202
Views
3
CrossRef citations to date
0
Altmetric
Research Article

One-pot biosynthesis of silver nanoparticles using green tea plant extract/rosemary oil and investigation of their antibacterial activity

, &
Received 05 Jan 2021, Accepted 25 Nov 2021, Published online: 10 Jan 2022

References

  • Moradi, F.; Sedaghat, S.; Moradi, O.; Arab Salmanabadi, S. Review on Green Nano-Biosynthesis of Silver Nanoparticles and Their Biological Activities: With an Emphasis on Medicinal Plants. Inorg. Nano-Met. Chem. 2021, 51, 133–142. DOI: https://doi.org/10.1080/24701556.2020.1769662.
  • Siddiqi, K. S.; Husen, A.; Rao, R. A. K. A Review on Biosynthesis of Silver Nanoparticles and Their Biocidal Properties. J. Nanobiotechnol. 2018, 16, 14. DOI: https://doi.org/10.1186/s12951-018-0334-5.
  • Saravanan, M.; Barabadi, H.; Ramachandran, B.; Venkatraman, G.; Ponmurugan, K. Emerging Plant-Based Anti-Cancer Green Nanomaterials in Present Scenario. Chapter Eleven. In Comprehensive Analytical Chemistry, Verma, S. K., Das, A. K., Eds. Elsevier: Amsterdam, 2019; Vol.87, pp 291–318. DOI: https://doi.org/10.1016/bs.coac.2019.09.001.
  • Barabadi, H.; Vahidi, H.; Kamali, K. D.; Rashedi, M.; Hosseini, O.; Golnaraghi Ghomi, A. R.; Saravanan, M. Emerging Theranostic Silver Nanomaterials to Combat Colorectal Cancer: A Systematic Review. J. Clustr. Sci. 2020, 31, 311–321. DOI: https://doi.org/10.1007/s10876-019-01668-8.
  • Barabadi, H.; Kamali, K. D.; Shoushtari, F. J.; Tajani, B.; Mahjoub, M. A.; Alizadeh, A.; Saravanan, M. Emerging Theranostic Silver and Gold Nanomaterials to Combat Prostate Cancer: A Systematic Review. J. Clustr. Sci. 2019, 30, 1375–1382. DOI: https://doi.org/10.1007/s10876-019-01588-7.
  • Barabadi, H.; Vahidi, H.; Kamali, K. D.; Rashedi, M.; Saravanan, M. Antineoplastic Biogenic Silver Nanomaterials to Combat Cervical Cancer: A Novel Approach in Cancer Therapeutics. J. Clustr. Sci. 2020, 31, 659–672. DOI: https://doi.org/10.1007/s10876-019-01697-3.
  • Saravanan, M.; Ramachandran, B.; Barabadi, H. The Prevalence and Drug Resistance Pattern of Extended Spectrum β-Lactamases (ESBLs) Producing Enterobacteriaceae in Africa. Microb. Pathog. 2018, 114, 180–192. DOI: https://doi.org/10.1016/j.micpath.2017.11.061.
  • Najjar, R.; Stubenrauch, C. Phase Diagrams of Microemulsions Containing Reducing Agents and Metal Salts as Bases for the Synthesis of Metallic Nanoparticles. J. Colloid Interface Sci. 2009, 331, 214–220.
  • Hosseini, M. G.; Shokri, M.; Khosravi, M.; Najjar, R.; Sheikhy, S. Fabrication of Highly Stable Silver, Platinum and Gold Nanoparticles via Microemulsions: Influence of Operational Parameters. J. Mater. Sci. Eng. A1 2011, 5, 268–278.
  • Yaqoob, A. A.; Umar, K.; Mohamad Ibrahim, M. N. Silver Nanoparticles: Various Methods of Synthesis, Size Affecting Factors and Their Potential Applications: A Review. Appl. Nanosci. 2020, 10, 1369–1378. DOI: https://doi.org/10.1007/s13204-020-01318-w.
  • Alhamid, M. Z.; Hadi, B. S.; Khumaeni, A. Synthesis of Silver Nanoparticles Using Laser Ablation Method Utilizing Nd:YAG Laser. Int. Conf. Sci. Appl. Sci. (ICSAS) 2019, 2202, 20013. DOI: https://doi.org/10.1063/1.5141626..
  • Khandel, P.; Yadaw, R. K.; Soni, D. K.; Kanwar, L.; Shahi, S. K. Biogenesis of Metal Nanoparticles and Their Pharmacological Applications: Present Status and Application Prospects. J. Nanostruct. Chem. 2018, 8, 217–254. DOI: https://doi.org/10.1007/s40097-018-0267-4.
