136
Views
1
CrossRef citations to date
0
Altmetric
Articles

Double-layer modelling and physicochemical parameters interpretation for chromium adsorption on ZnMnOAC nanocomposite

, ORCID Icon, ORCID Icon, , &
Pages 228-238 | Received 26 Nov 2020, Accepted 25 Nov 2021, Published online: 07 Mar 2022

References

  • Inglezakis, V. J.; Loizidou, M. D. Ion Exchange of Some Heavy Metal Ions from Polar Organic Solvents into Zeolite. Desalination 2007, 211, 238–248. DOI: 10.1016/j.desal.2006.02.094.
  • Miretzky, P.; Saralegui, A.; Cirelli, A. F. Simultaneous Heavy Metal Removal Mechanism by Dead Macrophytes. Chemosphere 2006, 62, 247–254. DOI: 10.1016/j.chemosphere.2005.05.010.
  • Chen, Y.; Sun, Z.; Ye, W.; Cui, Y. Adsorptive Removal of Eu (III) from Simulated Groundwater by GMZ Bentonite on the Repository Conditions. J. Radioanal. Nucl. Chem. 2017, 311, 1839–1847. DOI: 10.1007/s10967-017-5173-6.
  • He, Y.; Chen, Y.; Ye, W. Equilibrium, Kinetic, and Thermodynamic Studies of Adsorption of Sr (II) from Aqueous Solution onto GMZ Bentonite. Environ. Earth Sci. 2016, 75, 807–816.
  • Chen, Y.; Zhu, B.; Wu, D.; Wang, Q.; Yang, Y.; Ye, W.; Guo, J. Eu (III) Adsorption Using di (2-Thylhexyl) Phosphoric Acid-Immobilized Magnetic GMZ Bentonite. Chem. Eng. J. 2012, 181-182, 387–396. DOI: 10.1016/j.cej.2011.11.100.
  • Gupta, K.; Ghosh, U. C. Arsenic Removal Using Hydrous Nanostructure Iron (III) Titanium (IV) Binary Mixed Oxide from Aqueous Solution. J. Hazard. Mater. 2009, 161, 884–892. DOI: 10.1016/j.jhazmat.2008.04.034.
  • Radnia, H.; Ghoreyshi, A. A.; Younesi, H. Isotherm and Kinetics of Fe (II) Adsorption onto Chitosan in a Batch Process. Iran. J.. Energy Environ. 2011, 2, 250–257.
  • Cheng, Q.; Wang, C.; Doudric, K.; Chan, C. K. Hexavalent Chromium Removal Using Metal Oxide Photocatalysts. Appl. Catal. B Environ. 2015, 176–177, 740–748. DOI: 10.1016/j.apcatb.2015.04.047.
  • Qiu, B.; Xu, C.; Sun, D.; Wang, Q.; Gu, H.; Zhang, X.; Weeks, B. L.; Hopper, J.; Ho, T. C.; Guo, Z.; Wei, S. Polyaniline Coating with Various Substrates for Hexavalent Chromium Removal. Appl. Surf. Sci. 2015, 334, 7–14. DOI: 10.1016/j.apsusc.2014.07.039.
  • Pinakidou, F.; Katsikini, M.; Simeonidis, K.; Kaprara, E.; Paloura, E. C.; Mitrakas, M. On the Passivation Mechanism of Fe3O4 Nanoparticles during Cr(VI) Removal from Water: A XAFS Study. Appl. Surf. Sci. 2016, 360, 1080–1086. DOI: 10.1016/j.apsusc.2015.11.063.
  • Chen, Y.; He, Y.; Ye, W.; Lin, C.; Zhang, X.; Ye, B. Removal of Chromium(III) from Aqueous Solutions by Adsorption on Bentonite from Gaomiaozi, China. Environ. Earth Sci. 2012, 67, 1261–1268. DOI: 10.1007/s12665-012-1569-3.
  • Nikagolla, C.; Chandrajith, R.; Weerasooriya, R.; Dissanayake, C. B. Adsorption Kinetics of Chromium(III) Removal from Aqueous Solutions Using Natural Red Earth. Environ. Earth Sci. 2013, 68, 641–645. DOI: 10.1007/s12665-012-1767-z.
  • Sukumar, C.; Gowthami, G.; Nitya, R.; Janaki, V.; Seralathan, K.; Kamala-Kannan, S. Significance of co-Immobilized Activated Carbon and Bacillus subtilis on Removal of Cr(VI) from Aqueous Solutions. Environ. Earth Sci. 2014, 72, 839–847. DOI: 10.1007/s12665-013-3007-6.
