155
Views
0
CrossRef citations to date
0
Altmetric
Articles

Kinetic study of the crystallization of ZSM-5 under organic template-free conditions

ORCID Icon & ORCID Icon
Pages 33-38 | Received 29 Sep 2020, Accepted 29 Aug 2021, Published online: 04 Oct 2021

References

  • Xiang, X.; Pan, F.; Li, Y. Flower-Like Bismuth Metal-Organic Frameworks Grown on Carbon Paper as a Free-Standing Electrode for Efficient Electrochemical Sensing of Cd2+ and Pb2+ in Water. Eng. Sci 2018, 3, 77–83. DOI: 10.30919/es8d736.
  • Nong, W.; Liu, X.; Wang, Q.; Wu, J.; Guan, Y. Metal-Organic Framework-Based Materials: Synthesis, Stability and Applications in Food Safety and Preservation. ES Food Agrofor. 2020, 1, 11–40. DOI: 10.30919/esfaf0001.
  • Yu, H.; Xu, C.; Li, Y.; Jin, F.; Ye, F.; Li, X. Performance Enhancement of CuO/ZnO by Deposition on the Metal-Organic Framework of Cu-BTC for Methanol Steam Reforming Reaction. ES Energy Environ. 2020, 8, 65–77. DOI: 10.30919/esee8c415.
  • Jiang, Q.; Wang, L.; Yan, C.; Liu, C.; Guo, Z.; Wang, N. Nano-Mesoporous TiO2 Vacancies Modification for Halide Perovskite Solar Cells. Eng. Sci. 2018, 1, 64–68. DOI: 10.30919/es.180329.
  • Iwe, I.; Gosteva, E.; Starkov, V.; Sedlovets, D.; Mong, O. Anti-Glare Coatings Based on Porous Silicon Structures. ES Mater. Manuf. 2019, 3, 47–51. DOI: 10.30919/esmm5f197.
  • Wu, H.; Li, Y.; Liu, H.; He, D. High-Pressure Catalytic Kinetics of CO2 Reforming of Methane over Highly Stable NiCo/SBA-15 Catalyst. ES Energy Environ. 2019, 3, 68–73. DOI: 10.30919/esee8c201.
  • Davoodian, N.; Nakhaei Pour, A.; Izadyar, M.; Mohammadi, A.; Vahidi, M. Fischer–Tropsch Synthesis over a Novel Cobalt Catalyst Supported on UiO-66. J. Iran. Chem. Soc. 2021, 18, 1043–1050. DOI: 10.1007/s13738-020-02091-x..
  • Davoodian, N.; Nakhaei Pour, A.; Izadyar, M.; Mohammadi, A.; Salimi, A.; Kamali Shahri, S. M. Fischer–Tropsch Synthesis Using Zeolitic Imidazolate Framework (ZIF‐7 and ZIF‐8)‐Supported Cobalt Catalysts. Appl. Organomet. Chem. 2020, 34, e5747. DOI: 10.1002/aoc.5747..
  • Wang, Y.; Du, T.; Jia, H.; Qiu, Z.; Song, Y. Synthesis, Characterization and CO2 Adsorption of NaA, NaX and NaZSM-5 from Rice Husk Ash. Solid State Sci. 2018, 86, 24–33. DOI: 10.1016/j.solidstatesciences.2018.10.003.
  • Behrooz, M.; Peyrovi, M. H.; Pour, A. N. Direct Partial Oxidation (DPO) of Methane to Higher Hydrocarbons by Modified H-ZSM5 Catalyst. React. Kinet. Catal. Lett. 2001, 73, 127–133. DOI: 10.1023/A:1013993309356.
  • Nakhaei Pour, A.; Shahri, S. M. K.; Zamani, Y.; Irani, M.; Tehrani, S. Deactivation Studies of Bifunctional Fe-HZSM5 Catalyst in Fischer-Tropsch Process. J. Nat. Gas Chem. 2008, 17, 242–248. DOI: 10.1016/S1003-9953(08)60058-4.