  • de Melo, A. P. Z.; Brisola Maciel, MVd.; Sganzerla, W. G.; da Rosa Almeida, A.; de Armas, R. D.; Machado, M. H.; da Rosa, C. G.; Nunes, M. R.; Bertoldi, F. C.; Barreto, P. L. M. M. Antibacterial Activity, Morphology, and Physicochemical Stability of Biosynthesized Silver Nanoparticles Using Thyme (Thymus Vulgaris) Essential Oil. Mater. Res. Expr. 2020, 7, 015087. DOI: https://doi.org/10.1088/2053-1591/ab6c63.
  • Govarthanan, M.; Seo, Y. S.; Lee, K. J.; Jung, I. B.; Ju, H. J.; Kim, J. S.; Cho, M.; Kamala-Kannan, S.; Oh, B. T. Low-Cost and Eco-Friendly Synthesis of Silver Nanoparticles Using Coconut (Cocos Nucifera) Oil Cake Extract and its Antibacterial Activity. Artif. Cells. Nanomed. Biotechnol. 2016, 44, 1878–1882. DOI: https://doi.org/10.3109/21691401.2015.1111230.
  • Govarthanan, M.; Cho, M.; Park, J. H.; Jang, J. S.; Yi, Y. J.; Kamala-Kannan, S.; Oh, B. T. Cottonseed Oilcake Extract Mediated Green Synthesis of Silver Nanoparticles and its Antibacterial and Cytotoxic Activity. J. Nanomater. 2016, 2016, 7412431. DOI: https://doi.org/10.1155/2016/7412431.
  • Valarmathi, N.; Ameen, F.; Almansob, A.; Kumar, P.; Arunprakash, S.; Govarthanan, M. Utilization of Marine Seaweed Spyridia Filamentosa for Silver Nanoparticles Synthesis and its Clinical Applications. Mater. Lett. 2020, 263, 127244. DOI: https://doi.org/10.1016/j.matlet.2019.127244.
  • Aravinthan, A.; Govarthanan, M.; Selvam, K.; Praburaman, L.; Selvankumar, T.; Balamurugan, R.; Kamala-Kannan, S.; Kim, J. H. Sunroot Mediated Synthesis and Characterization of Silver Nanoparticles and Evaluation of Its Antibacterial and Rat Splenocyte Cytotoxic Effects. Int. J. Nanomed. 2015, 10, 1977–1983. DOI: https://doi.org/10.2147/IJN.S79106.
  • Some, S.; Sen, I. K.; Mandal, A.; Aslan, T.; Ustun, Y.; Yilmaz, Ş. E.; Katı, A.; Demirbas, A.; Mandal, A. K.; Ocsoy, I. Biosynthesis of Silver Nanoparticles and Their Versatile Antimicrobial Properties. Mater. Res. Expr. 2018, 6, 012001. DOI: https://doi.org/10.1088/2053-1591/aae23e.
  • Zargar, M.; Hamid, A. A.; Bakar, F. A.; Shamsudin, M. N.; Shameli, K.; Jahanshiri, F.; Farahani, F. Green Synthesis and Antibacterial Effect of Silver Nanoparticles Using Vitex Negundo L. Molecules 2011, 16, 6667–6676.
  • Ameen, F.; Srinivasan, P.; Selvankumar, T.; Kamala-Kannan, S.; Al Nadhari, S.; Almansob, A.; Dawoud, T.; Govarthanan, M. Phytosynthesis of Silver Nanoparticles Using Mangifera indica Flower Extract as Bioreductant and Their Broad-Spectrum Antibacterial Activity. Bioorg. Chem. 2019, 88, 102970. DOI: https://doi.org/10.1016/j.bioorg.2019.102970.
  • Chinnappan, S.; Kandasamy, S.; Arumugam, S.; Kamala-Kannan, S.; Thangaswamy, S.; Muthusamy, G. Biomimetic Synthesis of Silver Nanoparticles Using Flower Extract of Bauhinia Purpurea and Its Antibacterial Activity Against Clinical Pathogens. Environ. Sci. Pollut. Res. Int. 2018, 25, 963–969. DOI: https://doi.org/10.1007/s11356-017-0841-1.