  • Kim, S. A.; Kamala-Kannan, S.; Oh, S. G.; Cho, M.; Bae, S.; Oh, B. T. Simultaneous Removal of Chromium(VI) and Reactive Black 5 Using Zeolite Supported Nano-Scale Zero-Valent Iron Composite. Environ. Earth Sci. 2016, 75, 447.
  • Ali, A.; Saeed, K.; Mabood, F. Removal of Chromium (VI) from Aqueous Medium Using Chemically Modified Banana Peels as Efficient Low-Cost Adsorbent. Alexandria Eng. J. 2016, 55, 2933–2942. DOI: 10.1016/j.aej.2016.05.011.
  • Mitra, P.; Sarkar, D.; Chakrabarti, S.; Dutta, B. K. Reduction of Hexa-Valent Chromium with Zero-Valent Iron: Batch Kinetic Studies and Rate Model. Chem. Eng. J. 2011, 171, 54–60. DOI: 10.1016/j.cej.2011.03.037.
  • Li, Y.; Gao, B.; Wu, T.; Sun, D.; Li, X.; Wang, B.; Lu, F. Hexavalent Chromium Removal from Aqueous Solution by Adsorption on Aluminum Magnesium Mixed Hydroxide. Water Res. 2009, 43, 3067–3075. DOI: 10.1016/j.watres.2009.04.008.
  • Sharma, G.; Naushad, M. Adsorptive Removal of Noxious Cadmium Ions from Aqueous Medium Using Activated Carbon/Zirconium Oxide Composite: Isotherm and Kinetic Modelling. J. Mol. Liq. 2020, 310, 113025. DOI: 10.1016/j.molliq.2020.113025.
  • Naushad, M.; ALOthman, Z. A.; Awual, M. R.; Alam, M. M.; Eldesoky, G. E. Adsorption Kinetics, Isotherms, and Thermodynamic Studies for the Adsorption of Pb2+ and Hg2+ Metal Ions from Aqueous Medium Using Ti(IV) Iodovanadate Cation Exchanger. Ionics 2015, 21, 2237–2245. DOI: 10.1007/s11581-015-1401-7.
  • Sharma, G.; Pathania, D.; Naushad, M.; Kothiyal, N. C. Fabrication, Characterization and Antimicrobial Activity of Polyaniline Th(IV) Tungstomolybdophosphate Nanocomposite Material: Efficient Removal of Toxic Metal Ions from Water. Chem. Eng. J. 2014, 251, 413–421. DOI: 10.1016/j.cej.2014.04.074.
  • S.; Muthusaravanan, N.; Sivarajasekar, J. S.; Vivek, T.; Paramasivan, M.; Naushad, J.; Prakashmaran, V.; Gayathri, O. K. Al, ‑.; Duaij, Phytoremediation of Heavy Metals: Mechanisms, Methods and Enhancements. Environ. Chem. Lett. 2018, 16, 1339–1359. DOI: 10.1007/s10311-018-0762-3.
  • Wang, N.; Qiu, Y.; Hu, K.; Huang, C.; Xiang, J.; Li, H.; Tang, J.; Wang, J.; Xiao, T. One-step synthesis of cake-like biosorbents from plant biomass for the effective removal and recovery heavy metals: Effect of plant species and roles of xanthation . Chemosphere 2021, 266, 129129. DOI: 10.1016/j.chemosphere.2020.129129.
  • Rambabu, K.; Thanigaivelan, A.; Bharath, G.; Sivarajasekar, N.; Banat, F. Pau Loke Show, Biosorption Potential of Phoenix Dactylifera Coir Wastes for Toxic Hexavalent Chromiumsequestration. Chemosphere. 2021, 268, 128809.
  • Rangabhashiyam, S.; Balasubramanian, P. Adsorption Behaviors of Hazardous Methylene Blue and Hexavalent Chromium on Novel Materials Derived from Pterospermumacerifolium Shells. J. Mol. Liq. 2018, 254, 433–445. DOI: 10.1016/j.molliq.2018.01.131.
  • Jethave, G.; Fegade, U.; Attarde, S.; Ingle, S.; Ghaedi, M.; Sabzehmeidani, M. M. Exploration of the Adsorption Capability by Doping Pb@ZnFe2O4 Nanocomposites (NCs) for Decontamination of Dye from Textile Wastewater. Heliyon 2019, 5, e02412. DOI: 10.1016/j.heliyon.2019.e02412.
