504
Views
23
CrossRef citations to date
0
Altmetric
Review

Plant mediated synthesis of AgNPs and its applications: an overview

, , &
Pages 1646-1662 | Received 19 Jul 2020, Accepted 18 Oct 2020, Published online: 09 Dec 2020

References

  • Ariga, K.; Nishikawa, M.; Mori, T.; Takeya, J.; Shrestha, L. K.; Hill, J. P. Self-Assembly as a Key Player for Materials Nanoarchitectonics. Sci. Technol. Adv. Mater. 2019, 20, 51–95. DOI: 10.1080/14686996.2018.1553108.
  • Ariga, K. Nanoarchitectonics: A Navigator from Materials to Life. Mater. Chem. Front. 2017, 1, 208–211. DOI: 10.1039/C6QM00240D.
  • Yonezawa, T.; Čempel, D.; Nguyen, M. T. Microwave-Induced Plasma-In-Liquid Process for Nanoparticle Production. BCSJ 2018, 91, 1781–1798. DOI: 10.1246/bcsj.20180285.
  • Singh, A.; Dubey, S.; Dubey, H. K. Nanotechnology: The Future Engineering. Int. J. Adv. Innov. Res. 2019, 6, 230–233.
  • Saxena, A.; Tripathi, R. M.; Singh, R. P. Biological Synthesis of Silver Nanoparticles by Using Onion (ALLIUM CEPA) Extract and Their Antibacterial Activity. Nanometer. Bios 2010, 5, 427–432.
  • Chen, Y. Y.; Wang, C. A.; Liu, H. Y.; Qiu, J. S.; Bao, X. H. Ag/SiO2: A Novel Catalyst with High Activity and Selectivity for Hydrogenation of Chloronitrobenzenes. Chem. Commun. 2005, 42, 5298–5300. DOI: 10.1039/B509595F.
  • Torresdey, J. L. G.; Parsons, J. G.; Gomez, E.; Videa, J. P.; Troiani, H. E.; Santiago, P.; Yacaman, M. J. Formation and Growth of Au Nanoparticles Inside Live Alfalfa Plants. Nano Lett. 2002, 2, 397–401. DOI: 10.1021/nl015673+.
  • Zhang, X. F.; Liu, Z. G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. IJMS 2016, 17, 1534. DOI: 10.3390/ijms17091534.
  • Geethalakshmi, R.; Sarada, D. V. Synthesis of Plant-Mediated Silver Nanoparticles Using Trianthema Decandra Extract and Evaluation of Their Anti Microbial Activities. Int. J. Eng. Sci. 2010, 5, 970–975.
  • Shankar, S. S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid Synthesis of Au, Ag, and Bimetallic Au Core-Ag Shell Nanoparticles Using Neem (Azadirachta indica) Leaf Broth. J. Colloid Interface Sci. 2004, 275, 496–502. DOI: 10.1016/j.jcis.2004.03.003.
  • Willner, I.; Baron, R.; Willner, B. Growing Metal Nanoparticles by Enzymes. Adv. Mater. 2006, 18, 1109–1120. DOI: 10.1002/adma.200501865.
  • Konishi, Y.; Ohno, K.; Saitoh, N.; Nomura, T.; Nagamine, S.; Hishida, H.; Takahashi, Y.; Uruga, T. Bio Reductive Deposition of Platinum Nanoparticles on the Bacterium Shewanella Algae. J. Biotechnol. 2007, 128, 648–653. DOI: 10.1016/j.jbiotec.2006.11.014.
  • Chandran, S. P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloe Vera Plant Extract. Biotechnol. Prog. 2006, 22, 577–583. DOI: 10.1021/bp0501423.
  • Philip, D. Green Synthesis of Gold and Silver Nanoparticles Using Hibiscus Rosa Sinensis. Phys. E 2010, 22, 1417–1424. DOI: 10.1016/j.physe.2009.11.081.
  • Hamouda, R. A.; Hussein, M. H.; Abo-Elmagd, R. A.; Bawazir, S. W. Synthesis and Biological Characterization of Silver Nanoparticles Derived from the Cyanobacterium Oscillatoria limnetica. Sci. Rep. 2019, 9, 13071. DOI: 10.1038/s41598-019-49444-y.
  • Saklani, S.; Chandra, S.; Badoni, P. P.; Dogra, S. Antimicrobial Activity, Nutritional Profile and Phytochemical Screening of Wild Edible Fruit of Rubus ellipticus. Int. J. Med. Arom. Plants 2012, 2, 269–274.
