891
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Spinel-based electrode materials for application in electrochemical supercapacitors – present status and future prospects

, , &
Pages 1449-1462 | Received 26 Feb 2021, Accepted 11 Jul 2021, Published online: 27 Jul 2021

References

  • Ash, B.; Nalajala, V. S.; Popuri, A. K.; Subbaiah, T.; Minakshi, M. Perspectives on Nickel Hydroxide Electrodes Suitable for Rechargeable Batteries: Electrolytic vs. Chemical Synthesis Routes. Nanomaterials 2020, 10, 1878. DOI: 10.3390/nano10091878.
  • Wang, S.; Jiang, S. P. Prospects of Fuel Cell Technologies. Nat. Sci. Rev. 2017, 4, 163–166. DOI: 10.1093/nsr/nww099.
  • Barik, R.; Pravin, P. I. Challenges and Prospects of Metal Sulfide Materials for Supercapacitors. Curr. Opin. Electrochem. 2020, 21, 327–334. DOI: 10.1016/j.coelec.2020.03.022.
  • Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M. D.; Wagner, N.; Gorini, R. The Role of Renewable Energy in the Global Energy Transformation. Energy Strat. Rev. 2019, 24, 38–50. DOI: 10.1016/j.esr.2019.01.006.
  • Abdel Maksoud, I. A.; Fahim, R. A.; Shalan, A. E.; Elkodous, M. A.; Olojede, S. O.; Osman, A. I.; Farrell, C.; Al-Muhtaseb, A. H.; Awed, A. S.; Ashour, A. H.; et al. Advanced Materials and Technologies for Supercapacitors Used in Energy Conversion and Storage: A Review. Environ. Chem. Lett. 2021, 19, 375–439. DOI: 10.1007/s10311-020-01075-w.
  • Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation. Appl. Energy 2015, 137, 511–536. DOI: 10.1016/j.apenergy.2014.09.081.
  • Elkholy, A. E.; Heakal, E. T.; Allam, N. K. Nanostructured Spinel Manganese Cobalt Ferrite for High-Performance Supercapacitors. RSC Adv. 2017, 7, 51888–51895. DOI: 10.1039/C7RA11020K.
  • Esawy, T.; Khairy, M.; Hany, A.; Mousa, M. A. Flexible Solid-State Supercapacitors Based on Carbon Aerogel and Some Electrolyte Polymer Gels. Appl. Phys. 2018, 124, 566. DOI: 10.1007/s00339-018-1967-9.
  • Redondo, E.; Fevre, L. W. L.; Fields, R.; Todd, R.; Forsyth, A. J.; Dryfe, R. A. W. Enhancing Supercapacitor Energy Density by Mass-Balancing of Graphene Composite Electrodes. Electrochim. Acta 2020, 360, 136957. DOI: 10.1016/j.electacta.2020.136957.
  • Ebrahim, S. A.; Harb, M. E.; Soliman, M. M.; Tayel, M. B. Preparation and Characterization of a Pseudocapacitor Electrode by Spraying a Conducting Polymer onto a Flexible Substrate. J. Taibah Univ. Sci. 2016, 10, 281–285. DOI: 10.1016/j.jtusci.2015.07.004.
  • Sharma, P.; Bhatti, T. S. A Review on Electrochemical Double-Layer Capacitors. Energy Convers. Manag. 2010, 51, 2901–2912. [Database] DOI: 10.1016/j.enconman.2010.06.031.
  • Caizan-Juanarena, L.; Borsje, C.; Sleutels, T.; Yntema, D.; Santoro, C.; Ieropoulos, I.; Soavi, F.; Heijne, A. Combination of Bioelectrochemical Systems and Electrochemical Capacitors: Principles, Analysis and Opportunities. Biotechnol. Adv. 2020, 39, 107456. DOI: 10.1016/j.biotechadv.2019.107456.
  • Zhou, Z.; Zhu, Y.; Wu, Z.; Lu, F.; Jing, M.; Ji, X. Amorphous RuO2 Coated on Carbon Spheres as Excellent Electrode Materials for Supercapacitors. RSC Adv. 2014, 4, 6927–6932. DOI: 10.1039/c3ra46641h.
  • Lv, H.; Pan, Q.; Song, Y.; Liu, X. X.; Liu, T. A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for Supercapacitors. Nanomicro Lett. 2020, 12, 118. DOI: 10.1007/s40820-020-00451-z.
  • Aydin, E. B.; Sıgırcık, G. Preparations of Different ZnO Nanostructures on TiO2 Nanotube via Electrochemical Method and Its Application in Hydrogen Production. Int. J. Hydrogen Energy 2019, 44, 11488–11502. DOI: 10.1016/j.ijhydene.2019.03.123.
  • Fang, S.; Bresser, D.; Passerini, S. Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium‐ and Sodium‐Ion Batteries. Adv. Energy Mater. 2020, 10, 1902485. DOI: 10.1002/aenm.201902485.
