491
Views
1
CrossRef citations to date
0
Altmetric
Articles

Electrochemical application of zirconium-based metal-organic framework

&
Pages 582-588 | Received 11 Oct 2020, Accepted 05 Mar 2021, Published online: 07 May 2021

References

  • Heide-Jørgensen, S.; Ibsen, C. H.; Budzik, M. K. Effective Through-the-Thickness Diffusivity of Plain-Woven Composite from Analytical Homogenization. Compos. Sci. Technol. 2021, 20, 108552.
  • Zhao, H.; Chen, L.; Yun, J.; Tang, L.; Wen, Z.; Zhang, X.; Gu, Improved Thermal Stabilities, Ablation and Mechanical Properties for Carbon Fibers/Phenolic Resins Laminated Composites Modified by Silicon-containing Polyborazine.  Eng. Sci. 2018, 2, 57.DOI:10.30919/es8d726
  • Lu, X.; Liu, H.; Murugadoss, V.; Seok, I.; Huang, J.; Ryu, J. E.; Guo, Z. Modulating the Percolation Network of Polymer Nanocomposites for Flexible Sensors. Eng. Sci. 2020, 9, 25DOI:10.30919/es8d901
  • Kundu, K.; Afshar, A.; Katti, D.; Edirisinghe, M.; Katti, K. Composite Nanoclay-Hydroxyapatite-Polymer Fiber Scaffolds for Bone Tissue Engineering Manufactured using Pressurized Gyration. Compos. Sci. Technol. 2021, 202, 108598. DOI: 10.1016/j.compscitech.2020.108598
  • Ma, Y.; Zhuang, Z.; Ma, M.; Yang, Y.; Li, W.; Lin, J.; Dong, M.; Wu, S.; Ding, T.; Guo, Z. Solid Polyaniline Dendrites Consisting of High Aspect Ratio Branches Self-Assembled Using Sodium Lauryl Sulfonate as Soft Templates: Synthesis and Electrochemical Performance. Polymer 2019, 182, 121808–121816. DOI: 10.1016/j.polymer.2019.121808.
  • Yong, M.; Mingliang, M.; Yin, X.; Shao, Q.; Lu, N.; Feng, Y.; Lu, Y.; Wujcik, E. K.; Mai, X.; Wang, C.; Guo, Z. Tuning Polyaniline Nanostructures via End Group Substitutions and Their Morphology Dependent Electrochemical Performances. Polymer 2018, 156, 128–135. DOI: 10.1016/j.polymer.2018.09.051.
  • Chen, R.; Bao, J.; Yan, Z.; Huang, X.; Yun, J.; Zeng, X.; Chen, Preparation of Transparent Dispersions with Monodispersed Ag Nanoparticles for TiO2 Photoelectrode Materials with Excellent Photovoltaic Performance. J. Eng. Sci. 2019, 8, 54. DOI:10.30919/es8d514
  • Guo, F.; Martí-Rujas, J. Second Sphere Coordination of Hybrid Metal–Organic Materials: Solid State Reactivity. Dalton Trans. 2016, 45, 13648–13662. DOI: 10.1039/C6DT01860B.
  • Robin, A. Y.; Fromm, M.; Coord, K. J. Coordination Polymer Networks with O- and N-Donors: What They Are, Why and How They Are Made. Chem. Rev. 2006, 250, 2127–2157. DOI: 10.1016/j.ccr.2006.02.013.
  • Kitagawa, S.; Kitaura, R.; Noro, S. Functional Porous Coordination Polymers. Angew. Chem. Int. Ed. Engl. 2004, 43, 2334–2375. DOI: 10.1002/anie.200300610.