  • Sengottaiyan, A.; Mythili, R.; Selvankumar, T.; Aravinthan, A.; Kamala-Kannan, S.; Manoharan, K.; Thiyagarajan, P.; Govarthanan, M.; Kim, J. H. Green Synthesis of Silver Nanoparticles Using Solanum Indicum L. and Their Antibacterial, Splenocyte Cytotoxic Potentials. Res. Chem. Intermed. 2016, 42, 3095–3103. DOI: https://doi.org/10.1007/s11164-015-2199-7.
  • Sengottaiyan, A.; Aravinthan, A.; Sudhakar, C.; Selvam, K.; Srinivasan, P.; Govarthanan, M.; Manoharan, K.; Selvankumar, T. Synthesis and Characterization of Solanum Nigrum-Mediated Silver Nanoparticles and its Protective Effect on Alloxan-Induced Diabetic Rats. J. Nanostruct. Chem. 2016, 6, 41–48. DOI: https://doi.org/10.1007/s40097-015-0178-6.
  • Lee, K. J.; Park, S. H.; Govarthanan, M.; Hwang, P. H.; Seo, Y. S.; Cho, M.; Lee, W. H.; Lee, J. Y.; Kamala-Kannan, S.; Oh, B. T. Synthesis of Silver Nanoparticles Using Cow Milk and Their Antifungal Activity Against Phytopathogens. Mater. Lett. 2013, 105, 128–131. DOI: https://doi.org/10.1016/j.matlet.2013.04.076.
  • Mythili, R.; Selvankumar, T.; Kamala-Kannan, S.; Sudhakar, C.; Ameen, F.; Al-Sabri, A.; Selvam, K.; Govarthanan, M.; Kim, H. Utilization of Market Vegetables Waste for Silver Nanoparticles Synthesis and its Antibacterial Activity. Mater. Lett. 2018, 225, 101–104. DOI: https://doi.org/10.1016/j.matlet.2018.04.111.
  • Ameen, F.; AlYahya, S.; Govarthanan, M.; ALjahdali, N.; Al-Enazi, N.; Alsamhary, K.; Alshehri, W. A.; Alwakeel, S. S.; Alharbi, S. A. Soil Bacteria Cupriavidus sp. Mediates the Extracellular Synthesis of Antibacterial Silver Nanoparticles. J. Mol. Struct. 2020, 1202, 127233. DOI: https://doi.org/10.1016/j.molstruc.2019.127233.
  • Govarthanan, M.; Selvankumar, T.; Manoharan, K.; Rathika, A.; Shanthi, K.; Lee, K. J.; Cho, M.; Kamala-Kannan, S.; Oh, B. T. Biosynthesis and Characterization of Silver Nanoparticles Using Panchakavya, an Indian Traditional Farming Formulating Agent. Int. J. Nanomedicine. 2014, 9, 1593–1599. DOI: https://doi.org/10.2147/IJN.S58932.
  • Vilchis-Nestor, A. R.; Sánchez-Mendieta, V.; Camacho-López, M. A.; Gómez-Espinosa, R. M.; Camacho-López, M. A.; Arenas-Alatorre, J. A. Solventless Synthesis and Optical Properties of Au and Ag Nanoparticles Using Camellia Sinensis Extract. Mater. Lett. 2008, 62, 3103–3105. DOI: https://doi.org/10.1016/j.matlet.2008.01.138.
  • Atti-Santos, A. C.; Rossato, M.; Pauletti, G. F.; Rota, L. D.; Rech, J. C.; Pansera, M. R.; Agostini, F.; Serafini, L. A.; Moyna, P. Physico-Chemical Evaluation of Rosmarinus Officinalis L. Essential Oils. Braz. Arch. Biol. Technol. 2005, 48, 1035–1039. DOI: https://doi.org/10.1590/S1516-89132005000800020.
  • Gachkar, L.; Yadegari, D.; Rezaei, M. B.; Taghizadeh, M.; Astaneh, S. A.; Rasooli, I. Chemical and Biological Characteristics of Cuminum Cyminum and Rosmarinus Officinalis Essential Oils. Food Chem. 2007, 102, 898–904. DOI: https://doi.org/10.1016/j.foodchem.2006.06.035.
  • Fierascu, R. C.; Bunghez, I. R.; Somoghi, R.; Fierascu, I.; Ion, R. M. Characterization of Silver Nanoparticles Obtained by Using Rosmarinus Officinalis Extract and Their Antioxidant Activity. Roman. J. Chem. 2014, 59, 213–218.
