219
Views
7
CrossRef citations to date
0
Altmetric
Articles

Pinus morrisonicola needles essential oil nanoemulsions as a novel strong antioxidant and anticancer agent

, , , , &
Pages 253-261 | Received 23 Jun 2020, Accepted 01 Dec 2020, Published online: 05 Mar 2021

References

  • Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global Cancer Statistics 2018: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. DOI: 10.3322/caac.21492.
  • Hosseini, A.; Ghorbani, A. Cancer Therapy with Phytochemicals: Evidence from Clinical Studies. Avicenna J. Phytomed. 2015, 5, 84–97.
  • Natheer, S. E. Antimicrobial and Biochemical Analysis of Some Spices Extract against Food Spoilage Pathogens. Internet J. Food Saf. 2010, 12, 71–75.
  • Owolabi, O. O.; James, D. B.; Sani, I.; Andongma, B. T.; Fasanya, O. O.; Kure, B. Phytochemical Analysis, Antioxidant and anti-Inflammatory Potential of Feretia Apodanthera Root Bark Extracts. BMC Complement. Altern. Med. 2018, 18, 12–12. DOI: 10.1186/s12906-017-2070-z.
  • Silva, A. P.; Nascimento da Silva, L. C.; da Fonseca, M.; Caíque, S.; de Araújo, J. M.; Correia, M. T.; Cavalcanti, MdS.; Lima, V. L. Antimicrobial Activity and Phytochemical Analysis of Organic Extracts from Cleome spinosa Jaqc. Front. Microbiol. 2016, 7, 963. DOI: 10.3389/fmicb.2016.00963.
  • Kim, K.-Y.; Chung, H.-J. Flavor Compounds of Pine Sprout Tea and Pine Needle Tea. J. Agric. Food Chem. 2000, 48, 1269–1272. DOI: 10.1021/jf9900229.
  • Chen, Y.-H.; Hsieh, P.-C.; Mau, J.-L.; Sheu, S.-C. Antioxidant Properties and Mutagenicity of Pinus Morrisonicola and Its Vinegar Preparation. LWT-Food Sci. Technol. 2011, 44, 1477–1481. DOI: 10.1016/j.lwt.2011.01.016.
  • Yen, G.-C.; Duh, P.-D.; Huang, D.-W.; Hsu, C.-L.; Fu, T. Y.-C. Protective Effect of Pine (Pinus Morrisonicola Hay.) Needle on Ldl Oxidation and Its anti-Inflammatory Action by Modulation of Inos and Cox-2 Expression in Lps-Stimulated Raw 264.7 Macrophages. Food Chem. Toxicol. 2008, 46, 175–185. DOI: 10.1016/j.fct.2007.07.012.
  • Ludwiczuk, A.; Skalicka-Woźniak, K.; Georgiev, M. Terpenoids. In Pharmacognosy: Fundamentals, Applications and Strategies, Academic Press, 2017. Simone Badal (Ed.), Rupika Deelgoda, p. 233–266, Kingston, Jamaica.
  • Liao, C.-L.; Chen, C.-M.; Chang, Y.-Z.; Liu, G.-Y.; Hung, H.-C.; Hsieh, T.-Y.; Lin, C.-L. Pine (Pinus Morrisonicola Hayata) Needle Extracts Sensitize Gbm8901 Human Glioblastoma Cells to Temozolomide by Downregulating Autophagy and O(6)-methylguanine-DNA methyltransferase expression. J. Agric. Food Chem. 2014, 62, 10458–10467. DOI: 10.1021/jf501234b.
  • Mahmood, Z.; Jahangir, M.; Liaquat, M.; Ahmad Shah, S. W.; Mumtaz Khan, M.; Stanley, R.; D'Arcy, B. Potential of Nano-Emulsions as Phytochemical Delivery System for Food Preservation. Pak. J. Pharm. Sci. 2017, 30, 2259–2263.
