187
Views
0
CrossRef citations to date
0
Altmetric
Brief Report

Enhanced safety electrolyte mixture of ionic liquids and lithium salt for Li-ion transference number (Li-T) in Li-Li symmetric coin cell

, &
Pages 37-41 | Received 21 Jul 2020, Accepted 01 Dec 2020, Published online: 17 Dec 2020

References

  • Fernicola, A.; Croce, F.; Scrosati, B.; Watanabe, T.; Ohno, H. LiTFSI-BEPyTFSI as an Improved Ionic Liquid Electrolyte for Rechargeable Lithium Batteries. J. Power Sources 2007, 174, 342–348. DOI: 10.1016/j.jpowsour.2007.09.013.
  • Ohno, H. Electrochemical Aspects of Ionic Liquids; Wiley: New York, 2005.
  • Vélez, J. F.; Vazquez-Santos, M. B.; Amarilla, J. M.; Tartaj, P.; Herradón, B.; Mann, E.; del Río, C.; Morales, E. Asymmetrical Imidazolium-Trialkylammonium Room Temperature Dicationic Ionic Liquid Electrolytes for Li-Ion Batteries. Electrochim. Acta 2018, 280, 171–180. DOI: 10.1016/j.electacta.2018.05.103.
  • Kisoo, Y.; Anirudh, D.; Soumik, B.; Prashanta, D. Electrochemical Model for Ionic Liquid Electrolytes in Lithium Batteries. Electrochim. Acta 2015, 176, 301–310.
  • El Kharbachi, A.; Zavorotynska, O.; Latroche, M.; Cuevas, F.; Yartys, V.; Fichtner, M. Exploits, Advances and Challenges Benefiting beyond Li-Ion Battery Technologies. J. Alloys Compd. 2020, 817, 153261. DOI: 10.1016/j.jallcom.2019.153261.
  • Nishigandh, P.; Jambhale, A.; Jaspal, D.; Ambekar, J.; Kulkarni, M. Green Route Synthesis of Li + Ion Nanoparticles for Application in Large Discharge Capacity of Batteries. Inorg. Nano-Metal. Chem. 2020, 50, 205–209.
  • Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117, 10403–10473. DOI: 10.1021/acs.chemrev.7b00115.
  • Chen, T.; Jin, Y.; Lv, H.; Yang, A.; Liu, M.; Chen, B.; Xie, Y.; Chen, Q. Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems. Trans. Tianjin Univ. 2020, 26, 208–217. DOI: 10.1007/s12209-020-00236-w.
  • Chauvin, C.; Alloin, F.; Judeinstein, P.; Foscallo, D.; Sanchez, J. Y. Electrochemical and NMR Characterizations of Mixed Polymer Electrolytes Based on Oligoether Sulfate and Imide Salts. Electrochim. Acta 2006, 52, 1240–1246. DOI: 10.1016/j.electacta.2006.07.023.
  • Ferrari, S.; Quartarone, E.; Mustarelli, P.; Magistris, A.; Protti, S.; Lazzaroni, S.; Fagnoni, M.; Albini, A. A. Binary Ionic Liquid System Composed of N-methoxyethyl-N-Methylpyrrolidinium Bis (Trifluoromethanesulfonyl)-Imide and Lithium Bis (Trifluoromethanesulfonyl) Imide: A New Promising Electrolyte for Lithium Batteries. J. Power Sources 2009, 194, 45–50. DOI: 10.1016/j.jpowsour.2008.12.013.
  • Petit, M.; Calas, E.; Bernard, J. A Simplified Electrochemical Model for Modeling Li-Ion Batteries Comprising Blend and Bidispersed Electrodes for High Power Applications. J. Power Sources 2020, 479, 228766. DOI: 10.1016/j.jpowsour.2020.228766.
  • Taskin, O. S.; Yuca, N.; Papavasiliou, J.; Avgouropoulos, G. Interconnected Conductive Gel Binder for High Capacity Silicon Anode for Li-Ion Batteries. Mater. Lett. 2020, 273, 127918. DOI: 10.1016/j.matlet.2020.127918.
  • Zhang, Y.; Xie, M. X.; Zhang, W.; Yan, J. L.; Shao, G. Q. Synthesis and Purification of SiS2 and Li2S for Li9.54Si1.74P1.44S11.7Cl0.3 Solid Electrolyte in Lithium-Ion Batteries. Mater. Lett. 2020, 266, 127508. DOI: 10.1016/j.matlet.2020.127508.
  • Gao, J.; Guo, W.; Yin, Y.; Sun, Z.; Zhao, B.; Shen, F.; Han, X. Well-Contacted Li/LLZTO Interface by Citric Aqueous Treatment for Solid-State Li Metal Batteries. Mat. Lett. 2020, 280, 128543. DOI: 10.1016/j.matlet.2020.128543.
  • Heubner, C.; Reuber, S.; Seeba, J.; Marcinkowski, P.; Nikolowski, K.; Schneider, M.; Wolter, M.; Michaelis, A. Application-Oriented Modeling and Optimization of Tailored Li-Ion Batteries Using the Concept of Diffusion Limited C-Rate. J. Power Sources 2020, 479, 228704. DOI: 10.1016/j.jpowsour.2020.228704.
  • Zugmann, S.; Fleischmann, M.; Amereller, M.; Gschwind, R. M.; Wiemhöfer, H. D.; Gores, H. J. Measurement of Transference Numbers for Lithium Ion Electrolytes via Four Different Methods, a Comparative Study. Electrochim. Acta 2011, 56, 3926–3933. DOI: 10.1016/j.electacta.2011.02.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.