317
Views
1
CrossRef citations to date
0
Altmetric
Articles

Star fruit extract-mediated green synthesis of metal oxide nanoparticles

, , , , , , , ORCID Icon & ORCID Icon show all
Pages 173-180 | Received 18 Aug 2020, Accepted 01 Dec 2020, Published online: 04 Feb 2021

References

  • Sagadevan, S.; Vennila, S.; Lett, J. A.; Marlinda, A. R.; Hamizi, N. A. B.; Johan, M. R. Tailoring the Structural, Morphological, Optical, Thermal and Dielectric Characteristics of ZnO Nanoparticles Using Starch as a Capping Agent. Results Phys. 2019, 15, 102543. DOI: 10.1016/j.rinp.2019.102543.
  • Muthukumaran, M.; Dhinagaran, G.; Venkatachalam, K.; Sagadevan, S.; Gunasekaran, S.; Podder, J.; Mohammad, F.; Shahid, M. M.; Oh, W. C. Green Synthesis of Cuprous Oxide Nanoparticles for Environmental Remediation and Enhanced Visible-Light Photocatalytic Activity. Optik 2020, 214, 164849. DOI: 10.1016/j.ijleo.2020.164849.
  • Selvi, S. S. T.; Linet, J. M.; Sagadevan, S. Influence of CTAB Surfactant on Structural and Optical Properties of CuS and CdS Nanoparticles by Hydrothermal Route. J. Exp. Nanosci. 2018, 13, 130–143. DOI: 10.1080/17458080.2018.1445306.
  • Hariharan, D.; Thangamuniyandi, P.; Jegatha Christy, A.; Vasantharaja, R.; Selvakumar, P.; Sagadevan, S.; Pugazhendhi, A.; Nehru, L. C. Enhanced Photocatalysis and Anticancer Activity of Green Hydrothermal Synthesized Ag@TiO2 Nanoparticles. J. Photochem. Photobiol. B Biol. 2020, 202, 111636. DOI: 10.1016/j.jphotobiol.2019.111636.
  • Saravan, R. S.; Muthukumaran, M.; Mubashera, S. M.; Abinaya, M.; Prasath, P. V.; Parthiban, R.; Mohammad, F.; Oh, W. C.; Sagadevan, S. Evaluation of the Photocatalytic Efficiency of Cobalt Oxide Nanoparticles towards the Degradation of Crystal Violet and Methylene Violet Dyes. Optik 2020, 207, 164428. DOI: 10.1016/j.ijleo.2020.164428.
  • Mbambo, M. C.; Khamlich, S.; Khamliche, T.; Moodley, M. K.; Kaviyarasu, K.; Madiba, I. G.; Madito, M. J.; Khenfouch, M.; Kennedy, J.; Henini, M.; et al. Remarkable Thermal Conductivity Enhancement in Ag-Decorated Graphene Nanocomposites Based Nanofluid by Laser Liquid Solid Interaction in Ethylene Glycol. Sci. Rep. 2020, 10, 10982. DOI: 10.1038/s41598-020-67418-3.
  • Kaviyarasu, K.; Maria Magdalane, C.; Jayakumar, D.; Samson, Y.; Bashir, A. K. H.; Maaza, M.; Letsholathebe, D.; Mahmoud, A. H.; Kennedy, J. High Performance of Pyrochlore like Sm2Ti2O7 Heterojunction Photocatalyst for Efficient Degradation of rhodamine-B Dye with Waste Water under Visible Light Irradiation. J. King Saud Univ. Sci. 2020, 32, 1516–1522. DOI: 10.1016/j.jksus.2019.12.006.
  • Vidhya, M.; Pandi, P. R.; Archana, R.; Sadayandi, K.;Sagadevan, S; Gunasekaran, S.; Podder, J;Mohammad, F; A.Al-Lohedan, H; ChunOh, W. Comparison of Sunlight-Driven Photocatalytic Activity of Semiconductor Metal Oxides of Tin Oxide and Cadmium Oxide Nanoparticles. Optik 2020, 217, 164878.