  • Umeshbabu, E.; Rajeshkhanna, G.; Justin, P.; Rao, G. Ranga, NiCo2O4/rGO Hybrid Nanostructures for Efficient Electrocatalytic Oxygen Evolution. J. Solid State Electrochem. 2016, 20, 2725–2736. DOI: 10.1007/s10008-016-3278-4.
  • Ferreira, O. P.; Otubo, L.; Romano, R.; Alves, O. L. One-Dimensional Nanostructures from Layered Manganese Oxide. Cryst. Growth Des. 2006, 6, 601–606. DOI: 10.1021/cg0503503.
  • Kathalingam, A.; Ramesh, S.; Yadav, H. M.; Choi, J.-H.; Kim, H. S.; Kim, H.-S. Nanosheet-Like ZnCo2O4@Nitrogen Doped Graphene Oxide/Polyaniline Composite for Supercapacitor Application: Effect of Polyaniline Incorporation. J. Alloys Compd. 2020, 830, 154734. DOI: 10.1016/j.jallcom.2020.154734.
  • Fu, F.; Li, J.; Yao, Y.; Qin, X.; Dou, Y.; Wang, H.; Tsui, J.; Chan, K. Y.; Shao, M. Hierarchical NiCo2O4 Micro- and Nanostructures with Tunable Morphologies as Anode Materials for Lithium- and Sodium-Ion Batteries . ACS Appl. Mater. Interfaces 2017, 9, 16194–16201. DOI: 10.1021/acsami.7b02175.
  • Zhao, T.; Zhou, N.; Zhang, X.; Xue, Q.; Wang, Y.; Yang, M.; Li, L.; Chen, R. Structure Evolution from Layered to Spinel during Synthetic Control and Cycling Process of Fe-Containing Li-Rich Cathode Materials for Lithium-Ion Batteries. ACS Omega 2017, 2, 5601–5610. DOI: 10.1021/acsomega.7b00689.
  • Majumdar, D.; Mandal, M.; Bhattacharya, S. K. Journey from Supercapacitors to Supercapatteries: Recent Advancements in Electrochemical Energy Storage Systems. Emerg. Mater. 2020, 3, 347–367. DOI: 10.1007/s42247-020-00090-5.
  • Chen, W.; Rakhi, R. B.; Hu, L.; Xie, X.; Cui, Y.; Alshareef, H. N. High-Performance Nanostructured Supercapacitors on a Sponge. Nano Lett. 2011, 11, 5165–5172. DOI: 10.1021/nl2023433.
  • Jayalakshmi, M.; Balasubramanian, K. Simple Capacitors to Supercapacitors - An Overview. Int. J. Electrochem. Sci. 2008, 3, 1196–1217.
  • Muzaffar, A.; Ahamed, M. B.; Deshmukh, K.; Thirumalai, J. A Review on Recent Advances in Hybrid Supercapacitors: Design, Fabrication and Applications. Renew. Sustain. Energ. Rev. 2019, 101, 123–145. DOI: 10.1016/j.rser.2018.10.026.
  • Navale, Y. H.; Navale, S. T.; Dhole, I. A.; Stadler, F. J.; Patil, V. B. Specific Capacitance, Energy and Power Density Coherence in Electrochemically Synthesized Polyaniline-Nickel Oxide Hybrid Electrode. Org. Electron. 2018, 57, 110–117. DOI: 10.1016/j.orgel.2018.02.037.
  • Chu, B.; Liu, S.; You, L.; Liu, D.; Huang, T.; Li, Y.; Yu, A. Enhancing the Cycling Stability of Ni-Rich LiNi0.6Co0.2Mn0.2O2 Cathode at a High Cutoff Voltage with Ta Doping. ACS Sustain. Chem. Eng. 2020, 8, 3082–3090. DOI: 10.1021/acssuschemeng.9b05560.
  • Verma, K. C.; Kotnala, R. K.; Goyal, N. Multi-Functionality of Spintronic Materials. Nanoelectronics 2019, 153–215. DOI: 10.1016/B978-0-12-813353-8.00004-X.
  • Zhao, X.; Mao, L.; Cheng, Q.; Li, J.; Liao, F.; Yang, G.; Xie, L.; Zhao, C.; Chen, L. Recent Advances in Two-Dimensional Spinel Structured Co-Based Materials for High Performance Supercapacitors: A Critical Review. Chem. Eng. J. 2020, 387, 124081. DOI: 10.1016/j.cej.2020.124081.
  • Toh, R. J.; Eng, A. Y.; Sofer, Z.; Sedmidubsky, D.; Pumera, M. Ternary Transition Metal Oxide Nanoparticles with Spinel Structure for the Oxygen Reduction Reaction. ChemElectroChem 2015, 2, 982–987. DOI: 10.1002/celc.201500070.
  • Sahoo, S.; Naik, K. K.; Rout, C. S. Electrodeposition of Spinel MnCo2O4 Nanosheets for Supercapacitor Applications. Nanotechnology 2015, 26, 455401. DOI: 10.1088/0957-4484/26/45/455401.