  • Nakhaei Pour, A.; Zamani, Y.; Tavasoli, A.; Shahri, S. M. K.; Taheri, S. A. Study on Products Distribution of Iron and Iron–Zeolite Catalysts in Fischer–Tropsch Synthesis. Fuel 2008, 87, 2004–2012. DOI: 10.1016/j.fuel.2007.10.014.
  • Jami, S. I.; Nakhaei Pour, A.; Mohammadi, A.; Kamali Shahri, S. M. Structural Effects of HZSM‐5 Zeolite on Methanol‐to‐Propylene Reaction. Chem. Eng. Technol. 2020, 43, 2100–2108. DOI: 10.1002/ceat.202000066.
  • Nada, M. H.; Larsen, S. C.; Gillan, E. G. Solvent-Free Synthesis of Crystalline ZSM-5 Zeolite: Investigation of Mechanochemical Pre-Reaction Impact on Growth of Thermally Stable Zeolite Structures. Solid State Sci. 2019, 94, 15–22. DOI: 10.1016/j.solidstatesciences.2019.05.009.
  • Chen, H.; Shang, W.; Yang, C.; Liu, B.; Dai, C.; Zhang, J.; Qingqing, H.; Ming, S.; Xiaoxun, M. Epitaxial Growth of Layered-Bulky ZSM-5 Hybrid Catalysts for the Methanol-to-Propylene Process. Ind. Eng. Chem. Res. 2019, 58, 1580–1589. DOI: 10.1021/acs.iecr.8b05472.
  • Cheng, Y.; Liao, R.; Li, J.; Sun, X.; Wang, L. Synthesis Research of Nanosized ZSM-5 Zeolites in the Absence of Organic Template. J. Mater. Process. Technol. 2008, 206, 445–452. DOI: 10.1016/j.jmatprotec.2007.12.054.
  • Li, G.; Kikuchi, E.; Matsukata, M. ZSM-5 Zeolite Membranes Prepared from a Clear Template-Free Solution. Micropor. Mesopor. Mat. 2003, 60, 225–235. DOI: 10.1016/S1387-1811(03)00380-9.
  • Alipour, S. M.; Halladj, R.; Askari, S. Effects of the Different Synthetic Parameters on the Crystallinity and Crystal Size of Nanosized ZSM-5 Zeolite. Rev. Chem. Eng. 2014, 30, 289–322. DOI: 10.1515/revce-2014-0008.
  • Kalipcilar, H.; Culfaz, A. Influence of Nature of Silica Source on Template‐Free Synthesis of ZSM‐5. Zeitschrift. Für. Experimentelle. Und. Technische. Kristallographie. 2001, 36, 1197–1207. DOI: 10.1002/1521-4079(200111)36:11 < 1197::AID-CRAT1197 > 3.0.CO;2-D.
  • Kim, S. D.; Noh, S. H.; Seong, K. H.; Kim, W. J. Compositional and Kinetic Study on the Rapid Crystallization of ZSM-5 in the Absence of Organic Template under. Stirring. Micropor. Mesopor. Mat. 2004, 72, 185–192. DOI: 10.1016/j.micromeso.2004.04.024.
  • Zhao, T.; Wang, Y.; Sun, C.; Zhao, A.; Wang, C.; Zhang, X.; Zhao, j.; Wang, Z.; Lu, J.; Wu, S.; Liu, W. Direct Synthesis of Hierarchical Binder-Free ZSM-5 and Catalytic Properties for. MTP. Micropor. Mesopor. Mat. 2020, 292, 109731. DOI: 10.1016/j.micromeso.2019.109731.
  • Sun, B.; Kang, Y.; Shi, Q.; Arowo, M.; Luo, Y.; Chu, G.; Zou, H. Synthesis of ZSM‐5 by Hydrothermal Method with Pre‐Mixing in a Stirred‐Tank Reactor. Can. J. Chem. Eng. 2019, 97, 3063–3073. DOI: 10.1002/cjce.23593.
  • Cundy, C. S.; Cox, P. A. The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chem. Rev. 2003, 103, 663–702. DOI: 10.1021/cr020060i.
  • Mintova, S.; Valtchev, V.; Vultcheva, E.; Veleva, S. Crystallization kinetics of zeolite ZSM-5. Zeolites. 1992, 12, 210–5.