  • Rao, P. V.; Nallappan, D.; Madhavi, K.; Rahman, S.; Jun Wei, L.; Gan, S. H. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents. Oxid. Med. Cell. Longev. 2016, 2016, 3685671. DOI: 10.1155/2016/3685671.
  • Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M. J. Nano-Emulsions. Curr. Opin. Colloid Interface Sci. 2005, 10, 102–110. DOI: 10.1016/j.cocis.2005.06.004.
  • Date, A. A.; Desai, N.; Dixit, R.; Nagarsenker, M. Self-Nanoemulsifying Drug Delivery Systems: Formulation Insights, Applications and Advances. Nanomedicine (Lond) 2010, 5, 1595–1616. DOI: 10.2217/nnm.10.126.
  • Mahdi Jafari, S.; He, Y.; Bhandari, B. Nano-Emulsion Production by Sonication and Microfluidization—A Comparison. Int. J. Food Prop. 2006, 9, 475–485. DOI: 10.1080/10942910600596464.
  • Wasan, K. M. Role of Lipid Excipients in Modifying Oral and Parenteral Drug Delivery: Basic Principles and Biological Examples; John Wiley & Sons, 2007.
  • Unger, E. C.; Porter, T.; Culp, W.; Labell, R.; Matsunaga, T.; Zutshi, R. Therapeutic Applications of Lipid-Coated Microbubbles. Adv. Drug Deliv. Rev. 2004, 56, 1291–1314. DOI: 10.1016/j.addr.2003.12.006.
  • Constantinides, P. P.; Han, J.; Davis, S. S. Advances in the Use of Tocols as Drug Delivery Vehicles. Pharm. Res. 2006, 23, 243–255. DOI: 10.1007/s11095-005-9262-9.
  • Constantinides, P. P.; Chaubal, M. V.; Shorr, R. Advances in Lipid Nanodispersions for Parenteral Drug Delivery and Targeting. Adv. Drug Deliv. Rev. 2008, 60, 757–767. DOI: 10.1016/j.addr.2007.10.013.
  • Mahato, R. Nanoemulsion as Targeted Drug Delivery System for Cancer Therapeutics. J. Pharm. Sci. Pharmacol. 2017, 3, 83–97. DOI: 10.1166/jpsp.2017.1082.
  • Praveen Kumar, G.; Divya, A. Nanoemulsion Based Targeting in Cancer Therapeutics. Med. Chem. 2015, 5, 272–284.
  • Khan, I.; Bahuguna, A.; Kumar, P.; Bajpai, V. K.; Kang, S. C. In Vitro and in Vivo Antitumor Potential of Carvacrol Nanoemulsion against Human Lung Adenocarcinoma A549 Cells via Mitochondrial Mediated Apoptosis. Sci. Rep. 2018, 8, 144–144. DOI: 10.1038/s41598-017-18644-9.
  • Migotto, A.; Carvalho, V. F.; Salata, G. C.; da Silva, F. W.; Yan, C. Y. I.; Ishida, K.; Costa-Lotufo, L. V.; Steiner, A. A.; Lopes, L. B. Multifunctional Nanoemulsions for Intraductal Delivery as a New Platform for Local Treatment of Breast Cancer. Drug Delivery 2018, 25, 654–667. DOI: 10.1080/10717544.2018.1440665.
  • Guan, Y.-B.; Zhou, S.-Y.; Zhang, Y.-Q.; Wang, J-l.; Tian, Y.-D.; Jia, Y.-Y.; Sun, Y.-J. Therapeutic Effects of Curcumin Nanoemulsions on Prostate Cancer. J. Huazhong Univ. Sci. Technol. Med. Sci. 2017, 37, 371–378. DOI: 10.1007/s11596-017-1742-8.
  • Portt, L.; Norman, G.; Clapp, C.; Greenwood, M.; Greenwood, M. T. Anti-Apoptosis and Cell Survival: A Review. Biochim. Biophys. Acta 2011, 1813, 238–259. DOI: 10.1016/j.bbamcr.2010.10.010.
