114
Views
3
CrossRef citations to date
0
Altmetric
Articles

Development of a novel poly (lactic-co-glycolic acid) based composite scaffold for bone tissue engineering

&
Pages 860-871 | Received 20 Sep 2020, Accepted 07 Jun 2021, Published online: 21 Jul 2021

References

  • Omrani, M. M.; Ansari, M.; Kordestani, S. S.; Kiaie, N.; Salati, A. Enhanced Bone Marrow Stem Cell Attachment and Differentiation on PCL/CNT Substrate. Inorg. Nano-Met. Chem. 2019, 49, 136–142. DOI: 10.1080/24701556.2019.1586723.
  • Ansari, M.; Eshghanmalek, M. Biomaterials for Repair and Regeneration of the Cartilage Tissue. Bio-Des. Manuf. 2019, 2, 41–49. DOI: 10.1007/s42242-018-0031-0.
  • Saberi, J.; Ansari, M.; Hoseinzadeh, E.; Kordestani, S. S.; Naghib, S. M. Chitosan-Polyacrylic Acid Hybrid Nanoparticles as Novel Tissue Adhesive: Synthesis and Characterization. Fibers Polym. 2018, 19, 2458–2464. DOI: 10.1007/s12221-018-8762-2.
  • Ansari, M.; Kordestani, S. S.; Nazralizadeh, S.; Eslami, H. Biodegradable Cell-Seeded Collagen Based Polymer Scaffolds for Wound Healing and Skin Reconstruction. J. Macromol. Sci. Part B. Phys. 2018, 57, 100–109. DOI: 10.1080/00222348.2018.1435617.
  • Manavi‐Tehrani, I.; Rabiee, M.; Parviz, M.; Tahriri, M.; Fahimi, Z. Preparation, Characterization and Controlled Release Investigation of Biocompatible pH‐Sensitive PVA/PAA Hydrogels. Macromol. Symp. 2010, 296, 457–465. DOI: 10.1002/masy.201051062.
  • Omrani, M.; Kiaie, N.; Ansari, M.; Kordestani, S. S. Enhanced Protein Adsorption, Cell Attachment, and Neural Differentiation with the Help of Amine Functionalized Polycaprolactone Scaffolds. J. Macromol. Sci. Part B. Phys. 2016, 55, 617–626. DOI: 10.1080/00222348.2016.1179245.
  • Ansari, M.; Kordestani, S. S.; Habibi-Rezaei, M.; Moosavi Movahedi, A. A. Synthesis and Characterization of Acylated Polycaprolactone (PCL) Nanospheres and Investigation of Their Influence on Aggregation of Amyloid Proteins. J. Macromol. Sci. Part B. Phys. 2015, 54, 71–80. DOI: 10.1080/00222348.2014.984578.
  • Ansari, M.; Habibi-Rezaei, M.; Kordestani, S. S.; Ferdousi, M.; Moosavi Movahedi, A. A. An Investigation on the Effect of β-CD Modified Fe3O4 Magnetic Nanoparticles on Aggregation of Amyloid b Peptide (25-35). Mater. Tech. 2016, 31, 315–321. DOI: 10.1179/17535557B15Y.000000002.
  • Ansari, M.; Habibi-Rezaei, M.; Kordestani, S. S.; Moosavi Movahedi, A. A.; Poursasan, N. Prevention of Serum Albumin Glycation/Fibrillation by β-Cyclodextrin Functionalized Magnetic Nanoparticles. Protein Pept. Lett. 2015, 22, 594–600. DOI: 10.2174/0929866522666150511150827.
  • Masaeli, R.; Jafarzadeh Kashi, T. S.; Dinarvand, R.; Rakhshan, V.; Shahoon, H.; Hooshmand, B.; Mashhadi, A. F.; Raz, M.; Rajabnejad, A.; Eslami, H.; et al. Efficacy of the Biomaterials 3wt%-Nanostrontium-Hydroxyapatite-Enhanced Calcium Phosphate Cement (nanoSr-CPC) and nanoSr-CPC-Incorporated Simvastatin-Loaded Poly (Lactic-co-Glycolic-Acid) Microspheres in Osteogenesis Improvement: An Explorative Multi-Phase Experimental in Vitro/Vivo Study. Mater. Sci. Eng. C 2016, 69, 171–183. DOI: 10.1016/j.msec.2016.06.033.
