189
Views
2
CrossRef citations to date
0
Altmetric
Article

Influences of mixed solvent DMF/H2O or DMA/H2O on the topologies of coordination polymers

ORCID Icon, &
Pages 1405-1410 | Received 10 Jul 2020, Accepted 07 Sep 2020, Published online: 29 Oct 2020

References

  • Hu, Z. G.; Wang, Y. X.; Shah, B. B.; Zhao, D. CO2 Capture in Metal-Organic Framework Adsorbents: An Engineering Perspective. Adv. Sustain. Syst. 2019, 3, 1800080. DOI: 10.1002/adsu.201800080.
  • Agarwal, R. A.; Gupta, A. K.; De, D. Flexible Zn-MOF Exhibiting Selective CO2 Adsorption and Efficient Lewis Acidic Catalytic Activity.Cryst. Growth Des. 2019, 19, 201, 2018. DOI: 10.1021/acs.cgd.8b01462.
  • Pham, T.; Forrest, K. A.; Banerjee, R.; Orcajo, G.; Eckert, J.; Space, B. Understanding the H2 Sorption Trends in the M-MOF-74 Series (M = Mg, Ni, Co, Zn). J. Phys. Chem. C 2015, 119, 1078–1090. DOI: 10.1021/jp510253m.
  • Zhang, E. S.; Ju, P.; Zhang, Z.; Yang, H.; Tang, L.; Hou, X. Y.; You, J. M.; Wang, J. J. A Novel Multi-Purpose Zn-MOF Fluorescent Sensor for 2,4-Dinitrophenylhydrazine, Picric Acid, La3+ and Ca2+: Synthesis, Structure, Selectivity, Sensitivity and Recyclability. Spectrochim. Acta A 2019, 222, 117207. DOI: 10.1016/j.saa.2019.117207.
  • Fang, X.; Zong, B. Y.; Mao, S. Metal-Organic Framework-Based Sensors for Environmental Contaminant Sensing. Nano-Micro Lett. 2018, 10, 64. DOI: 10.1007/s40820-018-0218-0.
  • Suresh, K.; Matzger, A. J. Enhanced Drug Delivery by Dissolution of Amorphous Drug Encapsulated in a Water Unstable Metal–Organic Framework (MOF). Angew. Chem. Int. Ed. 2019, 58, 1–6. DOI: 10.1002/anie.201907652.
  • Song, B. H.; Ding, X.; Zhang, Z. F.; An, G. F. Efficient Drug Delivery of 5-Fluorouracil by a Biocompatible Znmetal–Organic Framework Nanostructure and Anti-Liver Cancer Activity Study. J. Iran. Chem. Soc. 2018, 1–8. DOI: 10.1007/s13738-018-1520-y.
  • Pullen, S.; Ott, S. Photochemical Hydrogen Production with Metal–Organic Frameworks. Top. Catal. 2016, 59, 1712–1721. DOI: 10.1007/s11244-016-0690-z.
  • Dhakshinamoorthy, A.; Li, Z. H.; Garcia, H. Catalysis and Photocatalysis by Metalorganic Frameworks. Chem. Soc. Rev. 2018, 1–39. DOI: 10.1039/c8cs00256h.
  • Omkaramurthy, B. M.; Krishnamurthy, G. Synthesis, Characterization, Crystal Structure, Andelectrochemical Study of Zinc(II) Metal-OrganicframeWork. Inorg. Nano Met. Chem. 2019, 1–10. DOI: 10.1080/24701556.2019.1661460.
  • Jensen, S.; Tan, K.; Lustig, W. P.; Kilin, D. S.; Li, J.; Chabal, Y. J.; Thonhauser, T. Structure-Driven Photoluminescence Enhancement in a Zn-Based Metal–Organic Framework. Chem. Mater. 2019, 31, 7933–7940. DOI: 10.1021/acs.chemmater.9b02056.
  • Ahamad, M. N.; Shahid, M.; Ahmad, M.; Sama, F. Cu(II) MOFs Based on Bipyridyls: Topology, Magnetism, and Exploring Sensing Ability toward Multiple Nitroaromatic Explosives. ACS Omega 2019, 4, 7738–7749. DOI: 10.1021/acsomega.9b00715.
  • Abednatanzi, S.; Derakhshandeh, P. G.; Depauw, H.; Coudert, F. X.; Vrielinck, H.; Voort, P. V. D.; Leus, K. Mixed-Metal Metal–Organic Frameworks. Chem. Soc. Rev. 2018, 1–31. DOI: 10.1039/c8cs00337h.
  • Masoomi, M. Y.; Morsali, A.; Dhakshinamoorthy, A.; Garcia, H. Mixed-Metal MOFs: Unique Opportunities in Metal-organic Framework Functionality and Design. Angew. Chem. Int. Ed. 2019, 1–47. DOI: 10.1002/anie.201902229.