  • Mathialagan, A.; Manavalan, M.; Venkatachalam, K.; Mohammad, F.; Oh, W. C.; Sagadevan, S. Fabrication and Physicochemical Characterization of g-C3N4/ZnO Composite with Enhanced Photocatalytic Activity under Visible Light. Opt. Mater. 2020, 100, 109643. DOI: 10.1016/j.optmat.2019.109643.
  • Rathnakumar, S. S.; Noluthando, K.; Kulandaiswamy, A. J.; Rayappan, J. B. B.; Kasinathan, K.; Kennedy, J.; Maaza, M. Stalling Behaviour of Chloride Ions: A Non-Enzymatic Electrochemical Detection of α-Endosulfan Using CuO Interface. Sens. Actuators B Chem. 2019, 293, 100–106. DOI: 10.1016/j.snb.2019.04.141.
  • Priya, R.; Stanly, S.; Dhanalekshmi, S. B.; Mohammad, F.; Al-Lohedan, H. A.; Oh, W. C.; Sagadevan, S. Comparative Studies of Crystal Violet Dye Removal between Semiconductor Nanoparticles and Natural Adsorbents. Optik 2020, 206, 164281. DOI: 10.1016/j.ijleo.2020.164281.
  • Magdalane, C. M.; Kaviyarasu, K.; Priyadharsini, G. M. A.; Bashir, A. K. H.; Mayedwa, N.; Matinise, N.; Isaev, A. B.; Abdullah Al-Dhabi, N.; Arasu, M. V.; Arokiyaraj, S.; et al. Improved Photocatalytic Decomposition of Aqueous Rhodamine-B by Solar Light Illuminated Hierarchical Yttria Nanosphere Decorated Ceria Nanorods. J. Mater. Res. Technol. 2019, 8, 2898–2909. DOI: 10.1016/j.jmrt.2018.11.019.
  • Raj, K. P.; Sadaiyandi, K.; Kennedy, A.; et al. Influence of Mg Doping on ZnO Nanoparticles for Enhanced Photocatalytic Evaluation and Antibacterial Analysis. Nanoscale Res. Lett. 2018, 13, 229.
  • Sivaranjan, K.; Santhanalakshmi, J.; Panneer, D. S.; Vivekananthan, S.; Sagadevan, S.; Johan, M. R. B.; Anita Lett, J.; Hegazy, H. H.; Umar, A.; Algarni, H.; et al. Synthesis of Iron Oxide@Pt Core-Shell Nanoparticles for Reductive Conversion of Cr(VI) to Cr(III) and Antibacterial Studies. J. Nanosci. Nanotechnol. 2020, 20, 918–923. DOI: 10.1166/jnn.2020.16895.
  • Selvi, R. T.; Nallaiyan, M.; Nisha, S.; Sagadevan, S;Mohammad, F; Sadaiyandi, K.; Raj, K P.; Ashokkumar, L.;Latha, B M; and Lett, J A.Comparative Studies on Structural, Optical, and Biological Properties of SnO2 and Ni-Doped SnO2 Nanocrystals. Mater. Res. Exp. 2019, 6, 125099.
  • Sagadevan, S.; Vennila, S.; Marlinda, A. R.; Al-Douri, Y.; Rafie Johan, M.; Anita Lett, J. Synthesis and Evaluation of the Structural, Optical, and Antibacterial Properties of Copper Oxide Nanoparticles. Appl. Phys. A 2019, 125, 489. DOI: 10.1007/s00339-019-2785-4.
  • Selvaraj, V.; Sagadevan, S.; Muthukrishnan, L.; Johan, M. R.; Podder, J. Eco-Friendly Approach in Synthesis of Silver Nanoparticles and Evaluation of Optical, Surface Morphological and Antimicrobial Properties. J. Nanostruct. Chem. 2019, 9, 153–162. DOI: 10.1007/s40097-019-0306-9.
  • Sagadevan, S.; Venilla, S.; Singh, P.; Anita Lett, J.; Mohd Rafie Johan; Ab Rahman Marlinda;, Bavanilatha, M.; and Lakshmipathy, M. Facile Synthesis of Silver Nanoparticles Using Averrhoa Bilimbi L & Plum Extracts and Investigation on the Synergistic Bioactivity Using in Vitro Models. Green Proc. Synth. 2019, 8, 873–884.