  • Prette, A. L. G.; Cologna, M.; Sglavo, V.; Raj, R. Flash-Sintering of Co2MnO4 Spinel for Solid Oxide Fuel Cell Applications. J. Power Sources 2011, 196, 2061–2065. DOI: 10.1016/j.jpowsour.2010.10.036.
  • Khan, N.; Anwer, A. H.; Khan, M. D.; Azam, A.; Ibhadon, A.; Khan, M. Z. Magnesium Ferrite Spinels as Anode Modifier for the Treatment of Congo Red and Energy Recovery in a Single Chambered Microbial Fuel Cell. J. Hazard. Mater. 2021, 410, 124561. DOI: 10.1016/j.jhazmat.2020.124561.
  • Samanta, S.; Saini, S. M. Band Gap Engineering and Optical Response of the ACr2S4 (a = Fe, Co) Normal Spinels Using PBE + U and TB-mBJ Potentials. J. Phys. Chem. Solids 2017, 102, 130–135. DOI: 10.1016/j.jpcs.2016.10.016.
  • Poudel, T. P.; Rai, B. K.; Yoon, S.; Guragain, D.; Neupane, D.; Mishra, S. R. The Effect of Gadolinium Substitution in Inverse Spinel Nickel Ferrite: Structural, and Mossbauer Study. J. Alloys Compd. 2019, 802, 609–619. DOI: 10.1016/j.jallcom.2019.06.201.
  • Klemme, S. The Influence of Cr on the Garnet–Spinel Transition in the Earth’s Mantle: Experiments in the System MgO–Cr2O3–SiO2 and Thermodynamic Modeling. Lithos 2004, 77, 639–646. DOI: 10.1016/j.lithos.2004.03.017.
  • Leuthold, J.; Blundy, J. D.; Brooker, R. A. Experimental Petrology Constraints on the Recycling of Mafic Cumulate: A Focus on Cr-Spinel from the Rum Eastern Layered Intrusion, Scotland. Contrib. Min. Petrol 2015, 170, 12. DOI: 10.1007/s00410-015-1165-0.
  • Driscoll, B.; Emeleus, C. H.; Donaldson, C. H.; Daly, J. S. The Roles of Melt Infiltration and Cumulate Assimilation in the Formation of Anorthosite and a Cr-Spinel Seam in the Rum Eastern Layered Intrusion, NW Scotland. Lithos 2009, 111, 6–20. DOI: 10.1016/j.lithos.2008.11.011.
  • Bindra, N. S.; Kunal, P. Nickel Spinel Ferrites: A Review. J. Magn. Magn. Mater. 2021, 519, 167163. DOI: 10.1016/j.jmmm.2020.167163.
  • Teber, A.; Cil, K.; Yilmaz, T.; Eraslan, B.; Uysal, D.; Surucu, G.; Baykal, A. H.; Bansal, R. Manganese and Zinc Spinel Ferrites Blended with Multi-Walled Carbon Nanotubes as Microwave Absorbing Materials. Aerospace 2017, 4, 2. DOI: 10.3390/aerospace4010002.
  • Grimes, N. W.; Thompson, P.; Kay, H. F. New Symmetry and Structure for Spinel. Proc. R. Soc. London A 1983, 386, 333. DOI: 10.1098/rspa.1983.0039.
  • Vozniuk, O.; Tanchoux, N.; Millet, J. M.; Albonetti, S.; Renzo, F. D.; Cavani, F. Spinel Mixed Oxides for Chemical-Loop Reforming: From Solid State to Potential Application. Stud. Surf. Sci. Catal. 2019, 178, 281–302. DOI: 10.1016/B978-0-444-64127-4.00014-8.
  • Hwang, L.; Heuer, A. H.; Mitchell, T. E. On the Space Group of MgAl2O4 Spinel. Philos. Mag. 1973, 28, 241–243. DOI: 10.1080/14786437308217448.
  • Shenggang, L.; Dixon, D. A. Structural and Electronic Properties of Group 6 Transition Metal Oxide Clusters. New Fut. Dev. Catal. 2013, 21–61. DOI: 10.1016/B978-0-444-53874-1.00002-0.
  • Yang, W.; Li, J.; Zhang, X.; Zhang, C.; Jiang, X.; Li, B. Hydrothermal Approach to Spinel-Type 2D Metal Oxide Nanosheets. Inorg. Chem. 2019, 58, 549–559. DOI: 10.1021/acs.inorgchem.8b02742.
  • Sickafus, K. E.; Wills, J. M.; Grimes, N. W. Structure of Spinel. J. Am. Ceram. Soc. 2004, 82, 3279–3292. DOI: 10.1111/j.1151-2916.1999.tb02241.x.
  • Xie, Z.; An, X.; Yang, X.; Li, C.; Shen, Y. Numerical Realization and Structure Characterization on Random Close Packings of Cuboid Particles with Different Aspect Ratios. Powder Technol. 2019, 344, 514–524. DOI: 10.1016/j.powtec.2018.12.017.