  • Khojasteh, A.; Fahimipour, F.; Eslaminejad, M. B.; Jafarian, M.; Jahangir, S.; Bastami, F.; Tahriri, M.; Karkhaneh, A.; Tayebi, L. Development of PLGA-Coated β-TCP Scaffolds Containing VEGF for Bone Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 780–788. DOI: 10.1016/j.msec.2016.07.011.
  • Eslami, H.; Azimi Lisar, H.; Jafarzadeh Kashi, T. S.; Tahriri, M.; Ansari, M.; Rafiei, T.; Bastami, F.; Shahin-Shamsabadi, A.; Mashhadi Abbas, F.; Tayebi, L. Poly(lactic-co-glycolic acid)(PLGA)/TiO2 nanotube bioactive composite as a novel scaffold for bone tissue engineering: In vitro and in vivo studies. Biologicals 2018, 53, 51–62. DOI: 10.1016/j.biologicals.2018.02.004.
  • Chen, G.; Ushida, T.; Tateishi, T. Scaffold Design for Tissue Engineering. Macromol. Biosci. 2002, 2, 67–77. [Database] DOI: 10.1002/1616-5195(20020201)2:2<67::AID-MABI67>3.0.CO;2-F.
  • Williams, D. Benefit and Risk in Tissue Engineering. Mater. Today 2004, 7, 24–29. [Database] DOI: 10.1016/S1369-7021(04)00232-9.
  • Shin, H.; Jo, S.; Mikos, A. G. Biomimetic Materials for Tissue Engineering. Biomaterials 2003, 24, 4353–4364. DOI: 10.1016/s0142-9612(03)00339-9.
  • Aboudzadeh, N.; Imani, M.; Shokrgozar, M. A.; Khavandi, A.; Javadpour, J.; Shafieyan, Y.; Farokhi, M. Fabrication and Characterization of poly(D,L-lactide-co-glycolide)/hydroxyapatite nanocomposite scaffolds for bone tissue regeneration. J. Biomed. Mater. Res. A 2010, 94, 137–145. DOI: 10.1002/jbm.a.32673.
  • Russias, J.; Saiz, E.; Nalla, R.; Gryn, K.; Ritchie, R.; Tomsia, A. Fabrication and Mechanical Properties of PLA/HA Composites: A Study of in vitro degradation. Mater. Sci. Eng. C Biomim. Supramol. Syst. 2006, 26, 1289–1295. DOI: 10.1016/j.msec.2005.08.004.
  • Kasuga, T.; Maeda, H.; Kato, K.; Nogami, M.; Hata, K-i.; Ueda, M. Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite)). Biomaterials 2003, 24, 3247–3253. DOI: 10.1016/S0142-9612(03)00190-X.
  • Jain, R. A. The Manufacturing Techniques of Various Drug Loaded Biodegradable poly(lactide-co-glycolide) (PLGA) devices . Biomaterials 2000, 21, 2475–2490. DOI: 10.1016/S0142-9612(00)00115-0.
  • Karp, J. M.; Shoichet, M. S.; Davies, J. E. Bone Formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro. J. Biomed. Mater. Res. A 2003, 64, 388–396. DOI: 10.1002/jbm.a.10420.
  • Eslami, H.; Solati-Hashjin, M.; Tahriri, M. The Comparison of Powder Characteristics and Physicochemical, Mechanical and Biological Properties between Nanostructure Ceramics of Hydroxyapatite and Fluoridated Hydroxyapatite. Mater. Sci. Eng. C 2009, 29, 1387–1398. DOI: 10.1016/j.msec.2008.10.033.
  • Ehrenfried, L. M.; Patel, M. H.; Cameron, R. E. The Effect of Tri-Calcium Phosphate (TCP) Addition on the Degradation of Polylactide-co-Glycolide (PLGA). J. Mater. Sci. Mater. Med. 2008, 19, 459–466. DOI: 10.1007/s10856-006-0061-6.
  • Boccaccini, A. R.; Blaker, J. J.; Maquet, V.; Chung, W.; Jérôme, R.; Nazhat, S. N. Poly (D, L-Lactide)(PDLLA) Foams with TiO2 Nanoparticles and PDLLA/TiO2-Bioglass® Foam Composites for Tissue Engineering Scaffolds. J. Mater. Sci. 2006, 41, 3999–4008. DOI: 10.1007/s10853-006-7575-7.
