1,037
Views
4
CrossRef citations to date
0
Altmetric
Articles

Biomedical applications of carrageenan hydrogel impregnated with zinc oxide nanoparticles

ORCID Icon, , ORCID Icon, , &
Pages 734-745 | Received 04 Nov 2020, Accepted 07 Jun 2021, Published online: 29 Jul 2021

References

  • Kaur, M.; Rai, J.; Randhawa, G. Recent Advances in Antibacterial Drugs. Int. J. Appl. Basic Med. Res. 2013, 3, 3–10. DOI: 10.4103/2229-516x.112229.
  • Sámano-Valencia, C.; Martinez-Castanon, G. A.; Martínez-Gutiérrez, F.; Ruiz, F.; Toro-Vázquez, J. F.; Morales-Rueda, J. A.; Espinosa-Cristóbal, L. F.; Zavala Alonso, N. V.; Martínez, N. N. Characterization and Biocompatibility of Chitosan Gels with Silver and Gold Nanoparticles. J. Nanomater. 2014, 2014, 1–11. DOI: 10.1155/2014/543419.
  • Sundaramanickam, A.; Suresh Kumar, P.; Kumaresan, S.; Balasubramanian, T. Isolation and Molecular Characterization of Multidrug-Resistant Halophilic Bacteria from Shrimp Farm Effluents of Parangipettai Coastal Waters. Environ. Sci. Pollut. Res. Int. 2015, 22, 11700–11707. DOI: 10.1007/s11356-015-4427-5.
  • Filius, P. M. G.; Gyssens, I. C. Impact of Increasing Antimicrobial Resistance on Wound Management. Am. J. Clin. Dermatol. 2002, 3, 1–7. DOI: 10.2165/00128071-200203010-00001.
  • Dahal, R. H.; Chaudhary, D. K. Microbial Infections and Antimicrobial Resistance in Nepal: Current Trends and Recommendations. TOMICROJ 2018, 12, 230–242. DOI: 10.2174/1874285801812010230.
  • Roberts, C. D.; Leaper, D. J.; Assadian, O. The Role of Topical Antiseptic Agents within Antimicrobial Stewardship Strategies for Prevention and Treatment of Surgical Site and Chronic Open Wound Infection. Adv. Wound Care 2017, 6, 63–71. DOI: 10.1089/wound.2016.0701.
  • Saghazadeh, S.; Rinoldi, C.; Schot, M.; Kashaf, S. S.; Sharifi, F.; Jalilian, E.; Nuutila, K.; Giatsidis, G.; Mostafalu, P.; Derakhshandeh, H.; et al. Drug Delivery Systems and Materials for Wound Healing Applications. Adv. Drug Deliv. Rev. 2018, 127, 138–166. DOI: 10.1016/j.addr.2018.04.008.
  • Seliktar, D. Designing Cell-Compatible Hydrogels for Biomedical Applications. Science 2012, 336, 1124–1128. DOI: 10.1126/science.1214804.
  • Hoffman, A. S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. DOI: 10.1016/j.addr.2012.09.010.
  • Saul, J. M.; Williams, D. F. Hydrogels in Regenerative Medicine. In Handbook of Polymer Applications in Medicine and Medical Devices; Elsevier: New York, 2013, pp 279–302.
  • Anitha, A.; Sowmya, S.; Kumar, P. T. S.; Deepthi, S.; Chennazhi, K. P.; Ehrlich, H.; Tsurkan, M.; Jayakumar, R. Chitin and Chitosan in Selected Biomedical Applications. Prog. Polym. Sci. 2014, 39, 1644–1667. DOI: 10.1016/j.progpolymsci.2014.02.008.
  • Yegappan, R.; Selvaprithiviraj, V.; Amirthalingam, S.; Jayakumar, R. Carrageenan Based Hydrogels for Drug Delivery, Tissue Engineering and Wound Healing. Carbohydr. Polym. 2018, 198, 385–400. DOI: 10.1016/j.carbpol.2018.06.086.