  • Muthukrishnan, L.; Chellappa, M.; Nanda, A.; Thukkaram, S.; Selvaraj, G.; Muthiah, B.; Sagadevan, S.; Lett, J. A. Bio-Fabrication of Pigment-Capped Silver Nanoparticles Encountering Antibiotic-Resistant Strains and Their Cytotoxic Effect towards Human Epidermoid Larynx Carcinoma (HEp-2) Cells. RSC Adv. 2019, 9, 15874–15886. DOI: 10.1039/C9RA01072F.
  • Thakkar, K. N.; Mhatre, S. S.; Parikh, R. Y. Biological Synthesis of Metallic Nanoparticles. Nano Med. Nano Technol. Biol. Med. 2010, 6, 257–262. DOI: 10.1016/j.nano.2009.07.002.
  • Singh, P.; Kim, Y. J.; Yang, D. C. A Strategic Approach for Rapid Synthesis of Gold and Silver Nanoparticles by Panax Ginseng Leaves. Artif. Cells. Nanomed. Biotechnol. 2016, 44, 1949–1957. DOI: 10.3109/21691401.2015.1115410.
  • Kuppurangan, G.; Karuppasamy, B.; Nagarajan, K.; Sekar, R. K.; Viswaprakash, N.; Ramasamy, T. Biogenic Synthesis and Spectroscopic Characterization of Silver Nanoparticles Using Leaf Extract of Indonee Siellaechioides: In Vitro Assessment on Antioxidant, Antimicrobial and Cytotoxicity Potential. Appl. Nanosci. 2016, 6, 973–982. DOI: 10.1007/s13204-015-0514-7.
  • Selvarani, S. Anticancer Activity of Silver Nanoparticles Synthesized from Stem Extract of Ocimum Kilimandscharicum against Hep-G2, Liver Cancer Cell Line. J. Nanotechnol. Nanosci. 2015, 1, 100103.
  • Mata, R.; Nakkala, J. R.; Sadras, S. R. Catalytic and Biological Activities of Green Silver Nanoparticles Synthesized from Plumeria alba (frangipani) Flower Extract. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 51, 216–225. DOI: 10.1016/j.msec.2015.02.053.
  • Mohanpuria, P.; Rana, N. K.; Yadav, S. K. Biosynthesis of Nanoparticles: Technological Concepts and Future Applications. J. Nanopart. Res. 2008, 10, 507–517. DOI: 10.1007/s11051-007-9275-x.
  • Singh, P.; Kim, Y.; Zhang, D.; Yang, D. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol. 2016, 34, 588–599. DOI: 10.1016/j.tibtech.2016.02.006.
  • Ali, K.; Dwivedi, S.; Azam, A.; Saquib, Q.; Al-Said, M. S.; Alkhedhairy, A. A.; Musarrat, J. Aloe Vera Extract Functionalized Zinc Oxide Nanoparticles as Nanoantibiotics against Multi-Drug Resistant Clinical Bacterial Isolates. J. Colloid Interface Sci. 2016, 472, 145–156. DOI: 10.1016/j.jcis.2016.03.021.
  • Zheng, Y.; Fu, L.; Han, F.; Wang, A.; Cai, W.; Yu, J.; Yang, J.; Peng, F. Green Biosynthesis and Characterization of Zinc Oxide Nanoparticles Using Corymbia Citriodora Leaf Extract and Their Photocatalytic Activity. Green Chem. Lett. Rev. 2015, 8, 59–63. DOI: 10.1080/17518253.2015.1075069.
  • Balaji, S.; Kumar, M. B. Facile Green Synthesis of Zinc Oxide Nanoparticles by Eucalyptus Globulus and Their Photocatalytic and Antioxidant Activity. Adv. Powder Technol. 2017, 28, 785–797.
  • Elumalai, K.; Velmurugan, S.; Ravi, S.; Kathiravan, V.; Raj, G. A. Bio-Approach: Plant Mediated Synthesis of ZnO Nanoparticles and Their Catalytic Reduction of Methylene Blue and Antimicrobial Activity. Adv. Powder Technol. 2015, 26, 1639–1651. DOI: 10.1016/j.apt.2015.09.008.