  • Ghosh, I. N.; Patil, S. D.; Sharma, T. K.; Srivastava, S. K.; Pathania, R.; Navani, N. K. Synergistic Action of Cinnamaldehyde with Silver Nanoparticles Against Spore-Forming Bacteria: A Case for Judicious Use of Silver Nanoparticles for Antibacterial Applications. Int. J. Nanomed. 2013, 8, 4721.
  • Jamshidi, R.; Afzali, Z.; Afzali, D. Chemical Composition of Hydrodistillation Essential Oil of Rosemary in Different Origins in Iran and Comparison with Other Countries. Am.–Euras. J. Agric. Environ. Sci. 2009, 5, 78–81.
  • Adams, R. P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured Publishing Corporation: IL, USA, 2001.
  • Balouiri, M.; Sadiki, M.; Ibnsouda, S. K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79.
  • Hendel, N.; Napoli, E.; Sarri, M.; Saija, M.; Cristani, M.; Nostro, A.; Ginestra, G.; Ruberto, G. Essential Oil from Aerial Parts of Wild Algerian Rosemary: Screening of Chemical Composition, Antimicrobial and Antioxidant Activities. J. Essen. Oil. Bear. Plants 2019, 22, 1–17. DOI: https://doi.org/10.1080/0972060X.2019.1590246.
  • Zaouali, Y.; Bouzaine, T.; Boussaid, M. Essential Oils Composition in Two Rosmarinus Officinalis L. varieties and Incidence for Antimicrobial and Antioxidant Activities. Food Chem. Toxicol. 2010, 48, 3144–3152.
  • Socaci, S. A.; Tofană, M.; Socaciu, C. GC–MS Analysis of Rosemary Essential Oil. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Agric. 2008, 65, 405–409.
  • Boutekedjiret, C.; Bentahar, F.; Belabbes, R.; Bessiere, J. Extraction of Rosemary Essential Oil by Steam Distillation and Hydrodistillation. Flavour Fragr. J. 2003, 18, 481–484. DOI: https://doi.org/10.1002/ffj.1226.
  • Rolim, W. R.; Pelegrino, M. T.; de Araújo Lima, B.; Ferraz, L. S.; Costa, F. N.; Bernardes, J. S.; Rodigues, T.; Brocchi, M.; Seabra, A. B. Green Tea Extract Mediated Biogenic Synthesis of Silver Nanoparticles: characterization, Cytotoxicity Evaluation and Antibacterial Activity. Appl. Surf. Sci. 2019, 463, 66–74. DOI: https://doi.org/10.1016/j.apsusc.2018.08.203.
  • González-Rivera, J.; Duce, C.; Ierardi, V.; Longo, I.; Spepi, A.; Tine, M. R.; et al. Fast and Eco–Friendly Microwave‐Assisted Synthesis of Silver Nanoparticles Using Rosemary Essential Oil as Renewable Reducing Agent. Chem. Sel. 2017, 2, 2131–2138.
  • Oliver, S.; Wagh, H.; Liang, Y.; Yang, S.; Boyer, C. Enhancing the Antimicrobial and Antibiofilm Effectiveness of Silver Nanoparticles Prepared by Green Synthesis. J. Mater. Chem. B. 2018, 6, 4124–4138.
  • Salleh, A.; Naomi, R.; Utami, N. D.; Mohammad, A. W.; Mahmoudi, E.; Mustafa, N.; Fauzi, M. B. The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials 2020, 10, 1566. DOI: https://doi.org/10.3390/nano10081566.
  • Balachandar, R.; Gurumoorthy, P.; Karmegam, N.; Barabadi, H.; Subbaiya, R.; Anand, K.; Boomi, P.; Saravanan, M. Plant-Mediated Synthesis, Characterization and Bactericidal Potential of Emerging Silver Nanoparticles Using Stem Extract of Phyllanthus Pinnatus: A Recent Advance in Phytonanotechnology. J. Clustr. Sci. 2019, 30, 1481–1488. DOI: https://doi.org/10.1007/s10876-019-01591-y.
  • Desai, R.; Mankad, V.; Gupta, S. K.; Jha, P. K. Size Distribution of Silver Nanoparticles: UV–Visible Spectroscopic Assessment. Nanosci. Nanotechnol. Lett. 2012, 4, 30–34. DOI: https://doi.org/10.1166/nnl.2012.1278.
  • Acharya, D.; Mohanta, B.; Deb, S.; Sen, A. K. Theoretical Prediction of Absorbance Spectra considering the Particle Size Distribution Using Mie Theory and Their Comparison with the Experimental UV–Vis Spectra of Synthesized Nanoparticles. Spectrosc. Lett. 2018, 51, 139–143. DOI: https://doi.org/10.1080/00387010.2018.1442351.