  • Burdett, J. K.; Price, G. L.; Price, S. L. Role of the Crystal-Field Theory in Determining the Structures of Spinels. J. Am. Chem. Soc. 1982, 104, 92–95. DOI: 10.1021/ja00365a019.
  • Biagioni, C.; Pasero, M. The Systematics of the Spinel-Type Minerals: An Overview. Am. Miner. 2014, 99, 1254–1264. DOI: 10.2138/am.2014.4816.
  • Sundquist, J. J.; Lin, C. C. Electronic Structure of the F Centre in a Sodium Fluoride Crystal. J. Phys. C: Solid State Phys. 1981, 14, 4797–4805. DOI: 10.1088/0022-3719/14/32/016.
  • Abrahams, S. C.; Bernstein, J. L. Accuracy of an Automatic Diffractometer. Measurement of the Sodium Chloride Structure Factors. Acta Cryst. 1965, 18, 926–932. DOI: 10.1107/S0365110X65002244.
  • Gu, Z.; Edgar, J. H.; Pomeroy, J.; Kuball, M.; Coffey, D. W. Crystal Growth and Properties of Scandium Nitride. J. Mater. Sci. Mater. Electron. 2004, 15, 555–559. DOI: 10.1023/B:JMSE.0000032591.54107.2c.
  • Lima, A. F. Density Functional Theory Study on the Magnetic Properties of Co3O4 with Normal Spinel Structure. J. Phys. Chem. Solids 2016, 91, 86–89. DOI: 10.1016/j.jpcs.2015.11.022.
  • Feofilov, S. P.; Kulinkin, A. B.; Khaidukov, N. M. Inversion in Synthetic Spinel: Fluorescence of Cr3+ Ions in MgAl2O4 Spinel Ceramics. J. Lumin. 2020, 217, 116824. DOI: 10.1016/j.jlumin.2019.116824.
  • Baldinozzi, G.; Simeone, D.; Gosset, D.; Surble, S.; Mazerolles, L.; Thome, L. Why Ion Irradiation Does Not Lead to the Same Structural Changes in Normal Spinels ZnAl2O4, MgAl2O4 and MgCr2O4? Nucl. Instr. Meth. Phys. Res. B 2008, 266, 2848–2853. DOI: 10.1016/j.nimb.2008.03.218.
  • Abbasi, A.; Khojasteh, H.; Hamadanian, M.; Salavati-Niasari, M. Normal Spinel CdCr2O4 and CdCr2O4/Ag Nanocomposite as Novel Photocatalysts, for Degradation of Water Contaminates. Sep. Purif. Technol. 2018, 195, 37–49. DOI: 10.1016/j.seppur.2017.11.077.
  • Kushwaha, A. K.; Uğur, Ş.; Akbudak, S.; Uğur, G. Investigation of Structural, Elastic, Electronic, Optical and Vibrational Properties of Silver Chromate Spinels: Normal (CrAg2O4) and Inverse (Ag2CrO4). J. Alloys Compd. 2017, 704, 101–108. DOI: 10.1016/j.jallcom.2017.02.055.
  • Anandan, S.; Selvamani, T.; Prasad, G. G.; Asiri, A.; Wu, J. Magnetic and Catalytic Properties of Inverse Spinel CuFe2O4 Nanoparticles. J. Magn. Mater. 2017, 432, 437-443. DOI: 10.1016/j.jmmm.2017.02.026.
  • Adeela, N.; Khan, U.; Naz, S.; Khan, K.; Sagar, R. U.; Aslam, S.; Wu, D. Role of Ni Concentration on Structural and Magnetic Properties of Inverse Spinel Ferrite. Mater. Res. Bull. 2018, 107, 60–65. DOI: 10.1016/j.materresbull.2018.06.032.
  • Wang, J.; Ren, Y.; Huang, X.; Ding, J. Inverse Spinel Transition Metal Oxides for Lithium-Ion Storage with Different Discharge/Charge Conversion Mechanisms. Electrochim. Acta 2016, 219, 10–19. DOI: 10.1016/j.electacta.2016.09.094.
  • Wu, J.; Gao, D.; Sun, T.; Bi, J.; Zhao, Y.; Ning, Z.; Fan, G.; Xie, Z. Highly Selective Gas Sensing Properties of Partially Inversed Spinel Zinc Ferrite towards H2S. Sens. Actuators B Chem. 2016, 235, 258–262. DOI: 10.1016/j.snb.2016.05.083.
  • Kitajou, A.; Yoshida, J.; Nakanishi, S.; Matsuda, Y.; Kanno, R.; Okajima, T.; Okada, S. Capacity Improvement by Deficit of Transition Metals in Inverse Spinel LiNi1/3Co1/3Mn1/3VO4 Cathodes. J. Power Sources 2016, 302, 240–246. DOI: 10.1016/j.jpowsour.2015.10.058.