  • Sastry, M.; Ahmad, A.; Khan, M. I.; Kumar, R. Biosynthesis of Metal Nanoparticles Using Fungi and Actinomycete. Curr. Sci. 2003, 85, 162–170.
  • Mohanpuria, P.; Rana, K. N.; Yadav, S. K. Biosynthesis of Nanoparticles: Technological Concepts and Future Applications. J. Nanopart. Res. 2008, 10, 507–517. DOI: 10.1007/s11051-007-9275-x.
  • Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S. R.; Khan, M. I.; Parishcha, R.; Ajaykumar, P. V.; Alam, M.; Kumar, R.; Sastry, M. Fungus Mediated Synthesis of Silver Nanoparticles and Their Immobilisation on Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. Nano Lett. 2001, 1, 515–519. DOI: 10.1021/nl0155274.
  • Vivekanandhan, S.; Misra, M.; Mohanty, A. K. Biological Synthesis of Silver Nanoparticles Using Glycine max (Soybean) Leaf Extract: An Investigation on Different Soybean Varieties. J. Nanosci. Nanotechnol. 2009, 9, 6828–6833. DOI: 10.1166/jnn.2009.2201.
  • Bhattacharya, R.; Mukherjee, P. Biological Properties of "Naked" Metal Nanoparticles. Adv. Drug Deliv. Rev. 2008, 60, 1289–1306. DOI: 10.1016/j.addr.2008.03.013.
  • Jadoun, S.; Arif, R.; Jangid, N. K.; Meena, R. K. Green Synthesis of Nanoparticles Using Plant Extracts: A Review. Environ. Chem. Lett. 2020, 1-20. DOI: 10.1007/s10311-020-01074-x.
  • Bhainsa, K. C.; D'Souza, S. F. Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 2006, 47, 160–164. DOI: 10.1016/j.colsurfb.2005.11.026.
  • Thakkar, K. N.; Mhatre, S. S.; Parikh, R. Y. Biological Synthesis of Metallic Nanoparticles. Nanomedicine 2010, 6, 257–262. DOI: 10.1016/j.nano.2009.07.002.
  • Uthiraselvam, M.; Rajabudeen, E.; Fathima, A. A.; Mohamed, H. P.; Selvam, M. B.; Kavitha, G. Pharmacognostical Studies on the Medicinal plant-Alangium Salvifolium(Linn.F)Wang. Int. J. Pharmtech. Res. 2012, 4, 1792–1796.
  • Wijnhoven, S. W. P.; Peijnenburg, W. J. G. M.; Herberts, C. A.; Hagens, W. I.; Oomen, A. G.; Heugens, E. H. W.; Roszek, B.; Bisschops, J.; Gosens, I.; Van De Meent, D.; et al. Nano-Silver – A Review of Available Data and Knowledge Gaps in Human and Environmental Risk Assessment. Nanotoxicology 2009, 3, 109–138. DOI: 10.1080/17435390902725914.
  • Jain, A.; Soni, M.; Deb, L.; Jain, A.; Rout, S. P.; Gupta, V. B.; Krishna, K. L. Antioxidant and Hepatoprotective Activity of Ethanolic and Aqueous Extracts of Momordica dioica Roxb. Leaves. J. Ethnopharmacol. 2008, 115, 61–66. DOI: 10.1016/j.jep.2007.09.009.
  • Park, I. H.; Arora, N.; Huo, H.; Maherali, N.; Ahfeldt, T.; Shimamura, A.; Lensch, M. W.; Cowan, C.; Hochedlinger, K.; Dal, Q. G. Disease-Specific Induced Pluripotent Stem Cells. Cell 2008, 134, 877–886. DOI: 10.1016/j.cell.2008.07.041.
  • Xu, R.; Wang, D.; Zhang, J.; Li, Y. Shape-Dependent Catalytic Activity of Silver Nanoparticles for the Oxidation of Styrene. Chem. Asian J. 2006, 1, 888–893. DOI: 10.1002/asia.200600260.
  • Tang, S.; Zheng, J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv. Healthcare Mater. 2018, 7, 1701503–1701510. DOI: 10.1002/adhm.201701503.