  • Zhao, N.; Shi, S.; Lu, G.; Wei, M. ( PLA)/Layered Double Hydroxides Composite Fibers by Electrospinning Method. J. Phys. Chem. Solids 2008, 69, 1564–1568. DOI: 10.1016/j.jpcs.2007.10.046.
  • Leroux, F.; Besse, J.-P. Polymer Interleaved Layered Double Hydroxide: A New Emerging Class of Nanocomposites. Chem. Mater. 2001, 13, 3507–3515. DOI: 10.1021/cm0110268.
  • Messersmith, P. B.; Stupp, S. I. High-Temperature Chemical and Microstructural Transformations of a Nanocomposite Organoceramic. Chem. Mater. 1995, 7, 454–460. DOI: 10.1021/cm00051a004.
  • Bubniak, G.; Schreiner, W.; Mattoso, N.; Wypych, F. Preparation of a New Nanocomposite of Al0. 33Mg0. 67 (OH) 2 (C12H25SO4) 0.33 and Poly (Ethylene Oxide). Langmuir 2002, 18, 5967–5970. DOI: 10.1021/la011748d.
  • O’Leary, S.; O’Hare, D.; Seeley, G. Delamination of Layered Double Hydroxides in Polar Monomers: new LDH-Acrylate Nanocomposites. Chem. Commun. 2002, 14, 1506–1507. DOI: 10.1039/b204213d.
  • Vaccari, A. Clays and Catalysis: A Promising Future. Appl. Clay Sci. 1999, 14, 161–198. [Database] DOI: 10.1016/S0169-1317(98)00058-1.
  • Yokoi, T.; Tsukada, K.; Terasaka, S.; Kamitakahara, M.; Matsubara, H. Morphological Control of Layered Double Hydroxide through a Biomimetic Approach Using Carboxylic and Sulfonic Acids. J. Asian Ceram. Soc. 2015, 3, 230–233. DOI: 10.1016/j.jascer.2015.05.004.
  • Mohanambe, L.; Vasudevan, S. Anionic Clays Containing anti-inflammatory drug molecules: comparison of molecular dynamics simulation and measurements . J. Phys. Chem. B 2005, 109, 15651–15658. DOI: 10.1021/jp050480m.
  • Chakraborti, M.; Jackson, J. K.; Plackett, D.; Gilchrist, S. E.; Burt, H. M. The Application of Layered Double Hydroxide Clay (LDH)-poly(lactide-co-glycolic acid) (PLGA) film composites for the controlled release of antibiotics . J. Mater. Sci. Mater. Med. 2012, 23, 1705–1713. DOI: 10.1007/s10856-012-4638-y.
  • Trikeriotis, M.; Ghanotakis, D. F. Intercalation of Hydrophilic and Hydrophobic Antibiotics in Layered Double Hydroxides. Int. J. Pharm. 2007, 332, 176–184. DOI: 10.1016/j.ijpharm.2006.09.031.
  • Tammaro, L.; Costantino, U.; Bolognese, A.; Sammartino, G.; Marenzi, G.; Calignano, A.; Tetè, S.; Mastrangelo, F.; Califano, L.; Vittoria, V. Nanohybrids for Controlled Antibiotic Release in Topical Applications. Int. J. Antimicrob. Agents 2007, 29, 417–423. DOI: 10.1016/j.ijantimicag.2006.11.019.
  • Wang, N.; Wu, X. S.; Li, C.; Feng, M. F. Synthesis, Characterization, Biodegradation, and Drug Delivery Application of Biodegradable Lactic/Glycolic Acid Polymers: I. Synthesis and Characterization. J. Biomater. Sci. Polym. Ed. 2000, 11, 301–318. DOI: 10.1163/156856200743715.
  • Kothapalli, C. R.; Shaw, M. T.; Wei, M. Biodegradable HA-PLA 3-D Porous Scaffolds: effect of Nano-Sized Filler Content on Scaffold Properties. Acta Biomater. 2005, 1, 653–662. DOI: 10.1016/j.actbio.2005.06.005.