  • Jethave, G.; Fegade, U. Design and Synthesis of Zn0.3Fe0.45O3 Nanoparticle for Efficient Removal of Congo Red Dye and Its Kinetic and Isotherm Investigation. Int. J. Ind. Chem. 2018, 9, 85–97. DOI: 10.1007/s40090-018-0140-9.
  • Kondalkar, M.; Fegade, U.; Attarde, S.; Ingle, S. Experimental Investigation on Phosphate Adsorption, Mechanism and Desorption Properties of Mn-Zn-Ti Oxide Trimetal Alloy Nanocomposite. J. Dispersion Sci. Technol. 2018, 39, 1635–1643. DOI: 10.1080/01932691.2018.1459678.
  • Fegade, U.; Jethave, G.; Su, K.-Y.; Huang, W.-R.; Wu, R.-J. An Multifunction Zn0.3Mn0.4O4 Nanospheres for Carbon Dioxide Reduction to Methane via Photocatalysis and Reused after Five Cycles for Phosphate Adsorption. J. Environ. Chem. Eng. 2018, 6, 1918–1925. DOI: 10.1016/j.jece.2018.02.040.
  • Kondalkar, M.; Fegade, U.; Attarde, S.; Ingle, S. Phosphate Removal, Mechanism, and Adsorption Properties of Fe-Mn-Zn Oxide Trimetal Alloy Nanocomposite Abricated via co-Precipitation Method. Sep. Sci. Technol. 2019, 54, 2682–2694. DOI: 10.1080/01496395.2018.1550513.
  • Jethave, G.; Fegade, U.; Attarde, S.; Ingle, S. Decontamination Study of Eriochrome Black-T from Waste Water by Using AlTiPbO Nanoparticles (ATPO-NPs) for Sustainable Clean Environment. J. Water Environ. Nanotechnol. 2019, 4, 263–274.
  • U.; Fegade, G.; Jethave, W.-G.; Hong, I.; Khan, H. M.; Marwani, Inamuddin, R.-J.; Wu, R. Dhake, MultifunctionalZn0.3Al0.4O4.5 Crystals: An Efficient Photocatalyst for Formaldehyde Degradation and EBTAdsorption. Arabian J. Chem. 2020, 13, 8262–8270. DOI: 10.1016/j.arabjc.2020.04.002.
  • Jethave, G.; Fegade, U.; Rathod, R.; Pawar, J. Dye Pollutants Removal from Waste Water Using Metal Oxide Nanoparticle Embedded Activated Carbon: An Immobilization Study. J. Dispersion Sci. Technol. 2019, 40, 563–573. DOI: 10.1080/01932691.2018.1472016.
  • Jethave, G.; Fegade, U.; Attarde, S.; Ingle, S. Facile Synthesis of Lead Doped Zinc-Aluminum Oxide Nanoparticles (LD-ZAO-NPs) for Efficient Adsorption of Anionic Dye: Kinetic, Isotherm and Thermodynamic Behaviors. J. Ind. Eng. Chem. 2017, 53, 294–306. DOI: 10.1016/j.jiec.2017.04.038.
  • Fegade, U.; Marek, J.; Patil, R.; Attarde, S.; Kuwar, A. A Selective Fluorescent Receptor for the Determination of Nickel(II) in Semi-Aqueous Media. J. Lumin. 2014, 146, 234–238. DOI: 10.1016/j.jlumin.2013.09.075.
  • FegadeSharma, U. H.; Singh, Ingle, N. S.; Attarde, S.; Kuwar, A. An Amide Based Dipodal Zn2+ Complex for Multications Recognition: Nanomolar Detection. J. Lumin. 2014, 149, 190–195. DOI: 10.1016/j.jlumin.2014.01.035.
  • Fegade, U.; Tayade, S.; Chaitanya, G. K.; Attarde, S.; Kuwar, A. Fluorescent and Chromogenic Receptor Bearing Amine and Hydroxyl Functionality for Iron (III) Detection in Aqueous Solution. J. Fluoresc. 2014, 24, 675–681. DOI: 10.1007/s10895-014-1358-3.
  • Fegade, U.; Sharma, H.; Attarde, S.; Singh, N.; Kuwar, A. Urea Based Dipodal Fluorescence Receptor for Sensing of Fe3+ Ion in Semi-Aqueous Medium. J. Fluoresc. 2014, 24, 27–37. DOI: 10.1007/s10895-013-1297-4.