  • Kamoun, E. A.; Kenawy, E. R. S.; Chen, X. A Review on Polymeric Hydrogel Membranes for Wound Dressing Applications: PVA-Based Hydrogel Dressings. J. Adv. Res. 2017, 8, 217–233. DOI: 10.1016/j.jare.2017.01.005.
  • Kanmani, P.; Rhim, J. W. Properties and Characterization of Bionanocomposite Films Prepared with Various Biopolymers and ZnO Nanoparticles. Carbohydr. Polym. 2014, 106, 190–199. DOI: 10.1016/j.carbpol.2014.02.007.
  • Shankar, S.; Teng, X.; Li, G.; Rhim, J. W. Preparation, Characterization, and Antimicrobial Activity of Gelatin/ZnO Nanocomposite Films. Food Hydrocoll. 2015, 45, 264–271. DOI: 10.1016/j.foodhyd.2014.12.001.
  • Shankar, S.; Rhim, J. W. Effect of Copper Salts and Reducing Agents on Characteristics and Antimicrobial Activity of Copper Nanoparticles. Mater. Lett. 2014, 132, 307–311. DOI: 10.1016/j.matlet.2014.06.014.
  • Oun, A. A.; Rhim, J. W. Carrageenan-Based Hydrogels and Films: Effect of ZnO and CuO Nanoparticles on the Physical, Mechanical, and Antimicrobial Properties. Food Hydrocoll. 2017, 67, 45–53. DOI: 10.1016/j.foodhyd.2016.12.040.
  • Prabhu, Y. T.; Venkateswara Rao, K.; Sesha Sai, V.; Pavani, T. A Facile Biosynthesis of Copper Nanoparticles: A Micro-Structural and Antibacterial Activity Investigation. J. Saudi Chem. Soc. 2017, 21, 180–185. DOI: 10.1016/j.jscs.2015.04.002.
  • Chen, X.; Han, W.; Zhao, X.; Tang, W.; Wang, F. Epirubicin-Loaded Marine Carrageenan Oligosaccharide Capped Gold Nanoparticle System for pH-Triggered Anticancer Drug Release. Sci. Rep. 2019, 9, 1–10. DOI: 10.1038/s41598-019-43106-9.
  • Zia, K. M.; Tabasum, S.; Nasif, M.; Sultan, N.; Aslam, N.; Noreen, A.; Zuber, M. A Review on Synthesis, Properties and Applications of Natural Polymer Based Carrageenan Blends and Composites. Int. J. Biol. Macromol. 2017, 96, 282–301. DOI: 10.1016/j.ijbiomac.2016.11.095.
  • Salata, O. V. Applications of Nanoparticles in Biology and Medicine. J. Nanobiotechnol. 2004, 2, 3. DOI: 10.1186/1477-3155-2-3.
  • Venkatasubbu, G. D.; Baskar, R.; Anusuya, T.; Seshan, C. A.; Chelliah, R. Toxicity Mechanism of Titanium Dioxide and Zinc Oxide Nanoparticles against Food Pathogens. Colloids Surf. B. Biointerfaces 2016, 148, 600–606. DOI: 10.1016/j.colsurfb.2016.09.042.
  • Saravanakkumar, D.; Oualid, H. A.; Brahmi, Y.; Ayeshamariam, A.; Karunanaithy, M.; Saleem, A. M.; Kaviyarasu, K.; Sivaranjani, S.; Jayachandran, M. Synthesis and Characterization of CuO/ZnO/CNTs Thin Films on Copper Substrate and Its Photocatalytic Applications. Open Na 2019, 4, 100025. DOI: 10.1016/j.onano.2018.11.001.
  • Kaviyarasu, K.; Magdalane, C. M.; Kanimozhi, K.; Kennedy, J.; Siddhardha, B.; Subba Reddy, E.; Rotte, N. K.; Sharma, C. S.; Thema, F. T.; Letsholathebe, D.; et al. Elucidation of Photocatalysis, Photoluminescence and Antibacterial Studies of ZnO Thin Films by Spin Coating Method. J. Photochem. Photobiol. B. 2017, 173, 466–475.,DOI: 10.1016/j.jphotobiol.2017.06.026.