  • Rajakumar, G.; Abdul Rahuman, A. Larvicidal Activity of Synthesized Silver Nanoparticles Using Eclipta Prostrata Leaf Extract against Filariasis and Malaria Vectors. Acta Trop. 2011, 118, 196–203. DOI: 10.1016/j.actatropica.2011.03.003.
  • Rawani, A.; Ghosh, A.; Chandra, G. Mosquito Larvicidal and Antimicrobial Activity of Synthesized Nano-Crystalline Silver Particles Using Leaves and Green Berry Extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop. 2013, 128, 613–622. DOI: 10.1016/j.actatropica.2013.09.007.
  • Geethalakshmi, R.; Sarada, D. V. L. Characterization and Antimicrobial Activity of Gold and Silver Nanoparticles Synthesized Using Saponin Isolated from Trianthema Decandra L. Ind. Crops Prod. 2013, 51, 107–115. DOI: 10.1016/j.indcrop.2013.08.055.
  • Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B. Green Synthesis of Silver Nanoparticles Using Polyalthia Longifolia Leaf Extract along with D-Sorbitol: Study of Antibacterial Activity. J. Nanotechnol. 2011, 2011, 1–5. DOI: 10.1155/2011/152970.
  • Gopinath, V.; Priyadarshini, S.; Loke, M. F.; Arunkumar, J.; Marsili, E.; Mubarakali, D.; Velusamy, P.; Vadivelu, J. Biogenic Synthesis, Characterization of Antibacterial Silver Nanoparticles and Its Cell Cytotoxicity. Arab. J. Chem. 2017, 10, 1107–1117. DOI: 10.1016/j.arabjc.2015.11.011.
  • Vijay Kumar, P. P. N.; Pammi, S. V. N.; Kollu, P.; Satyanarayana, K. V. V.; Shameem, U. Green Synthesis and Characterization of Silver Nanoparticles Using Boerhaavia diffusa Plant Extract and Their Anti Bacterial Activity. Ind. Crops Prod. 2014, 52, 562–566. DOI: 10.1016/j.indcrop.2013.10.050.
  • Ajitha, B.; Reddy, Y. A. K.; Reddy, P. S. Biogenic Nano-Scale Silver Particles by Tephrosia purpurea Leaf Extract and Their Inborn Antimicrobial Activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 121, 164–172. DOI: 10.1016/j.saa.2013.10.077.
  • Das, J.; Das, M. P.; Velusamy, P. Sesbania grandiflora Leaf Extract Mediated Green Synthesis of Antibacterial Silver Nanoparticles against Selected Human Pathogens. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 104, 265–270. DOI: 10.1016/j.saa.2012.11.075.
  • Laladhas, K. P.; Cheriyan, V. T.; Puliappadamba, V. T.; Bava, S. V.; Unnithan, R. G.; Vijayammal, P. L.; Anto, R. J. A Novel Protein Fraction from Sesbania Grandiflora Shows Potential Anticancer and Chemopreventive Efficacy, In Vitro and In Vivo. J. Cell. Mol. Med. 2010, 14, 636–646. DOI: 10.1111/j.1582-4934.2008.00648.x.
  • China, R.; Mukherjee, S.; Sen, S.; Bose, S.; Datta, S.; Koley, H.; Ghosh, S.; Dhar, P. Antimicrobial Activity of Sesbania Grandiflora Flower Polyphenol Extracts on Some Pathogenic Bacteria and Growth Stimulatory Effect on the Probiotic Organism Lactobacillus acidophilus. Microbiol. Res. 2012, 167, 500–506.
  • Damre, A. S.; Gokhale, A. B.; Phadke, A. S.; Kulkarni, K. R.; Saraf, M. N. Studies on the Immunomodulatory Activity of Flavonoidal Fraction of Tephrosia purpurea. Fitoterapia 2003, 74, 257–261. DOI: 10.1016/S0367-326X(03)00042-X.
  • Hegazy, M.-E. F.; Abd el-Razek, M. H.; Nagashima, F.; Asakawa, Y.; Paré, P. W. Rare Prenylated Flavonoids from Tephrosia purpurea. Phytochemistry 2009, 70, 1474–1477. DOI: 10.1016/j.phytochem.2009.08.001.
  • Chang, L. C.; Chavez, D.; Song, L. L.; Farnsworth, N. R.; Pezzuto, J. M.; Kinghorn, A. D. Absolute Configuration of Novel Bioactive Flavonoids from Tephrosia purpurea. Org. Lett. 2000, 2, 515–518. DOI: 10.1021/ol990407c.