  • Nong, W.; Liu, X.; Wang, Q.; Wu, J.; Guan, Y. Metal-organic Framework-based Materials: Synthesis, Stability and Applications in Food Safety and Preservation. ES Food Agrofor. 2020, 1, 11. DOI:10.30919/esfaf0001
  • Luan, F.; Wang, Y.; Zhang, S.; Zhuang, X.; Tian, C.; Fu, X.; Chen, L. Facile Synthesis of a Cyclodextrin-Metal Organic Framework Decorated with Ketjen Black and Platinum Nanoparticles and Its Application in the Electrochemical Detection of Ofloxacin. Analyst 2020, 145, 1943–1949.‏ DOI: 10.1039/C9AN02575H.
  • Ma, J.; Li, S.; Wu, G.; Wang, S.; Guo, X.; Wang, L.; Wang, X.; Li, J.; Chen, L. Preparation of Mixed-Matrix Membranes from Metal Organic Framework (MIL-53) and Poly (Vinylidene Fluoride) for Use in Determination of Sulfonylurea Herbicides in Aqueous Environments by High Performance Liquid Chromatography. J. Colloid Interface Sci. 2019, 553, 834–844. DOI: 10.1016/j.jcis.2019.06.082.
  • Wu, G.; Ma, J.; Wang, S.; Chai, H.; Guo, L.; Li, J.; Ostovan, A.; Guan, Y.; Chen, L. Cationic Metal-Organic Framework Based Mixed-Matrix Membrane for Extraction of Phenoxy Carboxylic Acid (PCA) Herbicides from Water Samples Followed by UHPLC-MS/MS Determination. J. Hazard. Mater. 2020, 394, 122556. DOI: 10.1016/j.jhazmat.2020.122556.
  • Abazari, R.; Sanati, S.; Morsali, A.; Slawin, A.; L. Carpenter-Warren, C. Dual-Purpose 3D Pillared Metal-Organic Framework with Excellent Properties for Catalysis of Oxidative Desulfurization and Energy Storage in Asymmetric Supercapacitor. ACS Appl. Mater. Interfaces 2019, 11, 14759–14773. DOI: 10.1021/acsami.9b00415.
  • Gan, Q.; He, H.; Zhao, K.; He, Z.; Liu, S.; Gan, Q.; He, H.; Zhao, K.; He, Z.; Liu, S. High-Yield Bottom-up Synthesis of 2D Metal–Organic Frameworks and their Derived Ultrathin Carbon Nanosheets for Energy Storage. J. Mater. Chem. A. 2018, 6, 2166.
  • Wu, G.; Ma, J.; Li, S.; Guan, J.; Jiang, B.; Wang, L.; Li, J.; Wang, X.; Chen, L. Magnetic Copper-Based Metal Organic Framework as an Effective and Recyclable Adsorbent for Removal of Two Fluoroquinolone Antibiotics from Aqueous Solutions. J. Colloid Interface Sci. 2018, 528, 360–371. DOI: 10.1016/j.jcis.2018.05.105.
  • DuDong, P. Y.; Liu, C.; Wei, W.; Liu, D.; Liu, P. Fabrication of Hierarchical Porous Nickel Based Metal-Organic Framework (Ni-MOF) Constructed with Nanosheets as Novel Pseudo-Capacitive Material for Asymmetric Supercapacitor. J. Colloid Interface Sci. 2018, 518, 57–68. DOI: 10.1016/j.jcis.2018.02.010.
  • Xu, X.; Liu, J.; Liu, J.; Ouyang, L.; Hu, R.; Wang, H.; Yang, L.; Zhu, M. A General Metal-Organic Framework (MOF)-Derived Selenidation Strategy for In Situ Carbon-Encapsulated Metal Selenides as High-Rate Anodes for Na-Ion Batteries. Adv. Funct. Mater. 2018, 170, 7573.