  • Philchenkov, A.; Zavelevich, M.; Kroczak, T. J.; Los, M. J. Caspases and Cancer: Mechanisms of Inactivation and New Treatment Modalities. Exp. Oncol. 2004, 26, 82–97.
  • Wang, L.; Zhang, W.; Ding, Y.; Xiu, B.; Li, P.; Dong, Y.; Zhu, Q.; Liang, A. Up-Regulation of Vegf and Its Receptor in Refractory Leukemia Cells. Int. J. Clin. Exp. Path. 2015, 8, 5282.
  • Ighodaro, O.; Akinloye, O. First Line Defence Antioxidants-Superoxide Dismutase (Sod), Catalase (Cat) and Glutathione Peroxidase (Gpx): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alexandria J. Med. 2018, 54, 287–293. DOI: 10.1016/j.ajme.2017.09.001.
  • Shengdong, Z. H. U.; Yuanxin, W. U.; Qiming, C.; Fan, D.; Huafang, F.; Ruan, C. H. I.; Ziniu, Y. U. Method for Extracting Pine Needle Essential Oil from Pine Needle. Wuhan Institute of Technology: Wuhan, 2007.
  • Xin, X.; Zhang, H.; Xu, G.; Tan, Y.; Zhang, J.; Lv, X. Influence of Ctab and Sds on the Properties of Oil-in-Water Nano-Emulsion with Paraffin and Span 20/Tween 20. Colloids Surf, A. 2013, 418, 60–67. DOI: 10.1016/j.colsurfa.2012.10.065.
  • Ghosh, V.; Saranya, S.; Mukherjee, A.; Chandrasekaran, N. Cinnamon Oil Nanoemulsion Formulation by Ultrasonic Emulsification: Investigation of Its Bactericidal Activity. J. Nanosci. Nanotechnol. 2013, 13, 114–122. DOI: 10.1166/jnn.2013.6701.
  • Mahdizadeh, R.; Homayouni‐Tabrizi, M.; Neamati, A.; Seyedi, S. M. R.; Tavakkol Afshari, H. S. Green synthesized-zinc oxide nanoparticles, the strong apoptosis inducer as an exclusive antitumor agent in murine breast tumor model and human breast cancer cell lines (MCF7). J. Cell. Biochem. 2019, 120, 17984–17993. DOI: 10.1002/jcb.29065.
  • Ghorbani, P.; Namvar, F.; Homayouni-Tabrizi, M.; Soltani, M.; Karimi, E.; Yaghmaei, P. Apoptotic Efficacy and Antiproliferative Potential of Silver Nanoparticles Synthesised from Aqueous Extract of Sumac (Rhus Coriaria L.). IET Nanobiotechnol. 2018, 12, 600–603. DOI: 10.1049/iet-nbt.2017.0080.
  • Mohammad, G. R. K. S.; Tabrizi, M. H.; Ardalan, T.; Yadamani, S.; Safavi, E. Green Synthesis of Zinc Oxide Nanoparticles and Evaluation of anti-Angiogenesis, anti-Inflammatory and Cytotoxicity Properties. J. Biosci. 2019, 44, 30. DOI: 10.1007/s12038-019-9845-y.
  • Shahraki, F.; Tabrizi, M. H.; Moghaddam, M. N.; Hajebi, S. Bio-Green Synthesis Zno-Nps in Brassica Napus Pollen Extract: Biosynthesis, Antioxidant, Cytotoxicity and Pro-Apoptotic Properties. IET Nanobiotechnol. 2019, 13, 471–476. DOI: 10.1049/iet-nbt.2018.5164.