  • Sathishkumar, G.; Gobinath, C.; Karpagam, K.; Hemamalini, V.; Premkumar, K.; Sivaramakrishnan, S. Phyto-Synthesis of Silver Nanoscale Particles Using Morinda citrifolia L. and Its Inhibitory Activity against Human Pathogens. Colloids Surf. B Biointerfaces 2012, 95, 235–240. DOI: 10.1016/j.colsurfb.2012.03.001.
  • Liao, C.; Li, Y.; Tjong, S. C. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. IJMS 2019, 20, 449. DOI: 10.3390/ijms20020449.
  • Pai, A. R.; Kavitha, S.; Shweta, S. R.; Priyanka, P.; Vrinda, A.; Vivin, T. S.; Sasidharan, S. Green Synthesis and Characterization of Silver Nanoparticles Using Fresh Leaf Extract of Morinda citrifolia and Its Anti-Microbial Activity Studies. Int. J. Pharm. Pharm. Sci. 2015, 7, 459–461.
  • Ajith, P.; Murali, A. S.; Sreehari, H.; Vinod, B. S.; Anil, A.; Smitha, C. S. Green Synthesis of Silver Nanoparticles Using Calotropis gigantea Extract and Its Applications in Antimicrobial and Larvicidal Activity. Mater. Today 2019, 18, 4987–4991. DOI: 10.1016/j.matpr.2019.07.491.
  • Loo, Y. Y.; Rukayadi, Y.; Nor-Khaizura, M. A. R.; Kuan, C. H.; Chieng, B. W.; Nishibuchi, M.; Radu, S. In Vitro Antimicrobial Activity of Green Synthesized Silver Nanoparticles against Selected Gram-Negative Food Borne Pathogens. Front. Microbiol. 2018, 9, 1–7. DOI: 10.3389/fmicb.2018.01555.
  • Kambale, E. K.; Nkanga, C. I.; Mutonkole, B. P. I.; Bapolisi, A. M.; Tassa, D. O.; Liesse, J. M. I.; Krause, R. W. M.; Memvanga, P. B. Green Synthesis of Antimicrobial Silver Nanoparticles Using Aqueous Leaf Extracts from Three Congolese Plant Species (Brillantaisia patula, Crossopteryx febrifuga and Senna siamea). Heliyon 2020, 6, e04493–e04499. DOI: 10.1016/j.heliyon.2020.e04493.
  • Zhang, P.; Shao, C.; Zhang, Z.; Zhang, M.; Mu, J.; Guo, L.; Liu, Y. In Situ Assembly of Well-Dispersed Ag Nanoparticles (AgNPs) on Electrospun Carbon Nanofibers (CNFs) for Catalytic Reduction of 4-Nitrophenol. Nanoscale 2011, 3, 3357–3363. DOI: 10.1039/c1nr10405e.
  • Liang, M.; Su, R.; Huang, R.; Qi, W.; Yu, Y.; Wang, L.; He, Z. Facile In Situ Synthesis of Silver Nanoparticles on Procyanidin-Grafted Eggshell Membrane and Their Catalytic Properties. ACS Appl. Mater. Interfaces 2014, 6, 4638–4649. DOI: 10.1021/am500665p.
  • Yang, M.; Pan, X.; Zhang, N.; Xu, Y. A Facile One-Step Way to Anchor Noble Metal (Au, Ag, Pd) Nanoparticles on a Reduced Graphene Oxide Mat with Catalytic Activity for Selective Reduction of Nitroaromatic Compounds. CrystEngcomm 2013, 15, 6819–6828. DOI: 10.1039/c3ce40694f.
  • Xiao, F. Layer-by-Layer Self-Assembly Construction of Highly Ordered Metal-TiO2 Nanotube Arrays Heterostructures (M/TNTs, M = Au, Ag, Pt) with Tunable Catalytic Activities. J. Phys. Chem. C 2012, 116, 16487–16498. DOI: 10.1021/jp3034984.
  • Zhang, Z.; Shao, C.; Sun, Y.; Mu, J.; Zhang, M.; Zhang, P.; Guo, Z.; Liang, P.; Wang, C.; Liu, Y. Tubular Nanocomposite Catalysts Based on Size-Controlled and Highly Dispersed Silver Nanoparticles Assembled on Electrospun Silicananotubes for Catalytic Reduction of 4-Nitrophenol. J. Mater. Chem. 2012, 22, 1387–1395. DOI: 10.1039/C1JM13421C.
