112
Views
3
CrossRef citations to date
0
Altmetric
Articles

Rapid synthesis and magnetic property characterization of Mg2+ doped Co3O4 nanostructures

, , , , , , , , , & show all
Pages 996-1002 | Received 26 Jun 2021, Accepted 25 Nov 2021, Published online: 07 Feb 2022

References

  • Rashad, M. Performance Efficiency and Kinetic Studies of Water Purification Using ZnO and MgO Nanoparticles for Potassium Permanganate. Opt. Quant. Electron. 2019, 51, 291. DOI: 10.1007/s11082-019-2003-9.
  • Koli, P. B.; Kapadnis, K. H.; Deshpande, U. G.; Patil, M. R. Fabrication and Characterization of Pure and Modified Co3O4 Nanocatalyst and Their Application for Photocatalytic Degradation of Eosine Blue Dye: A Comparative Study. J. Nanostruct. Chem. 2018, 8, 453–463. DOI: 10.1007/s40097-018-0287-0.
  • Bindu Duvuru, H.; Alla, S. K.; Shaw, S. K.; Meena, S. S.; Gupta, N.; Prasad, B. B. V. S. V.; Kothawale, M. M.; Kumar, M. K.; Prasad, N. K. Magnetic and Dielectric Properties of Zn Substituted Cobalt Oxide Nanoparticles. Ceram. Int. 2019, 45, 16512–16520. DOI: 10.1016/j.ceramint.2019.05.185.
  • Lester, E.; Aksomaityte, G.; Li, J.; Gomez, S.; Gonzalez-Gonzalez, J.; Poliakoff, M. Controlled Continuous Hydrothermal Synthesis of Cobalt Oxide (Co3O4) Nanoparticles. Prog. Cryst. Growth Charact. Mater. 2012, 58, 3–13. DOI: 10.1016/j.pcrysgrow.2011.10.008.
  • Manteghi, F.; Kazemi, S. H.; Peyvandipour, M.; Asghari, A. Preparation and Application of Cobalt Oxide Nanostructures as Electrode Materials for Electrochemical Supercapacitors. RSC Adv. 2015, 5, 76458–76463. DOI: 10.1039/C5RA09060A.
  • Tan, H.; Tang, J.; Kim, J.; Kaneti, Y. V.; Kang, Y. M.; Sugahara, Y.; Yamauchi, Y. Rational Design and Construction of Nanoporous Iron- and Nitrogen-Doped Carbon Electrocatalysts for Oxygen Reduction Reaction. J. Mater. Chem. A. 2019, 7, 1380–1393. DOI: 10.1039/C8TA08870E.
  • Li, L.; Xie, Z.; Jiang, G.; Wang, Y.; Cao, B.; Yuan, C. Efficient Laser-Induced Construction of Oxygen-Vacancy Abundant Nano-ZnCo2O4/Porous Reduced Graphene Oxide Hybrids toward Exceptional Capacitive Lithium Storage. Small 2020, 16, 2001526. DOI: 10.1002/smll.202001526.
  • Zhang, S.; Xia, W.; Yang, Q.; Kaneti, Y. V.; Xu, X.; Alshehri, S. M.; Ahamad, T.; Shahriar, M.; Hossain Na, A. J.; Tang, J.; et al. Core-Shell Motif Construction: Highly Graphitic Nitrogen-Doped Porous Carbon Electrocatalysts Using MOF-Derived Carbon@COF Heterostructures as Sacrificial Templates. Chem. Eng. J. 2020, 396, 125154. DOI: 10.1016/j.cej.2020.125154.
  • Zhang, X.; Fan, Y.; Khan, M. A.; Zhao, H.; Ye, D.; Wang, J.; Yue, B.; Fang, J.; Xu, J.; Zhang, L.; Zhang, J. Co − Ni Binary-Metal Oxide Coated with Porous Carbon Derived from Metal-Organic Framework as Host of Nano-Sulfur for Lithium-Sulfur Batteries. Batteries Supercaps 2020, 3, 108–116. DOI: 10.1002/batt.201900121.
  • Saptiama, I.; Kaneti, Y. V.; Suzuki, Y.; Tsuchiya, K.; Fukumitsu, N.; Sakae, T.; Kim, J.; Kang, Y. M.; Ariga, K.; Yamauchi, Y. Template-Free Fabrication of Mesoporous Alumina Nanospheres Using Post-Synthesis Water-Ethanol Treatment of Monodispersed Aluminium Glycerate Nano-Spheres for Molybdenum Adsorption. Small 2018, 14, 1800474. DOI: 10.1002/smll.201800474.
  • Zhang, S.; Wang, J.; Torad, N. L.; Xia, W.; Aslam, M. A.; Kaneti, Y. V.; Hou, Z.; Ding, Z.; Da, B.; Fatehmulla, A.; et al. Rational Design of Nanoporous MoS2/VS2 Heteroarchitecture for Ultrahigh Performance Ammonia Sensors. Small 2020, 16, 1901718. DOI: 10.1002/smll.201901718.
  • Dang, N. M.; Zhao, W.-W.; Yusa, S-i.; Noguchi, H.; Nakashima, K. Cobalt Oxide Hollow Nanoparticles as Synthesized by Templating a Tri-Block Copolymer Micelle with a Core-Shell-Corona Structure: A Promising Anode Material for Lithium Ion Batteries. New J. Chem. 2015, 39, 4726–4730. DOI: 10.1039/C5NJ00058K.
  • Qiao, L.; Xiao, H. Y.; Meyer, H. M.; Sun, J. N.; Rouleau, C. M.; Puretzky, A. A.; Geohegan, D. B.; Ivanov, I. N.; Yoon, M.; Weber, W. J.; Biegalski, M. D. Nature of the Band Gap and Origin of the Electro-/Photo-Activity of Co3O4. J. Mater. Chem. C. 2013, 1, 4628. DOI: 10.1039/c3tc30861h.