  • Hajebi, S.; Tabrizi, M. H.; Moghaddam, M. N.; Shahraki, F.; Yadamani, S. Rapeseed Flower Pollen Bio-Green Synthesized Silver Nanoparticles: A Promising Antioxidant, Anticancer and Antiangiogenic Compound. J. Biol. Inorg. Chem. 2019, 24, 395–404. DOI: 10.1007/s00775-019-01655-4.
  • Mahdizadeh, R.; Homayouni-Tabrizi, M.; Neamati, A.; Seyedi, S. M. R.; Tavakkol Afshari, H. S. Green Synthesized-Zinc Oxide Nanoparticles, the Strong Apoptosis Inducer as an Exclusive Antitumor Agent in Murine Breast Tumor Model and Human Breast Cancer Cell Lines (Mcf7). J. Cell. Biochem. 2019, 120.
  • Li, P.; Nijhawan, D.; Budihardjo, I.; Srinivasula, S. M.; Ahmad, M.; Alnemri, E. S.; Wang, X. Cytochrome C and Datp-Dependent Formation of Apaf-1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade. Cell 1997, 91, 479–489. DOI: 10.1016/S0092-8674(00)80434-1.
  • Porter, A. G.; Jänicke, R. U. Emerging Roles of Caspase-3 in Apoptosis. Cell Death Differ. 1999, 6, 99–104. DOI: 10.1038/sj.cdd.4400476.
  • Basagiannis, D.; Zografou, S.; Murphy, C.; Fotsis, T.; Morbidelli, L.; Ziche, M.; Bleck, C.; Mercer, J.; Christoforidis, S. Vegf Induces Signalling and Angiogenesis by Directing Vegfr2 Internalisation through Macropinocytosis. J. Cell Sci. 2016, 129, 4091–4104. DOI: 10.1242/jcs.188219.
  • Liu, L.; Qin, S.; Zheng, Y.; Han, L.; Zhang, M.; Luo, N.; Liu, Z.; Gu, N.; Gu, X.; Yin, X. Molecular Targeting of Vegf/Vegfr Signaling by the anti-Vegf Monoclonal Antibody Bd0801 Inhibits the Growth and Induces Apoptosis of Human Hepatocellular Carcinoma Cells in Vitro and in Vivo. Cancer Biol. Ther. 2017, 18, 166–176. DOI: 10.1080/15384047.2017.1282019.
  • Gyrd-Hansen, M.; Farkas, T.; Fehrenbacher, N.; Bastholm, L.; Høyer-Hansen, M.; Elling, F.; Wallach, D.; Flavell, R.; Kroemer, G.; Nylandsted, J.; Jäättelä, M. Apoptosome-Independent Activation of the Lysosomal Cell Death Pathway by Caspase-9. Mol. Cell. Biol. 2006, 26, 7880–7891. DOI: 10.1128/MCB.00716-06.
  • Sharma, N.; Bansal, M.; Visht, S.; Sharma, P.; Kulkarni, G. Nanoemulsion: A New Concept of Delivery System. Chronicles Young Sci. 2010, 1, 2.
  • Ziani, K.; Chang, Y.; McLandsborough, L.; McClements, D. J. Influence of Surfactant Charge on Antimicrobial Efficacy of Surfactant-Stabilized Thyme Oil Nanoemulsions. J. Agric. Food Chem. 2011, 59, 6247–6255. DOI: 10.1021/jf200450m.
  • Farshi, P.; Tabibiazar, M.; Ghorbani, M.; Hamishehkar, H. Evaluation of Antioxidant Activity and Cytotoxicity of Cumin Seed Oil Nanoemulsion Stabilized by Sodium Caseinate-Guar Gum. Pharmaceutical Sciences. 2017, 23, 293–300.
  • Yen, C.-C.; Chen, Y.-C.; Wu, M.-T.; Wang, C.-C.; Wu, Y.-T. Nanoemulsion as a Strategy for Improving the Oral Bioavailability and anti-Inflammatory Activity of Andrographolide. Int. J. Nanomed. 2018, 13, 669–680. DOI: 10.2147/IJN.S154824.