  • Wodka, D.; Bielańska, E.; Socha, R. P.; Elzbieciak-Wodka, M.; Gurgul, J.; Nowak, P.; Warszyński, P.; Kumakiri, I. Warszyn ´ Ski, P.; Kumakiri, I. Photocatalytic Activity of Titanium Dioxide Modified by Silver Nanoparticles. ACS Appl. Mater. Interfaces 2010, 2, 1945–1953. DOI: 10.1021/am1002684.
  • Carp, O.; Huisman, C. L.; Reller, A. Photoinduced Reactivity of Titanium Dioxide. Prog. Solid State Chem. 2004, 32, 33–177. DOI: 10.1016/j.progsolidstchem.2004.08.001.
  • Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. DOI: 10.1021/cr00033a004.
  • Vilela, D.; González, M. C.; Escarpa, A. Sensing Colorimetric Approaches Based on Gold and Silver Nanoparticles Aggregation: Chemical Creativity behind the Assay. A Review. Anal. Chim. Acta 2012, 751, 24–43. DOI: 10.1016/j.aca.2012.08.043.
  • Dou, Y.; Yang, X.; Liu, Z.; Zhu, S. Homocysteine-Functionalized Silver Nanoparticles for Selective Sensing of Cu2+ Ions and Lidocaine Hydrochloride. Colloids Surf. A 2013, 423, 20–26. DOI: 10.1016/j.colsurfa.2013.01.027.
  • Yao, Y.; Tian, D.; Li, H. Cooperative Binding of Bifunctionalized and Click-Synthesized Silver Nanoparticles for Colorimetric Co(2+) Sensing. ACS Appl. Mater. Interfaces 2010, 2, 684–690. DOI: 10.1021/am900741h.
  • Bernhoft, R. A. Mercury Toxicity and Treatment: A Review of the Literature. J. Environ. Public Health 2012, 2012, 1–10. DOI: 10.1155/2012/460508.
  • Safty, E.; Sherif, A. Functionalized Hexagonal Mesoporous Silica Monoliths with Hydrophobic Azo-Chromophore for Enhanced Co (II) Ion Monitoring. Adsorption 2009, 15, 227–239. DOI: 10.1007/s10450-009-9171-z.
  • Gharehbaghi, M.; Shemirani, F.; Farahani, M. D. Cold-Induced Aggregation Microextraction Based on Ionic Liquids and Fiber Optic-Linear Array Detection Spectrophotometry of Cobalt in Water Samples. J. Hazard. Mater. 2009, 165, 1049–1055. DOI: 10.1016/j.jhazmat.2008.10.128.
  • Khoorami, A. R.; Hashempurit, T.; Mahmoudi, A.; Kavirmi, A. R. Determination of Ultra Trace Amounts of Cobalt and Nickel in Water Samples by Inductively Coupled Plasma-Optical Emission Spectrometry after Preconcentration on Modified C18-Silica Extraction Disks. Microchem. J. 2006, 84, 75–79. DOI: 10.1016/j.microc.2006.04.008.
  • Alam, A.; Ravindran, A.; Chandran, P.; Sudheer Khan, S. Highly Selective Colorimetric Detection and Estimation of Hg2+ at Nano-Molar Concentration by Silver Nanoparticles in the Presence of Glutathione. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 503–508. DOI: 10.1016/j.saa.2014.09.004.
  • Gao, S.; Jia, X.; Chen, Y. Old Tree with New Shoots: Silver Nanoparticles for Label-Free and Colorimetric Mercury Ions Detection. J. Nanopart. Res. 2013, 15, 1385. DOI: 10.1007/s11051-012-1385-4.
  • Fan, Y.; Liu, Z.; Wang, L.; Zhan, J. Synthesis of Starch-Stabilized Ag Nanoparticles and Hg Recognition in Aqueous Media. Nanoscale Res. Lett. 2009, 4, 1230–1235. DOI: 10.1007/s11671-009-9387-6.
  • Rastogi, L.; Sashidhar, R. B.; Karunasagar, D.; Arunachalam, J. Gum Kondagogu Reduced/Stabilized Silver Nanoparticles as Direct Colorimetric Sensor for the Sensitive Detection of Hg2+ in Aqueous System. Talanta 2014, 118, 111–117. DOI: 10.1016/j.talanta.2013.10.012.