  • Tavare, N. S. Industrial Crystallization: Process Simulation Analysis and Design; Springer, Boston, 1995; pp 57–78.
  • Mintova, S.; Valtchev, V. On the Crystallization Mechanism of Zeolite ZSM-5: Part 1. Kinetic Compensation Effect for the Synthesis with Some Diamines. Zeolites 1993, 13, 299–304. DOI: 10.1016/0144-2449(93)90009-R.
  • Li, T.; Krumeich, F.; Van Bokhoven, J. A. Where Does the Zeolite ZSM-5 Nucleation and Growth Start? the Effect of Aluminum. Cryst. Growth Des. 2019, 19, 2548–2551. DOI: 10.1021/acs.cgd.9b00304.
  • Chen, S.; Guan, D.; Zhang, Y.; Wang, Z.; Jiang, N. Composition and Kinetic Study on Template-and Solvent-Free Synthesis of ZSM-5 Using Leached Illite Clay. Micropor. Mesopor. Mat. 2019, 285, 170–177. DOI: 10.1016/j.micromeso.2019.05.009.
  • Ali, M.; Brisdon, B.; Thomas, W. Synthesis, Characterization and Catalytic Activity of ZSM-5 Zeolites Having Variable Silicon-to-Aluminum Ratios. Appl. Catal. A-Gen. 2003, 252, 149–162. DOI: 10.1016/S0926-860X(03)00413-7.
  • Shukla, D. B.; Pandya, V. P. Estimation of Crystalline Phase in ZSM‐5 Zeolites by Infrared Spectroscopy. J. Chem. Technol. Biotechnol. 1989, 44, 147–154. DOI: 10.1002/jctb.280440206.
  • Wu, Z.; Zhao, K.; Zhang, Y.; Pan, T.; Ge, S.; Ju, Y.; Li, T.; Dou, T. Synthesis and Consequence of Aggregated Nanosized ZSM-5 Zeolite Crystals for Methanol to Propylene Reaction. Ind. Eng. Chem. Res. 2019, 58, 10737–10749. DOI: 10.1021/acs.iecr.9b00502.
  • Gorzin, F.; Darian, J. T.; Yaripour, F.; Mousavi, S. M. Novel Hierarchical HZSM-5 Zeolites Prepared by Combining Desilication and Steaming Modification for Converting Methanol to Propylene Process. J. Porous Mater. 2019, 26, 1407–1425. DOI: 10.1007/s10934-019-00740-y.
  • Xing, A.; Zhang, N.; Yuan, D.; Liu, H.; Sang, Y.; Miao, P.; Sun, Q.; Luo, M. Relationship between Acidity, Defective Sites, and Diffusion Properties of Nanosheet ZSM-5 and Its Catalytic Performance in the Methanol to Propylene Reaction. Ind. Eng. Chem. Res. 2019, 58, 12506–12515. DOI: 10.1021/acs.iecr.9b00325.
  • Feijen, E. J.; Martens, J. A.; Jacobs, P. A. Zeolites and Their Mechanism of Synthesis. In Studies in Surface Science and Catalysis; Weitkamp, J., Karge, H. G., Pfeifer, H., Hölderich, W., Eds.; Elsevier: Amsterdam, 1994; Vol. 84, pp 3–21.
  • Mintova, S.; Valtchev, V.; Kanev, I. A Correlation between the Fundamental Properties of Templates and the Kinetics of ZSM-5 Crystallization. Zeolites 1993, 13, 102–106. DOI: 10.1016/0144-2449(93)90068-E.
  • Chao, K. J.; Tasi, T. C.; Chen, M. S.; Wang, I. Kinetic Studies on the Formation of Zeolite ZSM-5. J. Chem. Soc, Faraday Trans. 1. 1981, 77, 547–555. DOI: 10.1039/f19817700547.
  • Shiralkar, V.; Clearfield, A. Synthesis of the Molecular Sieve ZSM-5 without the Aid of Templates. Zeolites 1989, 9, 363–730. DOI: 10.1016/0144-2449(89)90089-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.