D.; Scandella, L. Characterization of Nanoparticles Using Atomic Force Microscopy. Journal of Physics: Conference Series. Proceedings of the International Conference on Nanoscience and Technology 2006, 6, 192.
  • Prakasham, R. S.; Buddana, S. K.; Yannam, S. K.; Guntuku, G. S. Characterization of Silver Nanoparticles Synthesized by Using Marine Isolate Streptomyces albidoflavus. J Microbiol. Biotechnol. 2012, 22, 614–621. DOI: 10.4014/jmb.1107.07013.
  • Costa-Fernández, J. M.; Menéndez-Miranda, M.; Bouzas-Ramos, D.; Encinar, J. R.; Sanz-Medel, A. Mass Spectrometry for the Characterization and Quantification of Engineered Inorganic Nanoparticles. Trends Anal. Chem. 2016, 84, 139–148. DOI: 10.1016/j.trac.2016.06.001.
  • Al-Dhabi, N. A.; Mohammed Ghilan, A. K.; Arasu, M. V. Characterization of Silver Nanomaterials Derived from Marine Streptomyces sp. Al-Dhabi-87 and Its in Vitro Application against Multidrug Resistant and Extended-Spectrum Beta-Lactamase Clinical Pathogens. Nanomaterials 2018, 8, 279.
  • Rajamanickam, U.; Mylsamy, P.; Viswanathan, S.; Muthusamy, P. Biosynthesis of Zinc Nanoparticles Using Actinomycetes for Antibacterial Food Packaging. International Conference on Nutrition and Food Sciences. 2012, 39, 195–199.
  • Zarina, A.; Anima, N. Green Approach for Synthesis of Silver Nanoparticles from Marine Streptomyces- MS 26 and Their Antibiotic Efficacy. J. Pharm. Sci. Res. 2014, 6, 321–327.
  • Alani, F.; Moo-Young, M.; Anderson, W. Biosynthesis of Silver Nanoparticles by a New Strain of Streptomyces sp. Compared with Aspergillus fumigatus. World J. Microbiol. Biotechnol. 2012, 28, 1081–1086. DOI: 10.1007/s11274-011-0906-0.
  • Manivasagan, P. A.; Alam, M. S.; Kang, K. H.; Kwak, M.; Kim, S. K. Extracellular Synthesis of Gold Bionanoparticles by Nocardiopsis sp. and Evaluation of Its Antimicrobial, Antioxidant and Cytotoxic Activities. Bioprocess Biosyst. Eng. 2015, 38, 1167–1177. DOI: 10.1007/s00449-015-1358-y.
  • Otari, S. V.; Patil, R. M.; Nadaf, N. H.; Ghosh, S. J.; Pawar, S. H. Green Biosynthesis of Silver Nanoparticles from an Actinobacteria Rhodococcus sp. Mater. Lett. 2012, 72, 92–94. DOI: 10.1016/j.matlet.2011.12.109.
  • P.; Sanjenbam, P.; Gopal, J. V.; Kannabiran, K. Anticandidal Activity of Silver Nanoparticles Synthesized Using Streptomyces sp.VITPK1. J. Mycol. Méd. 2014, 24, 211–219. DOI: 10.1016/j.mycmed.2014.03.004.
  • Manikprabhu, D.; Lingappa, K. Antibacterial Activity of Silver Nanoparticles against Methicillin-Resistant Staphylococcus aureus Synthesized Using Model Streptomyces sp. pigment by Photo-irradiation Method. J. Pharm. Res. 2013, 6, 255–260.
  • Thenmozhi, M.; Kannabiran, K.; Kumar, R.; Khanna, V. G. Antifungal Activity of Streptomyces sp. VITSTK7 and Its Synthesized Ag2O/Ag Nanoparticles Against Medically Important Aspergillus Pathogens. J. Mycol. Méd. 2013, 23, 97–103. DOI: 10.1016/j.mycmed.2013.04.005.
  • Chauhan, R.; Kumar, A.; Abraham, J. A Biological Approach to the Synthesis of Silver Nanoparticles with Streptomyces sp JAR1 and Its Antimicrobial Activity. Sci. Pharm. 2013, 81, 607–621. DOI: 10.3797/scipharm.1302-02.
  • Krishnaraj, C.; Jagan, E. G.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P. T.; Mohan, N. Synthesis of Silver Nanoparticles Using Acalypha indica Leaf Extracts and Its Antibacterial Activity against Water Borne Pathogens. Colloids Surf. B Biointerfaces 2010, 76, 50–56. DOI: 10.1016/j.colsurfb.2009.10.008.
  • Shirley, A.; Dayanand, B.; Dastager, S. Antimicrobial Activity of Silver Nanoparticles Synthesized from Novel Streptomyces Species. Digest J. Nanomater. Biostruct. 2010, 5, 447– 451.
  • Usha, R.; Prabu, E.; Palaniswamy, M.; Venil, C. K.; Rajendran, R. Synthesis of Metal Oxide Nano Particles by Streptomyces sp for Development of Antimicrobial Textiles. Global J. Biotechnol. Biochem. 2010, 5, 153–160.
  • Subbaiya, R.; Saravanan, M.; Priya, A. R.; Shankar, K. R.; Selvam, M.; Ovais, M.; Balajee, R.; Barabadi, H. Biomimetic Synthesis of Silver Nanoparticles from Streptomyces atrovirens and Their Potential Anticancer Activity against Human Breast Cancer Cells. IET Nanobiotechnol. 2017, 11, 965– 972. DOI: 10.1049/iet-nbt.2016.0222.
  • Singh, M.; Srivastava, M.; Kumar, A.; Pandey, D. Biosynthesis of Nanoparticles and Applications in Agriculture. In: Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology; Woodhead Publishing, United Kingdom, 2019; pp 199.
  • Barrow, J. R.; Havstad, K. M.; McCaslin, B. D. Fungal Root Endophytes in Fourwing Saltbush, Atriplex canescens, on Arid Rangeland of Southwestern USA. Arid Soil Res. Rehabil. 1997, 11, 177–185. DOI: 10.1080/15324989709381470.
  • Schoenian, I.; Spiteller, M.; Ghaste, M.; Wirth, R.; Herz, H.; Spiteller, D. Chemical Basis of the Synergism and Antagonism in Microbial Communities in the Nests of Leaf-Cutting Ants. Proc. Natl. Acad. Sci. 2011, 108, 1955–1960. DOI: 10.1073/pnas.1008441108.
  • Sawada, I.; Fachrul, R.; Ito, T.; Ohmukai, Y.; Maruyama, T.; Matsuyama, H. Development of a Hydrophilic Polymer Membrane Containing Silver Nanoparticles with Both Organic Antifouling and Antibacterial Properties. J. Membr. Sci. 2012, 388, 1–6.
  • Hassan, S. E.-D.; Fouda, A.; Radwan, A. A.; Salem, S. S.; Barghoth, M. G.; Awad, M. A.; Abdo, A. M.; El-Gamal, M. S. Endophytic Actinomycetes Streptomyces spp Mediated Biosynthesis of Copper Oxide Nanoparticles as a Promising Tool for Biotechnological Applications. J. Biol. Inorg. Chem. 2019, 24, 377–393. DOI: 10.1007/s00775-019-01654-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.