  • Kim, Y. K.; Johnson, R. C.; Hup, J. T. Gold Nanoparticle-Based Sensing of “Spectroscopically Silent” Heavy Metal Ions. Nano. Lett. 2001, 1, 166–167. DOI: 10.1021/nl0100116.
  • Chang, K. C.; Su, H. I.; Senthilvelan, A.; Chung, W. S. Triazole-Modified Calix[4]Crown as a Novel Fluorescent On-Off Switchable Chemosensor. Org. Lett. 2007, 9, 3363–3366. DOI: 10.1021/ol071337.
  • Park, S. Y.; Yoon, J. H.; Hong, C. S.; Souane, R.; Kim, J. S.; Matthews, S. E.; Vicens, J. A Pyrenyl-Appended Triazole-Based Calix[4]Arene as a Fluorescent Sensor for Cd2+ and Zn2+. J. Org. Chem. 2008, 73, 8212–8218. DOI: 10.1021/jo8012918.
  • Colasson, B.; Save, M.; Milko, P.; Roithová, J.; Schröder, D.; Reinaud, O. A Ditopic Calix[6]Arene Ligand with N-Methylimidazole and 1,2,3-Triazole Substituents: Synthesis and Coordination with Zn(II) Cations. Org. Lett. 2007, 9, 4987–4990. DOI: 10.1021/ol701850t.
  • Sung, H. K.; Oh, S. Y.; Park, C.; Kim, Y. Colorimetric Detection of Co2+ Ion Using Silver Nanoparticles with Spherical, Plate, and Rod Shapes. Langmuir 2013, 29, 8978–8982. DOI: 10.1021/la401408f.
  • Kulkarni, S. V.; Blackwell, C. D.; Blackard, A. L.; Stackhocese, C. W.; Alexander, M. W. US Environmental Protection Agency, Research TrianglePark, NC (EPA-600/2-85/010), 1985.
  • Chung, K. T.; Cerniglia, C. E. Mutagenicity of Azo Dyes: Structure-Activity Relationships. Mutat. Res. 1992, 277, 201–220. DOI: 10.1016/0165-1110(92)90044-a.
  • Vidhu, V. K.; Philip, D. Catalytic Degradation of Organic Dyes Using Biosynthesized Silver Nanoparticles. Micron 2014, 56, 54–62. DOI: 10.1016/j.micron.2013.10.006.
  • Cushen, M.; Kerry, J.; Morris, M.; Cruz-Romero, M.; Cummins, E. Nanotechnologies in the Food Industry – Recent Developments, Risks and Regulation. Trends Food Sci. Technol. 2012, 24, 30–46. DOI: 10.1016/j.tifs.2011.10.006.
  • Appendini, P.; Hotchkiss, J. S. Review of Antimicrobial Food Packaging. Innov. Food Sci. Emerg. Technol. 2002, 3, 113–126. DOI: 10.1016/S1466-8564(02)00012-7.
  • Llorens, A.; Lloret, E.; Picouet, P. A.; Trbojevich, R.; Fernandez, A. Metallic-Based Micro and Nanocomposite in Food Contact Materials and Active Food Packaging. Trends Food Sci. Technol. 2012, 24, 19–29. DOI: 10.1016/j.tifs.2011.10.001.
  • Simbine, E. O.; Rodrigues, L. d C.; Lapa-Guimarães, J.; Kamimura, E. S.; Corassin, C. H.; Oliveira, C. A. F. d. Application of Silver Nanoparticles in Food Packages: A Review. Food Sci. Technol. 2019, 39, 793–802. DOI: 10.1590/fst.36318.
  • Fayaz, A. M.; Balaji, K.; Girilal, M.; Kalaichelvan, P. T.; Venkatesan, R. Mycobased Synthesis of Silver Nanoparticles and Their Incorporation into Sodium Alginate Films for Vegetable and Fruit Preservation. J. Agric. Food Chem. 2009, 57, 6246–6252. DOI: 10.1021/jf900337h.
  • Morillon, V.; Debeaufort, F.; Blond, G.; Capelle, M.; Voilley, A. Factors Affecting the Moisture Permeability of Lipid-Based Edible Films: A Review. Crit. Rev. Food Sci. Nutr. 2002, 42, 67–89. DOI: 10.1080/10408690290825466.
  • Cagri, A.; Ustunol, Z.; Ryser, E. T. Antimicrobial Edible Films and Coatings. J. Food Prot. 2004, 67, 833–848. DOI: 10.4315/0362-028x-67.4.833.