  • Kanimozhi, K.; Khaleel Basha, S.; Sugantha Kumari, V.; Kaviyarasu, K.; Maaza, M. In Vitro Cytocompatibility of Chitosan/PVA/Methylcellulose – Nanocellulose Nanocomposites Scaffolds Using L929 Fibroblast Cells. Appl. Surf. Sci. 2018, 449, 574–583. DOI: 10.1016/j.apsusc.2017.11.197.
  • Mobeen Amanulla, A.; Jasmine Shahina, S. K.; Sundaram, R.; Magdalane, C. M.; Kaviyarasu, K.; Letsholathebe, D.; Mohamed, S. B.; Kennedy, J.; Maaza, M. Antibacterial, Magnetic, Optical and Humidity Sensor Studies of β-CoMoO4 - Co3O4 Nanocomposites and Its Synthesis and Characterization. J. Photochem. Photobiol. B. 2018, 183, 233–241. DOI: 10.1016/j.jphotobiol.2018.04.034.
  • Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide-from Synthesis to Application: A Review. Materials (Basel) 2014, 7, 2833–2881. DOI: 10.3390/ma7042833.
  • Roopan, S. M.; Mathew, R. S.; Mahesh, S. S.; Titus, D.; Aggarwal, K.; Bhatia, N.; Damodharan, K. I.; Elumalai, K.; Samuel, J. J. Environmental Friendly Synthesis of Zinc Oxide Nanoparticles and Estimation of Its Larvicidal Activity against Aedes aegypti. Int. J. Environ. Sci. Technol. 2019, 16, 8053–8060. DOI: 10.1007/s13762-018-2175-z.
  • Kalaiselvi, A.; Roopan, S. M.; Madhumitha, G.; Ramalingam, C.; Al Dhabi, N. A.; Arasu, M. V. Catharanthus Roseus-Mediated Zinc Oxide Nanoparticles against Photocatalytic Application of Phenol Red under UV@ 365 nm. Curr. Sci. 2016, 111, 1811–1815. DOI: 10.18520/cs/v111/i11/1811-1815.
  • Khalid, A.; Khan, R.; Ul-Islam, M.; Khan, T.; Wahid, F. Bacterial Cellulose-Zinc Oxide Nanocomposites as a Novel Dressing System for Burn Wounds. Carbohydr. Polym. 2017, 164, 214–221. DOI: 10.1016/j.carbpol.2017.01.061.
  • Mohandas, A.; Sudheesh Kumar, P. T.; Raja, B.; Lakshmanan, V. K.; Jayakumar, R. Exploration of Alginate Hydrogel/Nano Zinc Oxide Composite Bandages for Infected Wounds. Int. J. Nanomed. 2015, 10, 53–66. DOI: 10.2147/IJN.S79981.
  • Siddiqi, K. S.; Ur Rahman, A.; Tajuddin, Husen, A. Properties of Zinc Oxide Nanoparticles and Their Activity against Microbes. Nanoscale Res. Lett. 2018, 13, 141. DOI: 10.1186/s11671-018-2532-3.
  • Surendra, T. V.; Roopan, S. M.; Al-Dhabi, N. A.; Arasu, M. V.; Sarkar, G.; Suthindhiran, K. Vegetable Peel Waste for the Production of ZnO Nanoparticles and Its Toxicological Efficiency, Antifungal, Hemolytic, and Antibacterial Activities. Nanoscale Res. Lett. 2016, 11, 546. DOI: 10.1186/s11671-016-1750-9.
  • Jayappa, M. D.; Ramaiah, C. K.; Kumar, M. A. P.; Suresh, D.; Prabhu, A.; Devasya, R. P.; Sheikh, S. Green Synthesis of Zinc Oxide Nanoparticles from the Leaf, Stem and in Vitro Grown Callus of Mussaenda Frondosa L.: Characterization and Their Applications. Appl. Nanosci. 2020, 10, 3057–3074. DOI: 10.1007/s13204-020-01382-2.
