221
Views
0
CrossRef citations to date
0
Altmetric
Articles

The controlled growth CuS nanosheets on the surface of functionalization carbon fibers with SiO2

, , &
Pages 910-921 | Received 09 Jun 2021, Accepted 25 Nov 2021, Published online: 11 Jan 2022

References

  • Wu, G.; Ma, L.; Jiang, H.; Liu, L.; Huang, Y. Improving the Interfacial Strength of Silicone Resin Composites by Chemically Grafting Silica Nanoparticles on Carbon Fiber. Compos. Sci. Technol. 2017, 153, 160–167. DOI: 10.1016/j.compscitech.2017.10.020.
  • Liu, Y.; Zhou, W.; Teo, W. L.; Wang, K.; Zhang, L.; Zeng, Y.; Zhao, Y. Covalent-Organic-Framework-Based Composite Materials. Chem. 2020, 6, 3172–3202. DOI: 10.1016/j.chempr.2020.08.021.
  • Zhao, S.; Zhu, R.; Fu, Y. Piezothermic Transduction of Functional Composite Materials. ACS Appl. Mater. Interfaces 2019, 11, 4588–4596. DOI: 10.1021/acsami.8b18639.
  • Oaki, Y.; Sato, K. Crystal-Controlled Polymerization: Recent Advances in Morphology Design and Control of Organic Polymer Materials. J. Mater. Chem. A 2018, 6, 23197–23219. DOI: 10.1039/C8TA08867E.
  • Tang, M.; Chen, W.; Luo, S.; Wu, X.; Fan, X.; Liao, Y.; Song, X.; Cheng, Y.; Li, L.; Tan, L.; et al. Trace Pd Modified Intermetallic PtBi Nanoplates towards Efficient Formic Acid Electrocatalysis. J. Mater. Chem. A 2021, 9, 9602–9608. DOI: 10.1039/D1TA01123E.
  • Hussain, W.; Badshah, A.; Hussain, R. A.; Imtiaz Ud, D.; Aleem, M. A.; Bahadur, A.; Iqbal, S.; Farooq, M. U.; Ali, H. Photocatalytic Applications of Cr2S3 Synthesized from Single and Multi-Source Precursors. Mater. Chem. Phys. 2017, 194, 345–355. DOI: 10.1016/j.matchemphys.2017.04.001.
  • Iqbal, S.; Pan, Z.; Zhou, K. Enhanced Photocatalytic Hydrogen Evolution from In Situ Formation of Few-Layered MoS2/CdS Nanosheet-Based van der Waals Heterostructures. Nanoscale 2017, 9, 6638–6642. DOI: 10.1039/C7NR01705G.
  • Kumar, A.; Park, G. D.; Patel, S. K. S.; Kondaveeti, S.; Otari, S.; Anwar, M. Z.; Kalia, V. C.; Singh, Y.; Kim, S. C.; Cho, B. K.; et al. SiO2 Microparticles with Carbon Nanotube-Derived Mesopores as an Efficient Support for Enzyme Immobilization. Chem. Eng. J. 2019, 359, 1252–1264. DOI: 10.1016/j.cej.2018.11.052.
  • Bai, S.; Wang, L.; Li, Z.; Xiong, Y. Facet-Engineered Surface and Interface Design of Photocatalytic Materials. Adv Sci (Weinh.) 2017, 4, 1600216–1600242. DOI: 10.1002/advs.201600216.
  • Wang, Y.; Zhao, G.; Li, X.; Liu, L.; Cao, W.; Wei, Q. Electrochemiluminescent Competitive Immunosensor Based on Polyethyleneimine Capped SiO2 Nanomaterials as Labels to Release Ru(Bpy)32+ Fixed in 3D Cu/Ni Oxalate for the Detection of Aflatoxin B1. Biosens. Bioelectron. 2018, 101, 290–296. DOI: 10.1016/j.bios.2017.10.042.
  • Wu, X.; Cao, L.; Song, J.; Si, Y.; Yu, J.; Ding, B. Thorn-Like Flexible Ag2C2O4/TiO2 Nanofibers as Hierarchical Heterojunction Photocatalysts for Efficient Visible-Light-Driven Bacteria-Killing. J. Colloid Interface Sci. 2020, 560, 681–689. DOI: 10.1016/j.jcis.2019.10.119.
  • Koya, A. N.; Zhu, X.; Ohannesian, N.; Yanik, A. A.; Alabastri, A.; Proietti Zaccaria, R.; Krahne, R.; Shih, W. C.; Garoli, D. Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis. ACS Nano. 2021, 15, 6038–6060. DOI: 10.1021/acsnano.0c10945.