  • Cha, D. S.; Chinnan, M. S. Biopolymer-Based Antimicrobial Packaging: A Review. Crit. Rev. Food Sci. Nutr. 2004, 44, 223–237. DOI: 10.1080/10408690490464276.
  • Rhim, J. W. Increase in Water Vapor Barrier Property of Biopolymer-Based Edible Films and Coatings by Compositing with Lipid Materials. J. Food Sci. Biotechnol. 2004, 13, 528–535.
  • Ahvenainen, R. Novel Food Packaging Techniques; CRC Press: Boca Raton, FL, 2003.
  • Krishnaraj, C.; Muthukumaran, R.; P.; Ramachandran, R.; Balakumaran, M. D.; Kalaichelvan, P. T. Acalypha indica Linn: Biogenic Synthesis of Silver and Gold Nanoparticles and Their Cytotoxic Effects against MDA-MB-231, Human Breast Cancer Cells. Biotechnol. Rep. (Amst) 2014, 4, 42–49. DOI: 10.1016/j.btre.2014.08.002.
  • Kumar, V.; Yadav, S. K. Plant-Mediated Synthesis of Silver and Gold Nanoparticles and Their Applications. J. Chem. Technol. Biotechnol. 2009, 84, 151–157. DOI: 10.1002/jctb.2023.
  • Li, G.; He, D.; Qian, Y.; Guan, B.; Cui, Y.; Gao, S.; Yokoyama, K.; Wang, L. Fungus-Mediated Green Synthesis of Silver Nanoparticles Using Aspergillus terreus. Int. J. Mol. Sci. 2012, 13, 466–476. DOI: 10.3390/ijms13010466.
  • Kalaiarasi, R.; Jayalakshmi, N.; Venkatachalam, P. Phytosynthesis of Nanoparticles and Its Applications - A Review. Biotechnol. Mol. Biol. 2010, 11, 1–16.
  • Ratan, Z. A.; Haidere, M. F.; Nurunnabi, M.; Shahriar, S. M.; Ahammad, A. J. S.; Shim, Y. Y.; Reaney, M. J. T.; Cho, J. Y. Green Chemistry Synthesis of Silver Nanoparticles and Its Potential Anticancer Effects. Cancer 2020, 12, 855. DOI: 10.3390/cancers12040855.
  • Institute, N. C. What is cancer? https://www.cancer.gov/about-cancer/understanding/what-is-cancer. 2015 (accessed Nov 6).
  • Barabadi, H.; Ovais, M.; Shinwari, Z. K.; Saravanan, M. Anti-Cancer Green Bionanomaterials: Present Status and Future Prospects. Green Chem. Lett. Rev. 2017, 10, 285–314. DOI: 10.1080/17518253.2017.1385856.
  • Rao, P. V.; Nallappan, D.; Madhavi, K.; Rahman, S.; Jun Wei, L.; Gan, S. H. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents. Oxid. Med. Cell Longev. 2016, 2016, 12–27. DOI: 10.1155/2016/3685671.
  • Lokina, S.; Stephen, A.; Kaviyarasan, V.; Arulvasu, C.; Narayanan, V. Cytotoxicity and Antimicrobial Activities of Green Synthesized Silver Nanoparticles. Eur. J. Med. Chem. 2014, 76, 256–263. DOI: 10.1016/j.ejmech.2014.02.010.
  • Anwar, A.; Ovais, M.; Khan, A.; Raza, A. Docetaxel Loaded Solid Lipid Nanoparticles: A Novel Drug Delivery System. IET Nanobiotechnol. 2017, 11, 621–629. DOI: 10.1049/iet-nbt.2017.0001.
  • Wang, M.; Thanou, M. Targeting Nanoparticles to Cancer. Pharmacol. Res. 2010, 62, 90–99. DOI: 10.1016/j.phrs.2010.03.005.
  • Kwon, T.; Woo, H. J.; Kim, Y. H.; Lee, H. J.; Park, K. H.; Park, S.; Youn, B. Optimizing Hemocompatibility of Surfactant-Coated Silver Nanoparticles in Human Erythrocytes. J. Nanosci. Nanotechnol. 2012, 12, 6168–6175. DOI: 10.1166/jnn.2012.6433.