  • Sato, Y.; Kiyohara, J.; Hasegawa, A.; Hattori, T.; Ishida, M.; Hamada, N.; Oka, N.; Shigesato, Y. Study on Inverse Spinel Zinc Stannate, Zn2SnO4, as Transparent Conductive Films Deposited by RF Magnetron Sputtering. Thin Solid Films 2009, 518, 1304–1308. DOI: 10.1016/j.tsf.2009.06.057.
  • Prasankumar, T.; Vigneshwaran, J.; Bagavathi, M.; Jose, S. P. Expeditious and Eco-Friendly Synthesis of Spinel LiMn2O4 and Its Potential for Fabrication of Supercapacitors. J. Alloys Compd. 2020, 834, 155060. DOI: 10.1016/j.jallcom.2020.155060.
  • Zhou, Q.; Wang, J.; Zheng, R.; Gong, Y.; Lin, J. One-Step Mild Synthesis of Mn-Based Spinel MnIICrIII2O4/MnIIMnIII2O4/C and Co-Based Spinel CoCr2O4/C Nanoparticles as Battery-Type Electrodes for High-Performance Supercapacitor Application. Electrochim. Acta 2018, 283, 197–211. DOI: 10.1016/j.electacta.2018.06.164.
  • Zhu, Z.; Wang, Z.; Yan, Z.; Zhou, R.; Wang, Z.; Chen, C. Facile Synthesis of MOF-Derived Porous Spinel Zinc Manganese Oxide/Carbon Nanorods Hybrid Materials for Supercapacitor Application. Ceram. Int. 2018, 44, 20163–20169. DOI: 10.1016/j.ceramint.2018.07.310.
  • Aruchamy, K.; Nagaraj, R.; Manohara, H. M.; Nidhi, M. R.; Mondal, D.; Ghosh, D.; Nataraj, S. K. One-Step Green Route Synthesis of Spinel ZnMn2O4 Nanoparticles Decorated on MWCNTs as a Novel Electrode Material for Supercapacitor. Mater. Sci. Eng. B 2020, 252, 114481. DOI: 10.1016/j.mseb.2019.114481.
  • Ray, A.; Roy, A.; Ghosh, M.; Alberto Ramos-Ramón, J.; Saha, S.; Pal, U.; Bhattacharya, S. K.; Das, S. Study on Charge Storage Mechanism in Working Electrodes Fabricated by Sol-Gel Derived Spinel NiMn2O4 Nanoparticles for Supercapacitor Application. Appl. Surf. Sci. 2019, 463, 513–525. DOI: 10.1016/j.apsusc.2018.08.259.
  • Bhagwan, J.; Sahoo, A.; Yadav, K. L.; Sharma, Y. Nanofibers of Spinel-CdM2O4 : A New and High Performance Material for Supercapacitor and Li-Ion Batteries. J. Alloys Compd. 2017, 703, 86–95. DOI: 10.1016/j.jallcom.2017.01.324.
  • Wang, F. X.; Xiao, S. Y.; Gao, X. W.; Zhu, Y. S.; Zhang, H. P.; Wu, Y. P.; Holze, R. Nanoporous LiMn2O4 Spinel Prepared at Low Temperature as Cathode Material for Aqueous Supercapacitors. J. Power Sources 2013, 242, 560–565. DOI: 10.1016/j.jpowsour.2013.05.115.
  • Yunyun, F.; Xu, L.; Wankun, Z.; Yuxuan, Z.; Yunhan, Y.; Honglin, Q.; Xuetang, X.; Fan, W. Spinel CoMn2O4 Nanosheet Arrays Grown on Nickel Foam for High-Performance Supercapacitor Electrode. Appl. Surf. Sci. 2015, 357, 2013–2021. DOI: 10.1016/j.apsusc.2015.09.176.
  • Chen, J.; Cui, Y.; Wang, X.; Zhi, M.; Lavorgna, M.; Baker, A. P.; Wu, J. Fabrication of Hierarchical Porous Cobalt Manganese Spinel Graphene Hybrid Nanoplates for Electrochemical Supercapacitors. Electrochim. Acta 2016, 188, 704–709. DOI: 10.1016/j.electacta.2015.12.052.
  • Venkateswarlu, P.; Umeshbabu, E.; Naveen Kumar, U.; Nagaraja, P.; Tirupathi, P.; Ranga Rao, G.; Justin, P. Facile Hydrothermal Synthesis of Urchin-Like Cobalt Manganese Spinel for High-Performance Supercapacitor Applications. J. Colloid Interface Sci. 2017, 503, 17–27. DOI: 10.1016/j.jcis.2017.05.007.
  • Wang, F. X.; Xiao, S. Y.; Zhu, Y. S.; Chang, Z.; Hu, C. L.; Wu, Y. P.; Holze, R. Spinel LiMn2O4 Nanohybrid as High Capacitance Positive Electrode Material for Supercapacitors. J. Power Sources 2014, 246, 19–23. DOI: 10.1016/j.jpowsour.2013.07.046.