  • Nagajyothi, P. C.; Cha, S. J.; Yang, I. J.; Sreekanth, T. V. M.; Kim, K. J.; Shin, H. M. Antioxidant and anti-Inflammatory Activities of Zinc Oxide Nanoparticles Synthesized Using Polygala tenuifolia Root Extract. J. Photochem. Photobiol. B. 2015, 146, 10–17. DOI: 10.1016/j.jphotobiol.2015.02.008.
  • Dobrucka, R.; Długaszewska, J. Biosynthesis and Antibacterial Activity of ZnO Nanoparticles Using Trifolium pratense Flower Extract. Saudi J. Biol. Sci. 2016, 23, 517–523. DOI: 10.1016/j.sjbs.2015.05.016.
  • Jafarirad, S.; Mehrabi, M.; Divband, B.; Kosari-Nasab, M. Biofabrication of Zinc Oxide Nanoparticles Using Fruit Extract of Rosa Canina and Their Toxic Potential against Bacteria: A Mechanistic Approach. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 296–302. DOI: 10.1016/j.msec.2015.09.089.
  • Anbuvannan, M.; Ramesh, M.; Viruthagiri, G.; Shanmugam, N.; Kannadasan, N. Synthesis, Characterization and Photocatalytic Activity of ZnO Nanoparticles Prepared by Biological Method. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 143, 304–308. DOI: 10.1016/j.saa.2015.01.124.
  • Pugazhendhi, A.; Kumar, S. S.; Manikandan, M.; Saravanan, M. Photocatalytic Properties and Antimicrobial Efficacy of Fe Doped CuO Nanoparticles against the Pathogenic Bacteria and Fungi. Microb. Pathog. 2018, 122, 84–89. DOI: 10.1016/j.micpath.2018.06.016.
  • Pragathiswaran, C.; Smitha, C.; Barabadi, H.; Al-Ansari, M. M.; Al-Humaid, L. A.; Saravanan, M. TiO2@ZnO Nanocomposites Decorated with Gold Nanoparticles: Synthesis, Characterization and Their Antifungal, Antibacterial, anti-Inflammatory and Anticancer Activities. Inorg. Chem. Commun. 2020, 121, 108210. DOI: 10.1016/j.inoche.2020.108210.
  • Saravanan, M.; Gopinath, V.; Chaurasia, M. K.; Syed, A.; Ameen, F.; Purushothaman, N. Green Synthesis of Anisotropic Zinc Oxide Nanoparticles with Antibacterial and Cytofriendly Properties. Microb. Pathog. 2018, 115, 57–63. DOI: 10.1016/j.micpath.2017.12.039.
  • Moorthy, S. K.; Ashok, C. H.; Rao, K. V.; Viswanathan, C. Synthesis and Characterization of MgO Nanoparticles by Neem Leaves through Green Method. Mater. Today Proc. 2015, 2, 4360–4368. DOI: 10.1016/j.matpr.2015.10.027.
  • Yuvakkumar, R.; Suresh, J.; Saravanakumar, B.; Joseph Nathanael, A.; Hong, S. I.; Rajendran, V. Rambutan Peels Promoted Biomimetic Synthesis of Bioinspired Zinc Oxide Nanochains for Biomedical Applications. Spectrochim. Acta A Mol. Biomol. Spectosc. 2015, 137, 250–258. DOI: 10.1016/j.saa.2014.08.022.
  • Jeevanandam, J.; Chan, Y. S.; Danquah, M. K. Biosynthesis and Characterization of MgO Nanoparticles from Plant Extracts via Induced Molecular Nucleation. New J. Chem. 2017, 41, 2800–2814. DOI: 10.1039/C6NJ03176E.
  • Singh, A. V.; Patil, R.; Anand, A.; Milani, P.; Gade, W. N. Biological Synthesis of Copper Oxide Nanoparticles Using Escherichia coli. Curr. Nanosci. 2010, 6, 365–369.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.