  • Sakulku, U.; Nuchuchua, O.; Uawongyart, N.; Puttipipatkhachorn, S.; Soottitantawat, A.; Ruktanonchai, U. Characterization and Mosquito Repellent Activity of Citronella Oil Nanoemulsion. Int. J. Pharm. 2009, 372, 105–111. DOI: 10.1016/j.ijpharm.2008.12.029.
  • Anjali, C.; Sharma, Y.; Mukherjee, A.; Chandrasekaran, N. Neem Oil (Azadirachta Indica) nanoemulsion-a potent larvicidal agent against Culex quinquefasciatus. Pest Manage. Sci. 2012, 68, 158–163. DOI: 10.1002/ps.2233.
  • Pant, M.; Dubey, S.; Patanjali, P.; Naik, S.; Sharma, S. Insecticidal Activity of Eucalyptus Oil Nanoemulsion with Karanja and Jatropha Aqueous Filtrates. Int. Biodeterior. Biodegrad. 2014, 91, 119–127. DOI: 10.1016/j.ibiod.2013.11.019.
  • Salvia-Trujillo, L.; Rojas-Graü, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Physicochemical Characterization of Lemongrass Essential Oil–Alginate Nanoemulsions: Effect of Ultrasound Processing Parameters. Food Bioprocess Technol. 2013, 6, 2439–2446. DOI: 10.1007/s11947-012-0881-y.
  • Anwer, M. K.; Jamil, S.; Ibnouf, E. O.; Shakeel, F. Enhanced Antibacterial Effects of Clove Essential Oil by Nanoemulsion. J. Oleo Sci. 2014, 63, ess13213–354. DOI: 10.5650/jos.ess13213.
  • Maragheh, A. D.; Tabrizi, M. H.; Karimi, E.; Seyedi, S. M. R.; Khatamian, N. Producing the Sour Cherry Pit Oil Nanoemulsion and Evaluation of Its anti-Cancer Effects on Both Breast Cancer Murine Model and Mcf-7 Cell Line. J. Microencapsul. 2019, 36, 399–409. DOI: 10.1080/02652048.2019.1638460.
  • Bansal, P.; Gupta V, V.; Bansal, R.; Sapra, R. Dietary Phytochemicals in Cell Cycle Arrest and Apoptosis-an Insight. J. Drug Delivery Ther. 2012, 2, 8–17. DOI: 10.22270/jddt.v2i2.121.
  • Fernald, K.; Kurokawa, M. Evading Apoptosis in Cancer. Trends Cell Biol. 2013, 23, 620–633. DOI: 10.1016/j.tcb.2013.07.006.
  • Dawane, J. S.; Pandit, V. A. Understanding Redox Homeostasis and Its Role in Cancer. J. Clin. Diagn. Res. 2012, 6, 1796–1802. DOI: 10.7860/JCDR/2012/4947.2654.
  • Lichota, A.; Gwozdzinski, K. Anticancer Activity of Natural Compounds from Plant and Marine Environment. Int. J. Mol. Sci. 2018, 19, 3533. DOI: 10.3390/ijms19113533.
  • Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D'Orazi, G. Apoptosis as Anticancer Mechanism: Function and Dysfunction of Its Modulators and Targeted Therapeutic Strategies. Aging (Albany NY) 2016, 8, 603–619. DOI: 10.18632/aging.100934.
  • Sznarkowska, A.; Kostecka, A.; Meller, K.; Bielawski, K. P. Inhibition of Cancer Antioxidant Defense by Natural Compounds. Oncotarget 2017, 8, 15996–16016. DOI: 10.18632/oncotarget.13723.