  • Maciel, M. V. d O. B.; Almeida, A. d R.; Machado, M. H.; Melo, A. P. Z. d.; Rosa, C. G. d.; Freitas, D. Z. d.; Noronha, C. M.; Teixeira, G. L.; Armas, R. D. d.; Barreto, P. L. M.; et al. Syzygium aromaticum L.(Clove) Essential Oil as a Reducing Agent for the Green Synthesis of Silver Nanoparticles. OJAPPS. 2019, 09, 45–54. DOI: https://doi.org/10.4236/ojapps.2019.92005.
  • Helmlinger, J.; Sengstock, C.; Groß-Heitfeld, C.; Mayer, C.; Schildhauer, T. A.; Köller, M.; Epple, M. Silver Nanoparticles with Different Size and Shape: Equal Cytotoxicity, but Different Antibacterial Effects. RSC Adv. 2016, 6, 18490–18501. DOI: https://doi.org/10.1039/C5RA27836H.
  • Raza, M. A.; Kanwal, Z.; Rauf, A.; Sabri, A. N.; Riaz, S.; Naseem, S. Size- and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes. Nanomater 2016, 6, 74. DOI: https://doi.org/10.3390/nano6040074.
  • Kumar, P.; Selvi, S. S.; Praba, A.; Selvaraj, M.; Rani, L. M.; Suganthi, P.; et al. Antibacterial Activity and In-Vitro Cytotoxicity Assay Against Brine Shrimp Using Silver Nanoparticles Synthesized from Sargassum Ilicifolium. Digest. J. Nanomater. Biostruct. 2012, 7, 1447–1455.
  • Vilas, V.; Philip, D.; Mathew, J. Catalytically and Biologically Active Silver Nanoparticles Synthesized Using Essential Oil. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2014, 132, 743–750. DOI: https://doi.org/10.1016/j.saa.2014.05.046.
  • Chou, H.; Wu, C.; Lin, F.; Rick, J. Interactions Between Silver Nanoparticles and Polyvinyl Alcohol Nanofibers. AIP. Adv. 2014, 4, 087111. DOI: https://doi.org/10.1063/1.4890290.
  • Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M. A.; Alkawareek, M. Y.; Dreaden, E. C.; Brown, D.; Alkilany, A. M.; Farokhzad, O. C.; Mahmoudi, M.; et al. Cellular Uptake of Nanoparticles: Journey Inside the Cell. Chem. Soc. Rev. 2017, 46, 4218–4244. DOI: https://doi.org/10.1039/C6CS00636A.
  • Lekamge, S.; Miranda, A. F.; Abraham, A.; Li, V.; Shukla, R.; Bansal, V.; et al. The Toxicity of Silver Nanoparticles (AgNPs) to Three Freshwater Invertebrates with Different Life Strategies: Hydra Vulgaris, Daphnia Carinata, and Paratya Australiensis. Front Environ. Sci. 2018, 6, 152.
  • Barabadi, H.; Vahidi, H.; Kamali, K. D.; Rashedi, M.; Hosseini, O.; Saravanan, M. Emerging Theranostic Gold Nanomaterials to Combat Colorectal Cancer: A Systematic Review. J. Clust. Sci. 2020, 31, 651–658. DOI: https://doi.org/10.1007/s10876-019-01681-x.
  • Barabadi, H.; Webster, T. J.; Vahidi, H.; Sabori, H.; Kamali, K. D.; Shoushtari, F. J.; Mahjoub, M. A.; Rashedi, M.; Mostafavi, E.; Cruz, D. M.; et al. Green Nanotechnology-Based Gold Nanomaterials for Hepatic Cancer Therapeutics: A Systematic Review. Iran. J. Pharm. Res. 2020, 19, 3–17. DOI: https://doi.org/10.22037/ijpr.2020.113820.14504.
  • Ijaz, M.; Zafar, M.; Iqbal, T. Green Synthesis of Silver Nanoparticles by Using Various Extracts: A Review. Inorg. Nano-Metal. Chem. 2021 51, 744. DOI: https://doi.org/10.1080/24701556.2020.1808680.
  • Dakal, T. C.; Kumar, A.; Majumdar, R. S.; Yadav, V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016, 7, 1831.
  • Mikhailova, E. O. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. JFB. 2020, 11, 84. DOI: https://doi.org/10.3390/jfb1104008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.