  • Xiang, X.; Pan, F.; Li, Y. Flower-like Bismuth Metal-Organic Frameworks Grown on Carbon Paper as a Free-Standing Electrode for Efficient Electrochemical Sensing of Cd2+ and Pb2+ in Water. Eng. Sci. 2018, 3, 77. DOI:10.30919/es8d736
  • Wang, Y.; Liu, Y.; Wang, C.; Liu, H.; Zhang, J.; Lin, J.; Fan, J.; Ding, T.; Ryu, J. E.; Guo, Z. Significantly Enhanced Ultrathin NiCo-based MOF Nanosheet Electrodes Hybrided with Ti3C2Tx MXene for High Performance Asymmetric Supercapacitor. Eng. Sci. 2020, 9, 50. DOI: 10.30919/es8d903
  • Yu, H.; Xu, C.; Li, Y.; Jin, F.; Ye, F.; Li, X. Performance Enhancement of CuO/ZnO by Deposition on the Metal-Organic Framework of Cu-BTC for Methanol Steam Reforming Reaction. ES Energy Environ. 2020, 8, 65. DOI: 10.30919/esee8c415
  • Wang, L.; Wang, Z.; Xie, L.; Zhu, L.; Cao, X. ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 16619–16628. DOI: 10.1021/acsami.9b03365.
  • Ojha, M.; Wu, B.; Deepa, M. NiCo Metal-Organic Framework and Porous Carbon Interlayer-Based Supercapacitors Integrated with a Solar Cell for a Stand-Alone Power Supply System. ACS Appl. Mater. Interfaces 2020, 12, 42749–42762. DOI: 10.1021/acsami.0c10883.
  • Baumann, A. E.; Downing, J. R.; Burns, D. A.; Hersam, M. C.; Thoi, V. S. Graphene−Metal−Organic Framework Composite Sulfur Electrodes for Li−S Batteries with High Volumetric Capacity. ACS Appl. Mater. Interfaces. 2020, ‏, 12,37173-37181. DOI: 10.1021/acsami.0c09622.
  • Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640. DOI: 10.1021/cm102601v.
  • Vermoortele, F.; Bueken, B.; Le Bars, G.; Van de Voorde, B.; Vandichel, M.; Houthoofd, K.; Vimont, A.; Daturi, M.; Waroquier, M.; Van Speybroeck, V.; et al. Synthesis Modulation as a Tool to Increase the Catalytic Activity of Metal-Organic Frameworks: The Unique Case of UiO-66(Zr). J. Am. Chem. Soc. 2013, 135, 11465–11468. DOI: 10.1021/ja405078u.
  • Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science 2002, 295, 469–472. DOI: 10.1126/science.1067208.
  • Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science 2005, 309, 2040–2042. DOI: 10.1126/science.1116275.
  • Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319, 939–943. DOI: 10.1126/science.1152516.
  • Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. O.; Snurr, R. Q.; O'Keeffe, M.; Kim, J.; Yaghi, O. M. Ultrahigh Porosity in Metal-Organic Frameworks. Science 2010, 329, 424–428. DOI: 10.1126/science.1192160.
  • Lu, W.; Wei, Z.; Gu, Z. Y.; Liu, T. F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle, I. T.; et al. Tuning the Structure and Function of Metal-Organic Frameworks via Linker Design. Chem. Soc. Rev. 2014, 43, 5561–5593. DOI: 10.1039/C4CS00003J.
  • Norbert Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112, 933–969. DOI: 10.1021/cr200304e.
  • Li, M.; Li, D.; O'Keeffe, M.; Yaghi, O. M. Topological Analysis of Metal-Organic Frameworks with Polytopic Linkers and/or Multiple Building Units and the Minimal Transitivity Principle. Chem. Rev. 2014, 114, 1343–1370. DOI: 10.1021/cr400392k.
  • Cliffe, M. J. Nat. Commun. 2014, 54, 176.
  • Gogotsi, Y.; Penner, R. M. Energy Storage in Nanomaterials - Capacitive, Pseudocapacitive, or Battery-like? ACS Nano. 2018, 12, 2081–2083. DOI: 10.1021/acsnano.8b01914.