  • Bower, J. J.; Vance, L. D.; Psioda, M.; Smith-Roe, S. L.; Simpson, D. A.; Ibrahim, J. G.; Hoadley, K. A.; Perou, C. M.; Kaufmann, W. K. Patterns of Cell Cycle Checkpoint Deregulation Associated with Intrinsic Molecular Subtypes of Human Breast Cancer Cells. NPJ Breast Cancer. 2017, 3, 9. DOI: 10.1038/s41523-017-0009-7.
  • Yousefzadi, M.; Riahi-Madvar, A.; Hadian, J.; Rezaee, F.; Rafiee, R.; Biniaz, M. Toxicity of Essential Oil of Satureja Khuzistanica: In Vitro Cytotoxicity and anti-Microbial Activity. J. Immunotoxicol. 2014, 11, 50–55. DOI: 10.3109/1547691X.2013.789939.
  • Bou, D. D.; Lago, J. H. G.; Figueiredo, C. R.; Matsuo, A. L.; Guadagnin, R. C.; Soares, M. G.; Sartorelli, P. Chemical Composition and Cytotoxicity Evaluation of Essential Oil from Leaves of Casearia Sylvestris, Its Main Compound Α-Zingiberene and Derivatives. Molecules 2013, 18, 9477–9487. DOI: 10.3390/molecules18089477.
  • Afoulous, S.; Ferhout, H.; Raoelison, E. G.; Valentin, A.; Moukarzel, B.; Couderc, F.; Bouajila, J. Chemical Composition and Anticancer, Antiinflammatory, Antioxidant and Antimalarial Activities of Leaves Essential Oil of Cedrelopsis Grevei. Food Chem. Toxicol. 2013, 56, 352–362. DOI: 10.1016/j.fct.2013.02.008.
  • Fogang, H. P. D.; Maggi, F.; Tapondjou, L. A.; Womeni, H. M.; Papa, F.; Quassinti, L.; Bramucci, M.; Vitali, L. A.; Petrelli, D.; Lupidi, G.; et al. In Vitro Biological Activities of Seed Essential Oils from the Cameroonian Spices Afrostyrax Lepidophyllus Mildbr. And Scorodophloeus Zenkeri Harms Rich in Sulfur-Containing Compounds. Chem. Biodivers. 2014, 11, 161–169. DOI: 10.1002/cbdv.201300237.
  • Keawsa-Ard, S.; Liawruangrath, B.; Liawruangrath, S.; Teerawutgulrag, A.; Pyne, S. G. Chemical Constituents and Antioxidant and Biological Activities of the Essential Oil from Leaves of Solanum Spirale. Natural Product Communications. 2012, 7(7), 955–958.
  • Brentnall, M.; Rodriguez-Menocal, L.; De Guevara, R. L.; Cepero, E.; Boise, L. H. Caspase-9, Caspase-3 and Caspase-7 Have Distinct Roles during Intrinsic Apoptosis. BMC Cell Biol. 2013, 14, 32. DOI: 10.1186/1471-2121-14-32.
  • Lee, S. H.; Jeong, D.; Han, Y.-S.; Baek, M. J. Pivotal Role of Vascular Endothelial Growth Factor Pathway in Tumor Angiogenesis. Ann. Surg. Treat. Res. 2015, 89, 1–8. DOI: 10.4174/astr.2015.89.1.1.
  • Qiu, B.; Jiang, W.; Qiu, W.; Mu, W.; Qin, Y.; Zhu, Y.; Zhang, J.; Wang, Q.; Liu, D.; Qu, Z. Pine Needle Oil Induces G2/M Arrest of Hepg2 Cells by Activating the Atm Pathway. Exp. Ther. Med. 2018, 15, 1975–1981. DOI: 10.3892/etm.2017.5648.
  • Ren, P.; Ren, X.; Cheng, L.; Xu, L. Frankincense, Pine Needle and Geranium Essential Oils Suppress Tumor Progression through the Regulation of the Ampk/Mtor Pathway in Breast Cancer. Oncol. Rep. 2018, 39, 129–137. DOI: 10.3892/or.2017.6067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.