  • Patil, S.; Patil, R.; Fegade, U.; Bondhopadhyay, B.; Pete, U.; Sahoo, S. K.; Singh, N.; Basu, A.; Bendre, R.; Kuwar, A. A Novel Phthalazine Based Highly Selective Chromogenic and Fluorogenic Chemosensor for Co(2+) in Semi-Aqueous Medium: Application in Cancer Cell Imaging. Photochem. Photobiol. Sci. 2015, 14, 439–443. DOI: 10.1039/c4pp00358f.
  • Fegade, U.; Sahoo, S. K.; Patil, S.; Kaur, R.; Singh, N.; Bendre, R.; Kuwar, A. A Novel Chromogenic and Fluorogenic Chemosensor for Detection of Trace Water in Methanol. Sens. Actuators B 2015, 210, 324–327. DOI: 10.1016/j.snb.2014.12.126.
  • Patil, R.; Fegade, U.; Kaur, R.; Sahoo, S. K.; Singh, N.; Kuwar, A. Highly Sensitive and Selective Determination of Hg2+ by Using 3-((2-(1H-Benzo[d]Imidazol-2-yl)Phenylimino)Methyl)Benzene-1,2-Diol as Fluorescent Chemosensor and Its Application in Real Water Sample. Supramol. Chem. 2015, 27, 527–532. DOI: 10.1080/10610278.2015.1023303.
  • Bhosale, J.; Fegade, U.; Bondhopadhyay, B.; Kaur, S.; Singh, N.; Basu, A.; Dabur, R.; Bendre, R.; Kuwar, A. Pyrrole-Coupled Salicylimine-Based Fluorescence "Turn On" Probe for Highly Selective Recognition of Zn²+ Ions in Mixed Aqueous Media: Application in Living Cell Imaging. J. Mol. Recognit. 2015, 28, 369–375. DOI: 10.1002/jmr.2451.
  • Fegade, U.; Sharma, H.; Bondhopadhyay, B.; Basu, A.; Attarde, S.; Singh, N.; Kuwar, A. Turn-on" Fluorescent Dipodal Chemosensor for Nano-Molar Detection of Zn(2+): Application in Living Cells Imaging. Talanta 2014, 125, 418–424. DOI: 10.1016/j.talanta.2014.03.002.
  • Fegade, U.; Singh, A.; Chaitanya, G. K.; Singh, N.; Attarde, S.; Kuwar, A. Highly Selective and Sensitive Receptor for Fe3+ Probing. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 121, 569–574. DOI: 10.1016/j.saa.2013.11.007.
  • Fegade, U.; Saini, A.; Sahoo, S. K.; Singh, N.; Bendre, R.; Kuwar, A. 2,2’-(Hydrazine-1,2-Diylidenedimethylylidene) Bis(6-Isopropyl-3-Methylphenol) Based Selective Dual-Channel Chemosensor for Cu2+ in Semiaqueous Media. RSC Adv. 2014, 4, 39639–39644. DOI: 10.1039/C4RA04656K.
  • Pawar, S.; Fegade, U.; Bhardwaj, V. K.; Singh, N.; Bendre, R.; Kuwar, A. 2-((E)-(2-Aminophenylimino)Methyl)-6-Isopropyl-3-Methylphenol Based Fluorescent Receptor for Dual Ni2+ and Cu2+ Recognition: Nanomolar Detection. Polyhedron 2015, 87, 79–85. DOI: 10.1016/j.poly.2014.10.034.
  • Crini, G. Kinetic and Equilibrium Studies on the Removal of Cationic Dyes from Aqueous Solution by Adsorption onto a Cyclodextrin Polymer. Dyes Pigm. 2008, 77, 415–426. DOI: 10.1016/j.dyepig.2007.07.001.
  • Langmuir, L. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. DOI: 10.1021/ja02242a004.
  • Freundlich, H.; Heller, W. The Adsorption of Cis- and trans-Azobenzene. J. Am. Chem. Soc. 1939, 61, 2228–2230. DOI: 10.1021/ja01877a071.
  • Temkin, M. J.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts Acta Physiochim. USSR 1940, 12, 217–222.
  • Dubinin, M.; Radushkevich, L. V. Equation of the characteristic curve of activated charcoal Chem. Zentr. 1947, 1, 875–889.
  • Tahermansouri, H.; Dehghan, Z.; Kiani, F. Phenol Adsorption from Aqueous Solutions by Functionalized Multiwalled Carbon Nanotubes with a Pyrazoline Derivative in the Presence of Ultrasound. RSC Adv. 2015, 5, 44263–44273. DOI: 10.1039/C5RA02800K.