  • Cheng, Z.; Qi, W.; Pang, C. H.; Thomas, T.; Wu, T.; Liu, S.; Yang, M. Recent Advances in Transition Metal Nitride-Based Materials for Photocatalytic Applications. Adv. Funct. Mater. 2021, 31, 2100553–2100575. DOI: 10.1002/adfm.202100553.
  • Irfan, R. M.; Tahir, M. H.; Khan, S. A.; Shaheen, M. A.; Ahmed, G.; Iqbal, S. Enhanced Photocatalytic H2 Production under Visible Light on Composite Photocatalyst (CdS/NiSe Nanorods) Synthesized in Aqueous Solution. J. Colloid Interface Sci. 2019, 557, 1–9. DOI: 10.1016/j.jcis.2019.09.014.
  • Tzadikov, J.; Amsellem, M.; Amlani, H.; Barrio, J.; Azoulay, A.; Volokh, M.; Kozuch, S.; Shalom, M. Coordination-Directed Growth of Transition-Metal-Crystalline-Carbon Composites with Controllable Metal Composition. Angew. Chem. Int. Ed. Engl. 2019, 58, 14964–14968. DOI: 10.1002/anie.201908586.
  • Wu, H.; Inaba, T.; Wang, Z. M.; Endo, T. Photocatalytic TiO2@CS-Embedded Cellulose Nanofiber Mixed Matrix Membrane. Appl. Catal. B: Environ. 2020, 276, 119111–119121. DOI: 10.1016/j.apcatb.2020.119111.
  • Dou, Y.; Zhou, A.; Yao, Y.; Lim, S. Y.; Li, J. R.; Zhang, W. Suppressing Hydrogen Evolution for High Selective CO2 Reduction through Surface-Reconstructed Heterojunction Photocatalyst. Appl. Catal. B: Environ. 2021, 286, 119876–119884. DOI: 10.1016/j.apcatb.2021.119876.
  • Yue, H. Y.; Wu, P. F.; Huang, S.; Wang, Z. Z.; Gao, X.; Song, S. S.; Wang, W. Q.; Zhang, H. J.; Guo, X. R. Golf Ball-Like MoS2 Nanosheet Arrays Anchored onto Carbon Nanofibers for Electrochemical Detection of Dopamine. Mikrochim. Acta 2019, 186, 378–385. DOI: 10.1007/s00604-019-3495-5.
  • Ma, L.; Meng, L.; Wu, G.; Wang, Y.; Zhao, M.; Zhang, C.; Huang, Y. Improving the Interfacial Properties of Carbon Fiber-Reinforced Epoxy Composites by Grafting of Branched Polyethyleneimine on Carbon Fiber Surface in Supercritical Methanol. Compos. Sci. Technol. 2015, 114, 64–71. DOI: 10.1016/j.compscitech.2015.04.011.
  • Song, S. A.; Lee, C. K.; Bang, Y. H.; Kim, S. S. A Novel Coating Method Using Zinc Oxide Nanorods to Improve the Interfacial Shear Strength between Carbon Fiber and a Thermoplastic Matrix. Compos. Sci. Technol. 2016, 134, 106–114. DOI: 10.1016/j.compscitech.2016.08.012.
  • Li, L.; Liu, W.; Yang, F.; Jiao, W.; Hao, L.; Wang, R. Interfacial Reinforcement of Hybrid Composite by Electrophoretic Deposition for Vertically Aligned Carbon Nanotubes on Carbon Fiber. Compos. Sci. Technol. 2020, 187, 107946–107956. DOI: 10.1016/j.compscitech.2019.107946.
  • Dong, J.; He, J.; Jia, C.; Song, Y.; He, Z.; Wei, H.; Zhang, T.; Zheng, W.; Jiang, Z.; Huang, Y. Growth of Carbon Black onto Continuous Carbon Fiber to Produce Composites with Improved Mechanical and Interfacial Properties: A Step Closer to Industrial Production. Compos. Sci. Technol. 2019, 173, 83–89. DOI: 10.1016/j.compscitech.2019.01.024.
  • Iqbal, S. Spatial Charge Separation and Transfer in L-Cysteine Capped NiCoP/CdS Nano-Heterojunction Activated with Intimate Covalent Bonding for High-Quantum-Yield Photocatalytic Hydrogen Evolution. Appl. Catal. B: Environ. 2020, 274, 119097–119107. DOI: 10.1016/j.apcatb.2020.119097.