  • Thrivikraman, G.; Madras, G.; Basu, B. In Vitro/in Vivo Assessment and Mechanisms of Toxicity of Bioceramics Materials and Its Wear Particulates. RSC Adv. 2014, 4, 12763–12781. DOI: 10.1039/c3ra44483j.
  • Teare, D. O. H.; Emmison, N.; Ton-That, C.; Bradley, R. H. Ton-That C.; Bradley RH. Cellular Attachment to Ultraviolet Ozone Modified Polystyrene Surfaces. Langmuir 2000, 16, 2818–2824. DOI: 10.1021/la9907533.
  • Ghasemvand, F.; Biazar, E.; Tavakolifard, S.; Khaledian, M.; Rahmanzadeh, S.; Momenzadeh, D.; Afroosheh, R.; Zarkalami, F.; Shabannezhad, M.; Hesami Tackallou, S.; et al. Synthesis and Evaluation of Multi-Wall Carbon Nanotube–Paclitaxel Complex as an anti-Cancer Agent. Gastroenterol. Hepatol. Bed Bench 2016, 9, 197–204. DOI: 10.22037/ghfbb.v0i0.864.
  • Pouria, A.; Bandegani, H.; Pourbaghi-Masouleh, M.; Hesaraki, S.; Alizadeh, M. Physicochemical Properties and cellular responses of strontium-doped gypsum biomaterials . Bioinorg. Chem. Appl. 2012, 2012, 976495. DOI: 10.1155/2012/976495.
  • Rojo, E. S.; Ramos, M.; Yates, M.; Martin-Luengo, M. A.; Martínez Serrano, A. M.; Civantos, A.; López-Lacomba, J. L.; Reilly, G.; Vervaet, C.; Tarterra, J. L.; et al. Vervaet CH.; Tarterra JL.; Fité Luis B.; Argomaniz LV. Preparation, Characterization and in Vitro Osteoblast Growth of Waste-Derived Biomaterials. RSC Adv. 2014, 4, 12630–12639. DOI: 10.1039/C3RA47534D.
  • Taherkhani, S.; Moztarzadeh, F. Influence of Strontium on the Structure and Biological Properties of Sol–Gel-Derived Mesoporous Bioactive Glass (MBG) Powder. J. Sol-Gel Sci. Technol. 2016, 78, 539–549. DOI: 10.1007/s10971-016-3995-2.
  • Wang, Y.; Shi, X.; Ren, L.; Wang, C.; Wang, D.-A. Porous Poly(Lactic-co-Glycolide) Microsphere Sintered Scaffold for Tissue Repair Application. Mater. Sci. Eng. C 2009, 29, 2502–2507. DOI: 10.1016/j.msec.2009.07.018.
  • Lv, Q.; Nair, L.; Laurencin, C. T. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors. J. Biomed. Mater. Res. A 2009, 91, 679–691. DOI: 10.1002/jbm.a.32302.
  • Wu, J.-Y.; Li, C.-W.; Tsai, C.-H.; Chou, C.-W.; Chen, D.-R.; Wang, G.-J. Synthesis of Antibacterial TiO2/PLGA Composite Biofilms. Nanomedicine 2014, 10, 1097–1107. DOI: 10.1016/j.nano.2014.01.002.
  • Jiang, T.; Abdel-Fattah, W. I.; Laurencin, C. T. In Vitro Evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering . Biomaterials 2006, 27, 4894–4903. DOI: 10.1016/j.biomaterials.2006.05.025.
  • Gotz, H.; Muller, M.; Emmel, A.; Holzwarth, U.; Erben, R. G.; Stangl, S. Effect of Surface Finish on the Osseointegration of Laser-Treated Titanium Alloy Implants. Biomaterials 2004, 25, 4057–4064. DOI: 10.1016/j.biomaterials.2003.11.002.
  • Karachalios, T. Bone-Implant Interface in Orthopedic Surgery, Springer, London. 2014.
  • Borden, M.; Attawia, M.; Khan, Y.; Laurencin, C. T. Tissue Engineered Microsphere-Based Matrices for Bone Repair: design and Evaluation. Biomaterials 2002, 23, 551–559. DOI: 10.1016/S0142-9612(01)00137-5.