  • Ismail, F. M.; Ramadan, M.; Abdellah, A. M.; Ismail, I.; Allam, N. K. Mesoporous Spinel Manganese Zinc Ferrite for High-Performance Supercapacitors. J. Electroanal. Chem. 2018, 817, 111–117. DOI: 10.1016/j.jelechem.2018.04.002.
  • Uke, S. J.; Mardikar, S. P.; Bambole, D. R.; Kumar, Y.; Chaudhari, G. N. Sol-Gel Citrate Synthesized Zn Doped MgFe2O4 Nanocrystals: A Promising Supercapacitor Electrode Material. Mater. Sci. Technol. 2020, 3, 446–455. DOI: 10.1016/j.mset.2020.02.009.
  • Nabi, G.; Raza, W.; Kamran, M. A.; Alharbi, T.; Rafique, M.; Tahir, M. B.; Hussain, S.; Khalid, N. R.; Ul-Aain, Q.; Malik, N.; et al. Role of Cerium-Doping in CoFe2O4 Electrodes for High Performance Supercapacitors. J. Energy Storage 2020, 29, 101452. DOI: 10.1016/j.est.2020.101452.
  • Li, Y.; Song, C.; Chen, J.; Shang, X.; Chen, J.; Li, Y.; Huang, M.; Meng, F. Sulfur and Nitrogen Co-Doped Activated CoFe2O4@C Nanotubes as an Efficient Material for Supercapacitor Applications. Carbon 2020, 162, 124–135. DOI: 10.1016/j.carbon.2020.02.050.
  • Zhu, X.; Hou, D.; Tao, H.; Li, M. Simply Synthesized N-Doped Carbon Supporting Fe3O4 Nanocomposite for High Performance Supercapacitor. J. Alloys Compd. 2020, 821, 153580. DOI: 10.1016/j.jallcom.2019.153580.
  • Javed, M. S.; Jiang, Z.; Yang, Q.; Wang, X.; Han, X.; Zhang, C.; Gu, X.; Hu, C. Exploring Li-Ion Hopping Behaviour in Zinc Ferrite and Promoting Performance for Flexible Solid-State Supercapacitor. Electrochim. Acta 2019, 295, 558–568. DOI: 10.1016/j.electacta.2018.10.202.
  • Gao, X.; Bi, J.; Wang, W.; Liu, H.; Chen, Y.; Hao, X.; Sun, X.; Liu, R. Morphology-Controllable Synthesis of NiFe2O4 Growing on Graphene Nanosheets as Advanced Electrode Material for High Performance Supercapacitors. J. Alloys Compd. 2020, 826, 154088. DOI: 10.1016/j.jallcom.2020.154088.
  • Bandgar, S. B.; Vadiyar, M. M.; Jambhale, C. L.; Jin, H.; Kolekar, S. S. Superfast Ice Crystal-Assisted Synthesis of NiFe2O4 and ZnFe2O4 Nanostructures for Flexible High-Energy Density Asymmetric Supercapacitors. J. Alloys Compd. 2021, 853, 157129. DOI: 10.1016/j.jallcom.2020.157129.
  • Bashir, B.; Rahman, A.; Sabeeh, H.; Khan, M. A.; Aly, A.; Mohamed, F.; Warsi, M. F.; Shakir, I.; Agboola, P. O.; Shahid, M. Copper Substituted Nickel Ferrite Nanoparticles Anchored onto the Graphene Sheets as Electrode Materials for Supercapacitors Fabrication. Ceram. Int. 2019, 45, 6759–6766. DOI: 10.1016/j.ceramint.2018.12.167.
  • Singh, G.; Chandra, S. Nano-Flowered Manganese Doped Ferrite@PANI Composite as Energy Storage Electrode Material for Supercapacitors. J. Electroanal. Chem. 2020, 874, 114491. DOI: 10.1016/j.jelechem.2020.114491.
  • Saleh Ghadimi, L.; Arsalani, N.; Ahadzadeh, I.; Hajalilou, A.; Abouzari-Lotf, E. Effect of Synthesis Route on the Electrochemical Performance of CoMnFeO4 Nanoparticles as a Novel Supercapacitor Electrode Material. Appl. Surf. Sci. 2019, 494, 440–451. DOI: 10.1016/j.apsusc.2019.07.183.
  • Rani, B.; Sahu, N. K. Electrochemical Properties of CoFe2O4 Nanoparticles and Its rGO Composite for Supercapacitor. Diam. Relat. Mater. 2020, 108, 107978. DOI: 10.1016/j.diamond.2020.107978.
  • Deshmukh, V. V.; Nagaswarupa, H. P.; Raghavendra, N. Development of Co-Doped MnFe2O4 Nanoparticles for Electrochemical Supercapacitors. Ceram. Int. 2021, 47, 10268–10273. DOI: 10.1016/j.ceramint.2020.07.191.