  • Sangeetha, S. P.; Krishnamurthy, G.; Foro, S. Energy Storage Applications of Cobalt and Manganese Metal–Organic Frameworks. J. Org. Inorg. Polym. Mater. 2020, 25, 1.
  • Francesco, T.; Andrea M.; Synthesis and Applications. Eds. Bosch Nanosponges, 2014; Vol. 8, p. 336.
  • Sangeetha, S.; Krishnamurthy, G.; Srinidhi, M. Electrochemical Sensing and Photocatalytic Degradation of Methylene Blue (MB) Dye by Cobalt-Beta Hydroxy Benzoate Complex. Mater. Sci. Semicond. Process. 2019, 101, 164–173. DOI: 10.1016/j.mssp.2019.05.016.
  • Jiao, Y.; Pei, J.; Yan, C.; Chen, D.; Hu, Y.; Chen, G. Layered Nickel Metal–Organic Framework for High Performance Alkaline Battery-Supercapacitor Hybrid Devices. J. Mater. Chem. A 2016, 4, 13344–13351. DOI: 10.1039/C6TA05384J.
  • Liu, X.; Shi, C.; Zhai, C.; Cheng, M.; Liu, Q.; Wang, G. Cobalt-Based Layered Metal–Organic Framework as an Ultrahigh Capacity Supercapacitor Electrode Material. ACS Appl. Mater. Interfaces 2016, 8, 4585–4591. DOI: 10.1021/acsami.5b10781.
  • Yan, S.; Chen, G.; Zhou, X.; Sun, J. X.; Lv, C. D. Template-Based Engineering of Carbon-Doped Co3O4 Hollow Nanofibers as Anode Materials for Lithium-Ion Batteries. Adv. Funct. Mater. 2016, 26, 1428–1436. DOI: 10.1002/adfm.201504695.
  • Wu, R.; Wang, D. P.; Rui, X.; Liu, B.; Zhou, K.; Law, A. W. K.; Yan, Q.; Wei, J.; Chen, Z. In-Situ Formation of Hollow Hybrids Composed of Cobalt Sulfides Embedded within Porous Carbon Polyhedra/Carbon Nanotubes for High-Performance Lithium-Ion Batteries. Adv. Mater. 2015, 27, 3038–3044. DOI: 10.1002/adma.201500783.
  • Yan, T.; Li, Z.; Li, R.; Ning, Q.; Kong, H.; Niu, Y.; Liu, J. Thermoresponsive Cyclodextrins with Switchable Inclusion Abilities. J. Mater. Chem. 2012, 22, 17424. DOI: 10.1039/c2jm33328g.
  • Miles, D. O.; Jiang, D.; Burrows, A. D.; Halls, J. E.; Marken, F. Conformal Transformation of [Co(Bdc)(DMF)] (Co-MOF-71, Bdc = 1,4-Benzenedicarboxylate, DMF = N,N-Dimethylformamide) into Porous Electrochemically Active Cobalt Hydroxide. Electrochem. Commun. 2013, 27, 9–13. DOI: 10.1016/j.elecom.2012.10.039.
  • Sundriyal, S.; Mishra, S.; Akash, J. Study of Manganese-1,4-Benzenedicarboxylate Metal Organic Framework Electrodes Based Solid State Symmetrical Supercapacitor. Energy Proc. 2019, 158, 5817–5824. DOI: 10.1016/j.egypro.2019.01.546.
  • Zhu, G.; Xi, C.; Shen, M.; Bao, C.; Zhu, J. Nanosheet-Based Hierarchical Ni(2)(CO(3))(OH)(2) Microspheres with Weak Crystallinity for High-Performance Supercapacitor. ACS Appl. Mater. Interfaces 2014, 6, 17208–17214. DOI: 10.1021/am505056d.
  • Dong, C.; Xu, L. Cobalt- and Cadmium-Based Metal-Organic Frameworks as High-Performance Anodes for Sodium Ion Batteries and Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 7160–7168. DOI: 10.1021/acsami.6b15757.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.