  • Roopan, S. M.; Nawaz Khan, F. R. ZnO Nanoparticles in the Synthesis of AB Ring Core of Camptothecin. Chem. Pap. 2010, 64, 812–817. DOI: 10.2478/s11696-010-0058-y.
  • Roopan, S. M.; Khan, F. R. N. ZnO Nanorods Catalyzed N-Alkylation of Piperidin-4-One, 4(3H)-Pyrimidone, and Ethyl 6-Chloro-1,2-Dihydro-2-Oxo-4-Phenylquinoline-3-Carboxylate. Chem. Pap. 2010, 64, 678–682. DOI: 10.2478/s11696-010-0045-3.
  • Baskar, K.; Anusuya, T.; Venkatasubbu, G. D. Mechanistic Investigation on Microbial Toxicity of Nano Hydroxyapatite on Implant Associated pathogens. Mater. Sci. Eng. C. Mater. Biol. Appl. 2017, 73, 8–14. DOI: 10.1016/j.msec.2016.12.060.
  • Venkatasubbu, G. D.; Ramasamy, S.; Gaddam, P. R.; Kumar, J. Acute and Subchronic Toxicity Analysis of Surface Modified Paclitaxel Attached Hydroxyapatite and Titanium Dioxide Nanoparticles. Int. J. Nanomed. 2015, 10, 137–148. DOI: 10.2147/IJN.S79991.
  • Venkatasubbu, G. D.; Ramasamy, S.; Reddy, G. P.; Kumar, J. In Vitro and in Vivo Anticancer Activity of Surface Modified Paclitaxel Attached Hydroxyapatite and Titanium Dioxide Nanoparticles. Biomed. Microdevices 2013, 15, 711–726. DOI: 10.1007/s10544-013-9767-7.
  • Venkatasubbu, G. D.; Ramasamy, S.; Avadhani, G. S.; Ramakrishnan, V.; Kumar, J. Surface Modification and Paclitaxel Drug Delivery of Folic Acid Modified Polyethylene Glycol Functionalized Hydroxyapatite Nanoparticles. Powder Technol. 2013, 235, 437–442. DOI: 10.1016/j.powtec.2012.11.003.
  • Devanand Venkatasubbu, G.; Ramasamy, S.; Ramakrishnan, V.; Kumar, J. Hydroxyapatite-Alginate Nanocomposite as Drug Delivery Matrix for Sustained Release of Ciprofloxacin. J. Biomed. Nanotechnol. 2011, 7, 759–767. DOI: 10.1166/jbn.2011.1350.
  • Venkatasubbu, G. D.; Ramasamy, S.; Avadhani, G.S.; Palanikumar, L.; Kumar, J. Size-mediated cytotoxicity of nanocrystalline titanium dioxide, pure and zinc-doped hydroxyapatite nanoparticles in human hepatoma cells. J. Nanoparticle Res. 2012, 14, 819. DOI: 10.1007/s11051-012-0819-3.
  • Lee, K. Y.; Mooney, D. J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, 106–126. DOI: 10.1016/j.progpolymsci.2011.06.003.
  • Varoni, E.; Tschon, M.; Palazzo, B.; Nitti, P.; Martini, L.; Rimondini, L. Agarose Gel as Biomaterial or Scaffold for Implantation Surgery: Characterization, Histological and Histomorphometric Study on Soft Tissue Response. Connect Tissue Res. 2012, 53, 548–554. DOI: 10.3109/03008207.2012.712583.
  • Vignesh, S.; Sivashanmugam, A.; Annapoorna, M.; Janarthanan, R.; Subramania, I.; Shantikumar, V. N.; Jayakumar, R. Injectable Deferoxamine Nanoparticles Loaded Chitosan-Hyaluronic Acid Coacervate Hydrogel for Therapeutic Angiogenesis. Colloids Surf. B. Biointerfaces 2018, 161, 129–138. DOI: 10.1016/j.colsurfb.2017.10.033.