  • Hong, Y. S.; Sun, S. L.; Sun, Q.; Gao, E. Q.; Ye, M, 1016/j.matchemphys Tuning Adsorption Capacity through Ligand Pre-Modification in Functionalized Zn-MOF Analogues. Mater. Chem. Phys. 2020, 243, 122601. DOI: 10.1016/j.matchemphys.2019.122601.
  • Zhou, D. S.; Wang, F. K.; Yang, S. Y.; Xie, Z. X.; Huang, R. B. Substituent Effect on the Assembly of Coordination Polymers Containing Isophthalic Acid and Its Derivatives. CrystEngComm 2009, 11, 2548–2554. DOI: 10.1039/b907142c.
  • Seetharaj, R.; Vandana, P. V.; Arya, P.; Mathew, S. Dependence of Solvents, pH, Molar Ratio and Temperature in Tuning Metal Organic Framework Architecture. Arab. J. Chem. 2016, 1826–1845. DOI: 10.1016/j.arabjc.2016.01.003.
  • McKinstry, C.; Cussen, E. J.; Fletcher, A. J.; Patwardhan, S. V.; Sefcik, J. Effect of Synthesis Conditions on Formation Pathways of Metal Organic Framework (MOF-5) Crystals. Cryst. Growth Des. 2013, 13, 5481–5486. DOI: 10.1021/cg4014619.
  • Wang, F. K.; Song, X. X.; Yang, S. Y.; Huang, R. B.; Zheng, L. S. Influence of Hydrothermal Synthesis Temperature on the Structures of Two 3D Coordination Polymers. Inorg. Chem. Commun. 2007, 10, 1198–1201. DOI: 10.1016/j.inoche.2007.07.008.
  • Zhou, Z. Y.; Xing, X. H.; Tian, C. B.; Wei, W.; Li, D. J.; Hu, F.; Du, S. W. A Multifunctional Nanocage-based MOF with Tri- and Tetranuclear Zinc Cluster Secondary Building Units. Sci. Rep. 2018, 8, 3117. DOI: 10.1038/s41598-018-21382-1.
  • Zhang, C. Q.; Yan, Y.; Sun, L. B.; Liang, Z. Q.; Li, J. Y. Solvent-Induced Construction of Two Zinc Metal–Organic Frameworks for Highly Selective Detection of Nitroaromatic Explosives. CrystEngComm 2016, 18, 4102–4108. DOI: 10.1039/C5CE02172C.
  • Chen, D. M.; Ma, X. Z.; Shi, W.; Cheng, P. Solvent-Induced Topological Diversity of Two Zn(II) Metal–Organic Frameworks and High Sensitivity in Recyclable Detection of Nitrobenzene. Cryst. Growth Des. 2015, 15, 3999–4004. DOI: 10.1021/acs.cgd.5b00614.
  • Yu, D. B.; Shao, Q.; Song, Q. J.; Cui, J. W.; Zhang, Y. L.; Wu, B.; Ge, L.; Wang, Y.; Zhang, Y.; Qin, Y. Q.; et al. A Solvent-Assisted Ligand Exchange Approach Enables Metal-Organic Frameworks with Diverse and Complex Architectures. Nat. Commun. 2020, 11, 927. DOI: 10.1038/s41467-020-14671-9.
  • Wang, F. K.; Yang, S. Y.; Huang, R. B.; Zheng, L. S.; Batten, S. R. Control of the Topologies and Packing Modes of Three 2D Coordination Polymers through Variation of the Solvent Ratio of a Binary Solvent Mixture. CrystEngComm 2008, 10, 1211–1215. DOI: 10.1039/b718995h.
  • Yu, Y. F.; Zong, Z.; Fan, C. B.; Meng, X. M.; Zhang, X.; Fan, Y. H. Synthesis, Crystal Structure, and Photodegradation Properties of a New MulticoreZn(II) Metal Organic Framework. Inorg. Nano Met. Chem. 2019, 1–6. DOI: 10.1080/24701556.2019.1661456.
  • El-Sayed, E. S. M.; Yuan, D. Q. Metal-Organic Cages (MOCs): From Discrete to Cage-Based Extended Architectures. Chem. Lett. 2019, 1–27. DOI: 10.1246/cl.190731.
  • Sheldrick, G. M. SADABS, Version 2.05; University of Gottingen: Gottingen, Germany, 1997.
  • Sheldrick, G. M. SHELXS-2014, Program for X-ray Crystal Structure Determination; University of Gottingen: Germany, 2014.
  • Sheldrick, G. M. SHELXL-2014, Program for X-ray Crystal Structure Refinement; University of Gottingen: Germany, 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.