  • Onwudiwe, D. C.; Ravele, M. P.; Elemike, E. E. Eco-Friendly Synthesis, Structural Properties and Morphology of Cobalt Hydroxide and Cobalt Oxide Nanoparticles Using Extract of Litchi Chinensis. Nano-Struct. Nano-Objects 2020, 23, 100470. DOI: 10.1016/j.nanoso.2020.100470.
  • Tatarchuk, T.; Shyichuk, A.; Sojka, Z.; Gryboś, J.; Naushad, M.; Kotsyubynsky, V.; Kowalska, M.; Kwiatkowska-Marks, S.; Danyliuk, N. Green Synthesis, Structure, Cations Distribution and Bonding Characteristics of Superparamagnetic Cobalt-Zinc Ferrites Nanoparticles for Pb(II) Adsorption and Magnetic Hyperthermia Applications. J. Mol. Liq. 2021, 328, 115375. DOI: 10.1016/j.molliq.2021.115375.
  • Tatarchuk, T.; Myslin, M.; Lapchuk, I.; Olkhovyy, O.; Danyliuk, N.; Mandzyuk, V. Synthesis, Structure and Morphology of Magnesium Ferrite Nanoparticles, Synthesized via Green Method. Phys. Chem. Solid State 2021, 22, 195–203. DOI: 10.15330/pcss.22.2.195-203.
  • Tatarchuk, T.; Shyichuk, A.; Trawczyńska, I.; Yaremiy, I.; Pędziwiatr, A. T.; Kurzydło, P.; Bogacz, B. F.; Gargula, R. Spinel Cobalt(II) Ferrite-Chromites as Catalysts for H2O2 Decomposition: Synthesis, Morphology, Cation Distribution and Antistructure Model of Active Centers Formation. Ceram. Int. 2020, 46, 27517–27530. DOI: 10.1016/j.ceramint.2020.07.243.
  • Tatarchuk, T.; Naushad, M.; Tomaszewska, J.; Kosobucki, P.; Myslin, M.; Vasylyeva, H.; Ścigalski, P. Adsorption of Sr(II) Ions and Salicylic Acid onto Magnetic Magnesium-Zinc Ferrites: Isotherms and Kinetic Studies. Environ. Sci. Pollut. Res. Int. 2020, 27, 26681–26693. DOI: 10.1007/s11356-020-09043-1.
  • Sukumar, M.; Kennedy, L. J.; Vijaya, J. J.; Al-Najar, B.; Bououdina, M. Structural, Magnetic and Catalytic Properties of La2-xBaxCuO4 (0 ≤x ≤ 0.5) Perovskite Nanoparticles. Ceram. Int. 2018, 44, 18113–18122. DOI: 10.1016/j.ceramint.2018.07.017.
  • Jesudoss, S. K.; Judith Vijaya, J.; IyyappaRajan, P.; Kaviyarasu, K.; Sivachidambaram, M.; John Kennedy, L.; Al-Lohedan, H. A.; Jothiramalingam, R.; Munusamy, M. A. High Performance Multifunctional Green Co3O4 Spinel Nanoparticles: photodegradation of Textile Dye Effluents, Catalytic Hydrogenation of Nitro-Aromatics and Antibacterial Potential. Photochem. Photobiol. Sci. 2017, 16, 766–778. DOI: 10.1039/c7pp00006e.
  • Sundararajan, M.; Kennedy, L. J.; Vijaya, J. J.; Aruldoss, U. Microwave Combustion Synthesis of Co1-xZnxFe2O4 (0⩽x⩽0.5): Structural, Magnetic, Optical and Vibrational Spectroscopic Studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 140, 421–430. DOI: 10.1016/j.saa.2014.12.035.
  • Baskar, S.; Yuvaraj, S.; Sundararajan, M.; Sekhar Dash, C. Influence of Ca2+ Ion Substitution on Structural, Morphological, Optical, Thermal and Magnetic Behaviour of Mg1−xCaxFe2O4 (0 ≤ x ≤ 0.5) Spinel. J. Supercond. Nov. Magn. 2020, 33, 3949–3956. DOI: 10.1007/s10948-020-05665-1.
  • Nasrollahzadeh, M.; Jaleh B, B.; Jabbari, A. Synthesis, Characterization and Catalytic Activity of Graphene Oxide/ZnO Nanocomposites. RSC Adv. 2014, 4, 36713. DOI: 10.1039/C4RA05833J.
  • Sukumar, M.; Kennedy, L. J.; Vijaya, J. J.; Al-Najar, B.; Bououdina, M. Co2+ Substituted La2CuO4/LaCoO3 Perovskite Nanocomposites: Synthesis, Properties and Heterogeneous Catalytic Performance. New J. Chem. 2018, 42, 18128–18142. DOI: 10.1039/C8NJ04133D.
  • Soofivand, F.; Salavati-Niasari, M. Co3O4/Graphene Nanocomposite: Pre-graphenization Synthesis and Photocatalytic Investigation of Various Magnetic Nanostructures. RSC Adv. 2015, 5, 64346–64353. DOI: 10.1039/C5RA09504B.
  • Ramachandran, S.; Dash, C. S.; Thamilselvan, A.; Kalpana, S.; Sundararajan, M. Rapid Synthesis and Characterization of Pure and Cobalt Doped Zinc Aluminate Nanoparticles via Microwave Assisted Combustion Method. J. Nanosci. Nanotechnol. 2020, 20, 2382–2388. DOI: 10.1166/jnn.2020.17314.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.