  • Gao, H.; Li, Y.; Zhao, H.; Xiang, J.; Cao, Y. A General Fabrication Approach on Spinel MCo2O4 (M = Co, Mn, Fe, Mg and Zn) Submicron Prisms as Advanced Positive Materials for Supercapacitor. Electrochim. Acta 2018, 262, 241–251. DOI: 10.1016/j.electacta.2018.01.020.
  • Chen, Y.; Hu, H.; Wang, N.; Sun, B.; Yao, M.; Hu, W. Cu(I)/Cu(II) Partially Substituting the Co(II) of Spinel Co3O4 Nanowires with 3D Interconnected Architecture on Carbon Cloth for High-Performance Flexible Solid-State Supercapacitors. Chem. Eng. J. 2020, 391, 123536. DOI: 10.1016/j.cej.2019.123536.
  • Zhao, C.; Zhu, J.; Jiang, Y.; Gao, F.; Xie, L.; Chen, L. Facile Synthesis of Spinel MgCo2O4 Nanosheets for High-Performance Asymmetric Supercapacitors. Mater. Lett. 2020, 271, 127799. DOI: 10.1016/j.matlet.2020.127799.
  • Shrestha, K. R.; Kandula, S.; Kim, N. H.; Lee, J. H. A Spinel MnCo2O4/NG 2D/2D Hybrid Nanoarchitectures as Advanced Electrode Material for High Performance Hybrid Supercapacitors. J. Alloys Compd. 2019, 771, 810–820. DOI: 10.1016/j.jallcom.2018.09.032.
  • Merabet, L.; Rida, K.; Boukmouche, N. Sol-Gel Synthesis, Characterization, and Supercapacitor Applications of MCo2O4 (M = Ni, Mn, Cu, Zn) Cobaltite Spinels. Ceram. Int. 2018, 44, 11265–11273. DOI: 10.1016/j.ceramint.2018.03.171.
  • Sahoo, S.; Kumar, N. K.; Sekhar Rout, C. Controlled Electrochemical Growth of Spinel NiCo2S4 Nanosheets on Nickel Foam for High Performance Supercapacitor Applications. Mater. Today: Proc. 2018, 5, 23083–22308. DOI: 10.1016/j.matpr.2018.11.038.
  • Naik, K. K.; Sahoo, S.; Rout, C. S. Facile Electrochemical Growth of Spinel Copper Cobaltite Nanosheets for Non-Enzymatic Glucose Sensing and Supercapacitor Applications. Microporous Mesoporous Mater. 2017, 244, 226–234. DOI: 10.1016/j.micromeso.2016.10.036.
  • Mohamed, S. G.; Attia, S. Y.; Hassan, H. H. Spinel-Structured FeCo2O4 Mesoporous Nanosheets as Efficient Electrode for Supercapacitor Applications. Microporous Mesoporous Mater. 2017, 251, 26–33. DOI: 10.1016/j.micromeso.2017.05.035.
  • Wang, Z.; Qian, W.; Ran, Y.; Hong, P.; Xiao, X.; Wang, Y. Nanosheets Based Mixed Structure CuCo2O4 Hydrothermally Grown on Ni Foam Applied as Binder-Free Supercapacitor Electrodes. J. Energy Storage 2020, 32, 101865. DOI: 10.1016/j.est.2020.101865.
  • Zhang, C.; Lei, C.; Cen, C.; Tang, S.; Deng, M.; Li, Y.; Du, Y. Interface Polarization Matters: Enhancing Supercapacitor Performance of Spinel NiCo2O4 Nanowires by Reduced Graphene Oxide Coating. Electrochim. Acta 2018, 260, 814–822. DOI: 10.1016/j.electacta.2017.12.044.
  • Patil, D. S.; Teli, A. M.; Choi, W. J.; Pawar, S. A.; Shin, J. C.; Kim, H. J. An All Chemical Route to Design a Hybrid Battery-Type Supercapacitor Based on ZnCo2O4/CdS Composite Nanostructures. Curr. Appl. Phys. 2020, 20, 1416–1423. DOI: 10.1016/j.cap.2020.09.007.
  • Zhu, Y.; Ji, X.; Wu, Z.; Song, W.; Hou, H.; Wu, Z.; He, X.; Chen, Q.; Banks, C. E. Spinel NiCo2O4 for Use as a High-Performance Supercapacitor Electrode Material: Understanding of Its Electrochemical Properties. J. Power Sources 2014, 267, 888–900. DOI: 10.1016/j.jpowsour.2014.05.134.
  • Saghafi, M.; Zangeneh, S. Zn-Co Oxide Electrodes with Excellent Capacitive Behavior for Using Supercapacitor Application. Curr. Appl. Phys. 2019, 19, 745–755. DOI: 10.1016/j.cap.2019.04.001.
  • Wang, X.; Yin, S.; Jiang, J.; Xiao, H.; Li, X. A Tightly Packed Co3O4/C&S Composite for High-Performance Electrochemical Supercapacitors from a Cobalt(III) Cluster-Based Coordination Precursor. J. Solid State Chem. 2020, 288, 121435. DOI: 10.1016/j.jssc.2020.121435.