  • Asimuddin, M.; Shaik, M. R.; Adil, S. F.; Siddiqui, M. R. H.; Alwarthan, A.; Jamil, K.; Khan, M. Azadirachta Indica Based Biosynthesis of Silver Nanoparticles and Evaluation of Their Antibacterial and Cytotoxic Effect. J. King Saud Univ. Sci. 2020, 32, 648–656. DOI: 10.1016/j.jksus.2018.09.014.
  • Kumar, B.; Smita, K.; Seqqat, R.; Benalcazar, K.; Grijalva, M.; Cumbal, L. In Vitro Evaluation of Silver Nanoparticles Cytotoxicity on Hepatic Cancer (hep-G2) Cell Line and Their Antioxidant Activity: Green Approach for Fabrication and Application. J. Photochem. Photobiol. B 2016, 159, 8–13. DOI: 10.1016/j.jphotobiol.2016.03.011.
  • Vasanth, K.; Ilango, K.; MohanKumar, R.; Agrawal, A.; Dubey, G. P. Anticancer Activity of Moringa Oleifera Mediated Silver Nanoparticles on Human Cervical Carcinoma Cells by Apoptosis Induction. Colloids Surf. B Biointerfaces 2014, 117, 354–359. DOI: 10.1016/j.colsurfb.2014.02.052.
  • Fattah, W. I. A.; Ali, G. W. On the Anti-Cancer Activities of Silver Nanoparticles. J. Appl. Biotechnol. 2018, 5, 43–46. DOI: 10.15406/jabb.2018.05.00116.
  • American Cancer Society. Breast Cancer Facts & Figures 2013–2014. American Cancer Society, Inc: Atlanta, 2013.
  • Kim, D. W.; Hong, G. H.; Lee, H. H.; Choi, S. H.; Chun, B. G.; Won, C. K.; Hwang, I. K.; Won, M. H. Effect of Colloidal Silver against the Cytotoxicity of Hydrogen Peroxide and Naphthazarin on Primary Cultured Cortical Astrocytes. Int. J. Neurosci. 2007, 117, 387–400. DOI: 10.1080/00207450600592016.
  • Yeruva, L.; Elegbede, J. A.; Carper, S. W. Methyl Jasmonate Decreases Membrane Fluidity and Induces Apoptosis through Tumor Necrosis Factor Receptor 1 in Breast Cancer Cells. Anticancer. Drugs. 2008, 19, 766–776. DOI: 10.1097/CAD.0b013e32830b5894.
  • Jeyaraj, M.; Sathishkumar, G.; Sivanandhan, G.; MubarakAli, D.; Rajesh, M.; Arun, R.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Premkumar, K.; Ganapathi, A. Biogenic Silver Nanoparticles for Cancer Treatment: An Experimental Report. Colloids Surf. B Biointerfaces 2013, 106, 86–92. DOI: 10.1016/j.colsurfb.2013.01.027.
  • Gurunathan, S.; Jegadeesh, R.; Sri Nurestri, A. M.; Priscilla, A. J.; Vikineswary, S. Green Synthesis of Silver Nanoparticles Using Ganoderma Neo-Japonicum Imazeki: A Potential Cytotoxic Agent against Breast Cancer Cells. Int. J. Nanomed. 2013, 8, 4399–4413. DOI: 10.2147/IJN.S51881.
  • Maneerung, T.; Tokura, S.; Rujiravanit, R. Impregnation of Silver Nanoparticles into Bacterial Cellulose for Antimicrobial Wound Dressing. Carbohydr. Polym. 2008, 72, 43–51. DOI: 10.1016/j.carbpol.2007.07.025.
  • Shanmugam, S.; Viswanathan, B.; Varadarajan, T. K. A Novel Single Step Chemical Route for Noble Metal Nanoparticles Embedded Organic–Inorganic Composite Films. Mater. Chem. Phys. 2006, 95, 51–55. DOI: 10.1016/j.matchemphys.2005.05.047.
  • Cho, K. H.; Park, J. E.; Osaka, T.; Park, S. G. The Study of Antimicrobial Activity and Preservative Effects of Nanosilver Ingredient. Electrochim. Acta 2005, 51, 956–960. DOI: 10.1016/j.electacta.2005.04.071.
  • Czaja, W.; Romanovicz, D.; Malcolm Brown, R. Structural Investigations of Microbial Cellulose Produced in Stationary and Agitated Culture. Cellulose 2004, 11, 403–411. DOI: 10.1023/B:CELL.0000046412.11983.61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.