  • Sellaoui, L.; Knani, S.; Erto, A.; Hachicha, M. A.; Ben Lamine, A. Mohamed Abdennaceur Hachicha, Abedlmottaleb Ben Lamine, Equilibrium Isotherm Simulation of Tetrachlorethylene on Activated Carbon Using the Double Layer Model with Two Energies: Steric and Energetic Interpretations. Fluid Phase Equilib. 2016, 408, 259–264. DOI: 10.1016/j.fluid.2015.09.022.
  • Selim, A. Q.; Mohamed, E. A.; Seliem, M. K. Deep Insights into the Organic Carbon Role in Selectivity and Adsorption Mechanism of Phosphate and Crystal Violet onto Low–Cost Black Limestone: Modelling and Physicochemical Parameters Interpretation. Colloids Surf, A. 2019, 580, 123755. DOI: 10.1016/j.colsurfa.2019.123755.
  • Li, Z.; Luiz Dotto, G.; Bajahzar, A.; Sellaoui, L.; Belmabrouk, H.; Ben Lamine, A.; Bonilla-Petriciolet, A. Adsorption of Indium (III) from Aqueous Solution on Raw, Ultrasound- and Supercritical-Modified Chitin: Experimental and Theoretical Analysis. Chem. Eng. J. 2019, 373, 1247–1253. DOI: 10.1016/j.cej.2019.05.134.
  • Kara, A.; Demirbel, E.; Tekin, N.; Osman, B.; Beşirli, N. Magnetic Vinylphenyl Boronic Acid Microparticles for Cr(VI) Adsorption: Kinetic, Isotherm and Thermodynamic Studies. J. Hazard. Mater. 2015, 286, 612–623. DOI: 10.1016/j.jhazmat.2014.12.011.
  • Wang, Y.; Liu, D.; Lu, J.; Huang, J. Enhanced Adsorption of Hexavalent Chromium from Aqueous Solutions on Facilely Synthesized Mesoporous Iron–Zirconium Bimetal Oxide. Colloid. Surface A 2015, 481, 133–142. DOI: 10.1016/j.colsurfa.2015.01.060.
  • Lv, Z.; Liang, C.; Cui, J.; Zhang, Y.; Xu, S. A Facile Route for the Synthesis of Mesoporous Melamine-Formaldehyde Resins for Hexavalent Chromium Removal. RSC Adv. 2015, 5, 18213–18217. DOI: 10.1039/C4RA16866F.
  • Li, L.; Duan, H.; Wang, X.; Luo, C. Adsorption Property of Cr( vi ) on Magnetic Mesoporous Titanium Dioxide–Graphene Oxide Core–Shell Microspheres. New J. Chem. 2014, 38, 6008–6016. DOI: 10.1039/C4NJ00782D.
  • Debnath, A.; Majumder, M.; Pal, M.; Das, N. S.; Chattopadhyay, K. K. Saha, B. Enhanced Adsorption of Hexavalent Chromium onto Magnetic Calcium Ferrite Nanoparticles: Kinetic, Isotherm, and Neural Network Modeling. J. Dispersion Sci. Technol. 2016, 37, 1806–1818. DOI: 10.1080/01932691.2016.1141100.
  • Al-Othman, Z. A.; Ali, R.; Naushad, M. Hexavalent Chromium Removal from Aqueous Medium by Activated Carbon Prepared from Peanut Shell: Adsorption Kinetics, Equilibrium Andthermodynamic Studies. Chem. Eng. J. 2012, 184, 238–247. DOI: 10.1016/j.cej.2012.01.048.
  • Sun, W.; Zhang, W.; Li, H.; Su, A.; Zhang, P.; Chen, L. Insight into the Synergistic Effect on Adsorption forCr(VI) by a Polypyrrole-Based Composite. RSC Adv. 2020, 10, 8790–8799. DOI: 10.1039/C9RA08756G.
  • Bamukyaye, S.; Wanasolo, W. Performance of Egg-Shell and Fish-Scale as Adsorbentmaterials for Chromium (VI) Removal from Effluents of Tannery Industries inEastern Uganda. Open Access Lib. J. 2017, 04, e3732–12. DOI: 10.4236/oalib.1103732.
  • Parlayici, Ş.; Pehlivan, E. Comparative Study of Cr(VI) Removal Bybio-Waste Adsorbents: Equilibrium, Kinetics, and Thermodynamic. J. Anal. Sci. Technol. 2019, 10, 1–8. DOI: 10.1186/s40543-019-0175-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.