  • Zhang, W.; Huang, Z.; Zhou, H.; Li, S.; Wang, C.; Li, H.; Yan, Z.; Wang, F.; Kuang, Y. Facile Synthesis of ZnS Nanoparticles Decorated on Defective CNTs with Excellent Performances for Lithium-Ion Batteries Anode Material. J. Alloy. Compd. 2020, 816, 152633–152643. DOI: 10.1016/j.jallcom.2019.152633.
  • Ramaraj, S.; Mani, S.; Chen, S. M.; Kokulnathan, T.; Lou, B. S.; Ali, M. A.; Hatamleh, A. A.; Al-Hemaid, F. M. A. Synthesis and Application of Bismuth Ferrite Nanosheets Supported Functionalized Carbon Nanofiber for Enhanced Electrochemical Detection of Toxic Organic Compound in Water Samples. J. Colloid Interface Sci. 2018, 514, 59–69. DOI: 10.1016/j.jcis.2017.12.016.
  • Yoon, K. R.; Shin, K.; Park, J.; Cho, S. H.; Kim, C.; Jung, J. W.; Cheong, J. Y.; Byon, H. R.; Lee, H. M.; Kim, I. D. Brush-Like Cobalt Nitride Anchored Carbon Nanofiber Membrane: Current Collector-Catalyst Integrated Cathode for Long Cycle Li–O2 Batteries. ACS Nano 2018, 12, 128–139. DOI: 10.1021/acsnano.7b03794.
  • Liu, X.; He, J.-H.; Sakthivel, R.; Chung, R. J. Rare Earth Erbium Molybdate Nanoflakes Decorated Functionalized Carbon Nanofibers: An Affordable and Potential Catalytic Platform for the Electrooxidation of Phenothiazine. Electrochim. Acta 2020, 358, 136885–136896. DOI: 10.1016/j.electacta.2020.136885.
  • Wang, X.; Ma, J.; Wang, J.; Li, X. N-Doped Hollow Carbon Nanofibers Anchored Hierarchical FeP Nanosheets as High-Performance Anode for Potassium-Ion Batteries. J. Alloy Compd. 2020, 821, 153268–153277. DOI: 10.1016/j.jallcom.2019.153268.
  • Sakthivel, M.; Ramaraj, S.; Chen, S. M.; Dinesh, B. Synthesis of Rose like Structured LaCoO3 Assisted Functionalized Carbon Nanofiber Nanocomposite for Efficient Electrochemical Detection of anti-Inflammatory Drug 4-Aminoantipyrine. Electrochim. Acta 2018, 260, 571–581. DOI: 10.1016/j.electacta.2017.11.122.
  • Vidick, D.; Herlitschke, M.; Poleunis, C.; Delcorte, A.; Hermann, R. P.; Devillers, M.; Hermans, S. Comparison of Functionalized Carbon Nanofibers and Multi-Walled Carbon Nanotubes as Supports for Fe–Co Nanoparticles. J. Mater. Chem. A 2013, 1, 2050–2063. DOI: 10.1039/C2TA00131D.
  • Huang, P.; Zhao, Y.; Kuga, S.; Wu, M.; Huang, Y. A. A Versatile Method for Producing Functionalized Cellulose Nanofibers and their Application. Nanoscale 2016, 8, 3753–3759. DOI: 10.1039/C5NR08179C.
  • Fu, J.; Zhang, M.; Jin, L.; Liu, L.; Li, N.; Shang, L.; Li, M.; Xiao, L.; Ao, Y. Enhancing Interfacial Properties of Carbon Fibers Reinforced Epoxy Composites via Layer-by-Layer Self Assembly GO/SiO2 Multilayers Films on Carbon Fibers Surface. Appl. Surf. Sci. 2019, 470, 543–554. DOI: 10.1016/j.apsusc.2018.11.168.
  • Zheng, Y.; Wang, X.; Wu, G. Facile Strategy of Improving Interfacial Strength of Silicone Resin Composites through Self-Polymerized Polydopamine Followed via the Sol-Gel Growing of Silica Nanoparticles onto Carbon Fiber. Polymers 2019, 11, 1639–1650. DOI: 10.3390/polym11101639.