  • Zhu, Z.; Zhang, R.; Lin, J.; Zhang, K.; Li, N.; Zhao, C.; Chen, G.; Zhao, C. Ni, Zn-Co Doped MgCo2O4 Electrodes for Aqueous Asymmetric Supercapacitor and Rechargeable Zn Battery. J. Power Sources 2019, 437, 226941. DOI: 10.1016/j.jpowsour.2019.226941.
  • Zheng, S.; Li, Q.; Xue, H.; Pang, H.; Xu, Q. A Highly Alkaline-Stable Metal Oxide@Metal-Organic Framework Composite for High-Performance Electrochemical Energy Storage. Natl. Sci. Rev. 2020, 7, 305–314. DOI: 10.1093/nsr/nwz137.
  • Zhu, J.; Huang, B.; Zhao, C.; Xu, H.; Wang, S.; Chen, Y.; Xie, L.; Chen, L. Benzoic Acid-Assisted Substrate-Free Synthesis of Ultrathin Nanosheets Assembled Two-Dimensional Porous Co3O4 Thin Sheets with 3D Hierarchical Micro-/Nano-Structures and Enhanced Performance as Battery - Type Materials for Supercapacitors. Electrochim. Acta 2019, 313, 194–204. DOI: 10.1016/j.electacta.2019.05.019.
  • Zhang, W.; Zhang, F.; Ming, F.; Alshareef, H. N. Sodium-Ion Battery Anodes: Status and Future Trends. EnergyChem 2019, 1, 100012. DOI: 10.1016/j.enchem.2019.10001.
  • Yan, M.; Wang, W. P.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Interfacial Design for Lithium-Sulfur Batteries: From Liquid to Solid. EnergyChem 2019, 1, 100002. DOI: 10.1016/j.enchem.2019.100002.
  • Liu, H.; Cheng, X.-B.; Jin, Z.; Zhang, R.; Wang, G.; Chen, L.-Q.; Liu, Q.-B.; Huang, J.-Q.; Zhang, Q. Recent Advances in Understanding Dendrite Growth on Alkali Metal Anodes. EnergyChem 2019, 1, 100003. DOI: 10.1016/j.enchem.2019.100003.
  • Song, D.; Zhu, J.; Li, J.; Pu, T.; Huang, B.; Zhao, C.; Xie, L.; Chen, L. Free-Standing Two-Dimensional Mesoporous ZnCo2O4 Thin Sheets Consisting of 3D Ultrathin Nanoflake Array Frameworks for High Performance Asymmetric Supercapacitor. Electrochim. Acta 2017, 257, 455–464. DOI: 10.1016/j.electacta.2017.10.116.
  • Jiang, Y.; Chen, L.; Zhang, H.; Zhang, Q.; Chen, W.; Zhu, J.; Song, D. Two-Dimensional Co3O4 Thin Sheets Assembled by 3D Interconnected Nanoflake Array Framework Structures with Enhanced Supercapacitor Performance Derived from Coordination Complexes. Chem. Eng. J. 2016, 292, 1–12. DOI: 10.1016/j.cej.2016.02.009.
  • Xuan, L.; Chen, L.; Yang, Q.; Chen, W.; Hou, X.; Jiang, Y.; Yuan, Y. Engineering 2D Multi-Layer Graphene-like Co3O4 Thin Sheets with Vertically Aligned Nanosheets as Basic Building Units for Advanced Pseudocapacitor Materials. J. Mater. 2015, 3, 17525–17533. DOI: 10.1039/c5ta05305f.
  • Huang, B.; Wang, H.; Liang, S.; Qin, H.; Li, Y.; Luo, Z.; Zhao, C.; Xie, L.; Chen, L. Two-Dimensional Porous Cobalt–Nickel Tungstate Thin Sheets for High Performance Supercapattery. Energy Storage Mater. 2020, 32, 105–114. DOI: 10.1016/j.ensm.2020.07.014.
  • Li, Q.; Xu, Y.; Zheng, S.; Guo, X.; Xue, H.; Pang, H. Recent Progress in Some Amorphous Materials for Supercapacitors. Small 2018, 14, 1800426. DOI: 10.1002/smll.201800426.
  • Yan, Y.; Luo, Y.; Ma, J.; Li, B.; Xue, H.; Pang, H. Facile Synthesis of Vanadium Metal-Organic Frameworks for High-Performance Supercapacitors. Small 2018, 14, 1801815. DOI: 10.1002/smll.201801815.
  • Huang, B.; Wang, W.; Pu, T.; Li, J.; Zhao, C.; Xie, L.; Chen, L. Rational Design and Facile Synthesis of Two-Dimensional Hierarchical Porous MVO (M = Co, Ni and Co − Ni) Thin Sheets Assembled by Ultrathin Nanosheets as Positive Electrode Materials for High-Performance Hybrid Supercapacitors. Chem. Eng. J. 2019, 375, 121969. DOI: 10.1016/j.cej.2019.121969.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.