  • Feng, P.; Gao, C.; Shuai, C.; Peng, S. Toughening and Strengthening Mechanisms of Porous Akermanite Scaffolds Reinforced with Nano-Titania. RSC Adv. 2015, 5, 3498–3507. DOI: 10.1039/C4RA12095G.
  • Eslami, H.; Tahriri, M.; Moztarzadeh, F.; Bader, R.; Tayebi, L. Nanostructured Hydroxyapatite for Biomedical Applications: From Powder to Bioceramic. J. Korean Ceram. Soc. 2018, 55, 597–607. DOI: 10.4191/kcers.2018.55.6.10.
  • Zhao, Y.; Li, N.; Yuan, F.; Zhang, H.; Xia, S. Preparation and Characterization of Hydrophilic and Antifouling Poly(Ether Sulfone) Ultrafiltration Membranes Modified with Zn-Al Layered Double Hydroxides. J. Appl. Polym. Sci. 2016, 133, DOI: 10.1002/app.43988.
  • Hoaeigohar, S. S.; Shokrgozar, M. A.; Javadpour, J.; Khavandi, A.; Yari-Sadi, A. Effect of Reinforcement Particle Size on Vitro Behavior of b-Tricalcium Phosphate-Reinforced High-Density Polyethylene: A Novel Orthopedic Composite. J. Biomed. Mater. Res. A 2006, 78, 129–138. DOI: 10.1002/jbm.a.30691.
  • Yunos, D. M.; Bretcanu, O.; Boccaccini, A. Polymer-Bioceramic Composites for Tissue Engineering Scaffolds. J. Mater. Sci. 2008, 43, 4433–4442. DOI: 10.1007/s10853-008-2552-y.
  • Xu, Z. P.; Lu, G. Q. Layered Double Hydroxide Nanomaterials as Potential Cellular Drug Delivery Agents. Pure Appl. Chem. 2006, 78, 1771–1779. DOI: 10.1351/pac200678091771.
  • Lao, L.; Wang, Y.; Zhu, Y.; Zhang, Y.; Gao, C. Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering . J. Mater. Sci. Mater. Med. 2011, 22, 1873–1884. DOI: 10.1007/s10856-011-4374-8.
  • Tsukamoto, Y.; Fukutani, S.; Mori, M. Hydroxyapatite-Induced Alkaline Phosphatase Activity of Human Pulp Fibroblasts. J. Mater. Sci: Mater. Med. 1992, 3, 180–183. DOI: 10.1007/BF00713446.
  • Chen, Y.; Feng, Y.; Deveaux, J. G.; Masoud, M. A.; Chandra, F. S.; Chen, H.; Zhang, D.; Feng, L. Feng L. Biomineralization Forming Process and Bio-Inspired Nanomaterials for Biomedical Application: A Review. Minerals 2019, 9, 68–89. DOI: 10.3390/min9020068.
  • Golub, E. E.; Boesze-Battaglia, K. The Role of Alkaline Phosphatase in Mineralization. Curr. Opin. Orthop. 2007, 18, 444–448. DOI: 10.1097/BCO.0b013e3282630851.
  • Tian, X.; Yuan, X.; Feng, D.; Wu, M.; Yuan, Y.; Ma, C.; Xie, D.; Guo, J.; Liu, C.; Lu, Z. In Vivo Study of Polyurethane and Tannin-Modified Hydroxyapatite Composites for Calvarial Regeneration. J. Tissue Eng. 2020, 11, 2041731420968030 DOI: 10.1177/2041731420968030.
  • Rasoulianboroujeni, M.; Fahimipour, F.; Shah, P.; Khoshroo, K.; Tahriri, M.; Eslami, H.; Yadegari, A.; Dashtimoghadam, E.; Tayebi, L. Development of 3D-Printed PLGA/TiO2 Nanocomposite Scaffolds for Bone Tissue Engineering Applications. Mater. Sci. Eng.: C 2019, 96, 105–113. DOI: 10.1016/j.msec.2018.10.077.
  • Liu, D.; Nie, W.; Li, D.; Wang, W.; Zheng, L.; Zhang, J.; Zhang, J.; Peng, C.; Mo, X.; He, C. 3D Printed PCL/SrHA Scaffold for Enhanced Bone Regeneration. Chem. Eng. J. 2019, 362, 269–279. DOI: 10.1016/j.cej.2019.01.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.