  • Li, M.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Li, Z.; Zheng, Y.; Yeung, K. W. K.; Chu, P. K.; Wu, S. Noninvasive Rapid Bacteria-Killing and Acceleration of Wound Healing through Photothermal/Photodynamic/Copper Ion Synergistic Action of a Hybrid Hydrogel. Biomater. Sci. 2018, 6, 2110–2121. DOI: 10.1039/C8BM00499D.
  • Han, D. L.; Yu, P. L.; Liu, X. M.; Xu, Y. D.; Wu, S. L. Polydopamine Modified CuS@HKUST for Rapid Sterilization through Enhanced Photothermal Property and Photocatalytic Ability. Rare Met. 2021, 132, 1–10. DOI: 10.1007/s12598-021-01786-1.
  • Lu, Z.; Wang, W.; Zhang, J.; Bartolo, P.; Gong, H.; Li, J. Electrospun Highly Porous Poly(L-Lactic Acid)-Dopamine-SiO2 Fibrous Membrane for Bone Regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 117, 111359–111368. DOI: 10.1016/j.msec.2020.111359.
  • Zhang, R.; Xie, R.; Liu, D.; Jia, X.; Cai, Q.; Yang, X. Nanoporous Fibers Built with Carbon-Bound SiO2 Nanospheres via Electrospinning and Calcination. Mater. Des. 2017, 130, 231–238. DOI: 10.1016/j.matdes.2017.05.073.
  • Sun, L. N.; Lu, L. X.; Pan, L.; Lu, L. J.; Qiu, X. L. Development of Active Low-Density Polyethylene (LDPE) Antioxidant Packaging Films: Controlled Release Effect of Modified Mesoporous Silicas. Food Packag. Shelf 2021, 27, 100616–100624. DOI: 10.1016/j.fpsl.2020.100616.
  • Iqbal, S.; Bahadur, A.; Anwer, S.; Shoaib, M.; Liu, G.; Li, H.; Raheel, M.; Javed, M.; Khalid, B. Designing Novel Morphologies of L-Cysteine Surface Capped 2D Covellite (CuS) Nanoplates to Study the Effect of CuS Morphologies on Dye Degradation Rate under Visible Light. CrystEngComm 2020, 22, 4162–4173. DOI: 10.1039/D0CE00421A.
  • Salandari-Jolge, N.; Ensafi, A. A.; Rezaei, B. A Novel Three-Dimensional Network of CuCr2O4/CuO Nanofibers for Voltammetric Determination of Anticancer Drug Methotrexate. Anal. Bioanal. Chem. 2020, 412, 2443–2453. DOI: 10.1007/s00216-020-02461-7.
  • Mao, H.; Zhang, B.; Nie, Y.; Tang, X.; Yang, S.; Zhou, S. Enhanced Antibacterial Activity of V-Doped ZnO@SiO2 Composites. Appl. Surf. Sci. 2021, 546, 149127–149140. DOI: 10.1016/j.apsusc.2021.149127.
  • Shang, Z.; An, X.; Li, Q. L.; Yang, J.; Zhang, W.; Dai, H.; Cao, H.; Xu, Q.; Liu, H.; Ni, Y. Chitin Nanofibers as Versatile Bio-Templates of Zeolitic Imidazolate Frameworks for N-Doped Hierarchically Porous Carbon Electrodes for Supercapacitor. Carbohydr. Polym. 2021, 251, 117107–117117. DOI: 10.1016/j.carbpol.2020.117107.
  • Gao, S.; Tang, Y.; Wang, L.; Liu, L.; Sun, Z.; Wang, S.; Zhao, H.; Kong, L.; Jia, D. Coal-Based Hierarchical Porous Carbon Synthesized with a Soluble Salt Self-Assembly-Assisted Method for High Performance Supercapacitors and Li-Ion Batteries. ACS Sustain. Chem. Eng. 2018, 6, 3255–3263. DOI: 10.1021/acssuschemeng.7b03421.
  • Luo, Q.; Huang, X.; Luo, Y.; Yuan, H.; Ren, T.; Li, X.; Xu, D.; Guo, X.; Wu, Y. Fluorescent Chitosan-Based Hydrogel Incorporating Titanate and Cellulose Nanofibers Modified with Carbon Dots for Adsorption and Detection of Cr(VI). Chem. Eng. J. 2021, 407, 127050–127058. DOI: 10.1016/j.cej.2020.127050.
  • Bahadur, A.; Hussain, W.; Iqbal, S.; Ullah, F.; Shoaib, M.; Liu, G.; Feng, K. A Morphology Controlled Surface Sulfurized CoMn2O4 Microspike Electrocatalyst for Water Splitting with Excellent OER Rate for Binder-Free Electrocatalytic Oxygen Evolution. J. Mater. Chem. A 2021, 9, 12255–12264. DOI: 10.1039/D0TA09430G.