  • Khattak, S.; Wahid, F.; Liu, L. P.; Jia, S. R.; Chu, L. Q.; Xie, Y. Y.; Li, Z. X.; Zhong, C. Applications of Cellulose and Chitin/Chitosan Derivatives and Composites as Antibacterial Materials: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2019, 103, 1989–2006. DOI: 10.1007/s00253-018-09602-0.
  • Gupta, N. V.; Shivakumar, H. G. Investigation of Swelling Behavior and Mechanical Properties of a pH-Sensitive Superporous Hydrogel Composite. Iran. J. Pharm. Res. 2012, 11, 481–493.
  • Deen, G.; Chua, V. Synthesis and Properties of New “Stimuli” Responsive Nanocomposite Hydrogels Containing Silver Nanoparticles. Gels 2015, 1, 117–134. DOI: 10.3390/gels1010117.
  • Nagaich, U.; Gulati, N.; Chauhan, S. Antioxidant and Antibacterial Potential of Silver Nanoparticles: Biogenic Synthesis Utilizing Apple Extract. J. Pharm. 2016, 2016, 1–8. DOI: 10.1155/2016/7141523.
  • Liu, M.; Ao, P.; Zhou, C.; Shen, Y.; Dai, L.; Liu, Z. The Improvement of Hemostatic and Wound Healing Property of Chitosan by Halloysite Nanotubes. RSC Adv. 2014, 4, 23540–23553. DOI: 10.1039/C4RA02189D.
  • Nguyen, T. D.; Nguyen, T. T.; Ly, K. L.; Tran, A. H.; Nguyen, T. T. N.; Vo, M. T.; Ho, H. M.; Dang, N. T. N.; Vo, V. T.; Nguyen, D. H.; et al. In Vivo Study of the Antibacterial Chitosan/Polyvinyl Alcohol Loaded with Silver Nanoparticle Hydrogel for Wound Healing Applications. Int. J. Polym. Sci. 2019, 2019, 1–10. DOI: 10.1155/2019/7382717.
  • Anjum, A.; Sim, C.-H.; Ng, S.-F. Hydrogels Containing Antibiofilm and Antimicrobial Agents Beneficial for Biofilm-Associated Wound Infection: Formulation Characterizations and in Vitro Study. AAPS PharmSciTech. 2018, 19, 1219–1230. DOI: 10.1208/s12249-017-0937-4.
  • Xu, Y.; Li, Y.; Chen, Q.; Fu, L.; Tao, L.; Wei, Y. Injectable and Self-Healing Chitosan Hydrogel Based on Imine Bonds: Design and Therapeutic Applications. Int. J. Mol. Sci. 2018, 19, 2198. DOI: 10.3390/ijms19082198.
  • Khoshhesab, Z. M.; Sarfaraz, M.; Asadabad, M. A. Preparation of ZnO Nanostructures by Chemical Precipitation Method. Synth. React. Inorganic, Met. Nano-Metal Chem. 2011, 41, 814–819. DOI: 10.1080/15533174.2011.591308.
  • AbdElhady, M. M. Preparation and Characterization of Chitosan/Zinc Oxide Nanoparticles for Imparting Antimicrobial and UV Protection to Cotton Fabric. Int. J. Carbohydr. Chem. 2012, 2012, 1–6. DOI: 10.1155/2012/840591.
  • Ravindra, S.; Mulaba-Bafubiandi, A. F.; Rajinikanth, V.; Varaprasad, K.; Narayana Reddy, N.; Mohana Raju, K. Development and Characterization of Curcumin Loaded Silver Nanoparticle Hydrogels for Antibacterial and Drug Delivery Applications. J. Inorg. Organomet. Polym. Mater. 2012, 22, 1254–1262. DOI: 10.1007/s10904-012-9734-4.
  • Jung, B. O.; Chung, S. J.; Lee, S. B. Preparation and Characterization of Eugenol-Grafted Chitosan Hydrogels and Their Antioxidant Activities. J. Appl. Polym. Sci. 2006, 99, 3500–3506. DOI: 10.1002/app.22974.