  • Lv, R.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L.; Cui, Z. D.; Wu, S. L. Flower-Like CuS/Graphene Oxide with Photothermal and Enhanced Photocatalytic Effect for Rapid Bacteria-Killing Using Visible Light. Rare Met. 2021, 276, 1–11. DOI: 10.1007/s12598-021-01759-4.
  • El-Hout, S. I.; El-Sheikh, S. M.; Gaber, A.; Shawky, A.; Ahmed, A. I. Highly Efficient Sunlight-Driven Photocatalytic Degradation of Malachite Green Dye over Reduced Graphene Oxide-Supported CuS Nanoparticles. J. Alloy. Compd. 2020, 849, 156573–156585. DOI: 10.1016/j.jallcom.2020.156573.
  • Wang, J.; Wan, Y.; Wang, X.; Pu, Y.; Ali, N.; Yuan, S.; Zhang, Q.; Bilal, M. Fabrication and Characterization of Inverse Opal Tin Dioxide as a Novel and High-Performance Photocatalyst for Degradation of Rhodamine B Dye. Inorg. Nano-Met. Chem. 2021, 51, 150–158. DOI: 10.1080/24701556.2020.1769664.
  • Yu, P.; Han, Y.; Han, D.; Liu, X.; Liang, Y.; Li, Z.; Zhu, S.; Wu, S. In-Situ Sulfuration of Cu-Based Metal-Organic Framework for Rapid near-Infrared Light Sterilization. J. Hazard. Mater. 2020, 390, 122126–122136. DOI: 10.1016/j.jhazmat.2020.122126.
  • Iqbal, S.; Bahadur, A.; Anwer, S.; Ali, S.; Saeed, A.; Irfan, R. M.; Li, H.; Javed, M.; Raheel, M.; Shoaib, M. Shape and Phase-Controlled Synthesis of Specially Designed 2D Morphologies of L-Cysteine Surface Capped Covellite (CuS) and Chalcocite (Cu2S) with Excellent Photocatalytic Properties in the Visible Spectrum. Appl. Surf. Sci. 2020, 526, 146691–146704. DOI: 10.1016/j.apsusc.2020.146691.
  • Nasseh, N.; Taghavi, L.; Barikbin, B.; Nasseri, M. A. Synthesis and Characterizations of a Novel FeNi3/SiO2/CuS Magnetic Nanocomposite for Photocatalytic Degradation of Tetracycline in Simulated Wastewater. J. Clean. Prod. 2018, 179, 42–54. DOI: 10.1016/j.jclepro.2018.01.052.
  • Younis, U. S.; Fazel, M.; Myrdal, P. B. Characterization of Tetracycline Hydrochloride Compounded in a Miracle Mouthwash Formulation. AAPS PharmSciTech 2019, 20, 178–186. DOI: 10.1208/s12249-019-1388-x.
  • Yu, D.; Bai, J.; Liang, H.; Li, C. Electrospinning, Solvothermal, and Self-Assembly Synthesis of Recyclable and Renewable AgBrTiO2/CNFs with Excellent Visible-Light Responsive Photocatalysis. J. Alloy. Compd. 2016, 683, 329–338. DOI: 10.1016/j.jallcom.2016.05.103.
  • Iqbal, S.; Bahadur, A.; Javed, M.; Hakami, O.; Irfan, R. M.; Ahmad, Z.; AlObaid, A.; Al-Anazy, M. M.; Baghdadi, H. B.; Abd-Rabboh, H. S. M.; et al. Design Ag-Doped ZnO Heterostructure Photocatalyst with Sulfurized Graphitic C3N4 Showing Enhanced Photocatalytic Activity. Mater. Sci. Eng. B: Adv. 2021, 272, 115320–115329. DOI: 10.1016/j.mseb.2021.115320.
  • Yang, Y.; Zhang, C.; Huang, D.; Zeng, G.; Huang, J.; Lai, C.; Zhou, C.; Wang, W.; Guo, H.; Xue, W.; et al. Boron Nitride Quantum Dots Decorated Ultrathin Porous g-C3N4: Intensified Exciton Dissociation and Charge Transfer for Promoting Visible-Light-Driven Molecular Oxygen Activation. Appl. Catal. B: Environ. 2019, 245, 87–99. DOI: 10.1016/j.apcatb.2018.12.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.