  • Sudheesh Kumar, P. T.; Lakshmanan, V. K.; Anilkumar, T. V.; Ramya, C.; Reshmi, P.; Unnikrishnan, A. G.; Nair, S. V.; Jayakumar, R. Flexible and Microporous Chitosan Hydrogel/Nano ZnO Composite Bandages for Wound Dressing: In Vitro and in Vivo Evaluation. ACS Appl. Mater. Interfaces 2012, 4, 2618–2629. DOI: 10.1021/am300292v.
  • Suner, S. S.; Sahiner, M.; Sengel, S. B.; Rees, D. J.; Reed, W. F.; Sahiner, N. Responsive Biopolymer-Based Microgels/Nanogels for Drug Delivery Applications. In: Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis, Vol. 1; Elsevier: New York, 2018. DOI: 10.1016/b978-0-08-101997-9.00021-7.
  • Barba, B. J. D.; Tranquilan-Aranilla, C.; Abad, L. V. Hemostatic Potential of Natural/Synthetic Polymer Based Hydrogels Crosslinked by Gamma Radiation. Radiat. Phys. Chem. 2016, 118, 111–113. DOI: 10.1016/j.radphyschem.2015.02.022.
  • Shi, X.; Irwin, P. L.; Jin, T.; He, Y.; Xie, Y. Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 2011, 77, 2325–2331. DOI: 10.1128/aem.02149-10.
  • Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N. H. M.; Ann, L. C.; Bakhori, S. K. M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nanomicro. Lett. 2015, 7, 219–242. DOI: 10.1007/s40820-015-0040-x.
  • Moreira, R.; Chenlo, F.; Torres, M. D.; Silva, C.; Prieto, D. M.; Sousa, A. M. M.; Hilliou, L.; Gonçalves, M. P. Drying Kinetics of Biofilms Obtained from Chestnut Starch and Carrageenan with and without Glycerol. Dry. Technol. 2011, 29, 1058–1065. DOI: 10.1080/07373937.2011.563000.
  • Tambekar, D.; Dahikar, S. Antibacterial Activity of Some Indian Ayurvedic Preparations against Enteric Bacterial Pathogens. J. Adv. Pharm. Technol. Res. 2013, 2, 24–29. DOI: 10.4103/2231-4040.79801.
  • Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomed. 2017, 12, 1227–1249. DOI: 10.2147/IJN.S121956.
  • Alves, M. M.; Bouchami, O.; Tavares, A.; Córdoba, L.; Santos, C. F.; Miragaia, M.; de Fátima Montemor, M. New Insights into Antibiofilm Effect of a Nanosized ZnO Coating against the Pathogenic Methicillin Resistant Staphylococcus aureus. ACS Appl. Mater. Interfaces 2017, 9, 28157–28167. DOI: 10.1021/acsami.7b02320.
  • Rajivgandhi, G.; Maruthupandy, M.; Muneeswaran, T.; Anand, M.; Manoharan, N. Antibiofilm Activity of Zinc Oxide Nanosheets (ZnO NSs) Using Nocardiopsis sp. GRG1 (KT235640) against MDR Strains of Gram Negative Proteus mirabilis and Escherichia coli. Process Biochem. 2018, 67, 8–18. DOI: 10.1016/j.procbio.2018.01.015.
  • Hsueh, Y. H.; Ke, W. J.; Te Hsieh, C.; Lin, K. S.; Tzou, D. Y.; Chiang, C. L. ZnO Nanoparticles Affect bacillus subtilis Cell Growth and Biofilm Formation. PLoS One 2015, 10, e0128457. DOI: 10.1371/journal.pone.0128457.
  • Shakerimoghaddam, A.; Ghaemi, E. A.; Jamalli, A. Zinc Oxide Nanoparticle Reduced Biofilm Formation and Antigen 43 Expressions in Uropathogenic Escherichia coli. Iran. J. Basic Med. Sci. 2017, 20, 451–456. DOI: 10.22038/ijbms.2017.8589.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.