174
Views
0
CrossRef citations to date
0
Altmetric
Articles

Nephrotoxicity of nickel nano and microparticles in rat- a comparative, time dependent study with special reference to antioxidant defence system

, ORCID Icon & ORCID Icon
Pages 1335-1344 | Received 21 Sep 2021, Accepted 16 Jan 2022, Published online: 15 Mar 2022

References

  • Aitken, R. J.; Chaudhry, M. Q.; Boxall, A. B. A.; Hull, M. Manufacture and Use of Nanomaterials: Current Status in the UK and Global Trends. Occup. Med. (Lond).) 2006, 56, 300–306. DOI: 10.1093/occmed/kql051.
  • Maynard, A.; Michelson, E. The Nanotechnology Consumer Products Inventory; Woodrow Wilson International Centre for Scholars. 2006. www.NanotechnologyOrg/process/files/2753/Consumers_products_inventory_analysis_handoutpdf.
  • Zhang, W. Nanoscale Iron Particles for Environmental Remediation: An Overview. J. Nano. Res. 2003, 5, 323–332. DOI: 10.1023/A:1025520116015.
  • Fabrega, J.; Luoma, S. N.; Tyler, C. R.; Galloway, T. S.; Lead, J. R. Silver Nanoparticles: behaviour and Effects in the Aquatic Environment. Environ. Int. 2011, 37, 517–531. DOI: 10.1016/j.envint.2010.10.012.
  • Buzea, C.; Pacheco, I. I.; Robbie, K. Nanomaterials and Nanoparticles: Sources and Toxicity. Biointerphases 2007, 2, MR17–MR71. DOI: 10.1116/1.2815690.
  • Wu, Y.; Kong, L. Advance on Toxicity of Metal Nickel Nanoparticles. Environ. Geochem. Health. 2020, 42, 2277–2286. DOI: 10.1007/s10653-019-00491-4.
  • Magaye, R. R.; Yue, X.; Zou, B.; Shi, H.; Yu, H.; Liu, K.; Lin, X.; Xu, J.; Yang, C.; Wu, A.; Zhao, J. Acute Toxicity of Nickel Nanoparticles in Rats after Intravenous Injection. Int. J. Nanomedicine. 2014a, 9, 1393–1402. DOI: 10.2147/IJN.S56212.
  • Rana, S. V. S. A Comprehensive Review on Hepatotoxicity of Nanoparticles. J. Toxicol. Risk Assess 2020, 6: 035. DOI: 10.23937/2572-4061.1510035.
  • Singh, M.; Verma, Y.; Rana, S. V. S. Hepatotoxicity Induced by Nickel Nano and Microparticles in Male Rats: A Comparative Study. Toxicol. Environ. Health Sci. 2021, 13, 1–10. DOI: 10.1007/s13530-021-00079-5.
  • Magaye, R.; Zhou, Q.; Bowman, L.; Zhou, B.; Mao, G.; Xu, J.; Castranova, V.; Zhao, J.; Ding, M. Metallic Nickel Nanoparticles May Exhibit Higher Carcinogenic Potential than Fine Particles in JB6 Cells. PLOS One. 2014b, 9, e92418. DOI: 10.1371/journal.pone.0092418.
  • Åkerlund, E.; Cappellini, F.; Di Bucchianico, S.; Islam, S.; Skoglund, S.; Derr, R.; Odnevall Wallinder, I.; Hendriks, G.; Karlsson, H. L. Genotoxic and Mutagenic Properties of Ni and NiO Nanoparticles Investigated by Comet Assay, γ-H2AX Staining, Hprt Mutation Assay and ToxTracker Reporter Cell Lines. Environ. Mol. Mutagen. 2018, 59, 211–222. DOI: 10.1002/em.22163.
  • Nemmar, A.; Hoet, P. H. M.; Vanquickenborne, B.; Dinsdale, D.; Thomeer, M.; Hoylaert, M. F.; Vanbilloen, H.; Mortelmans, L.; Nemery, B. Passage of Inhaled Particles into the Blood Circulation in Humans. Circulation 2002, 105, 411–414. DOI: 10.1161/hc0402.104118.
  • Fruijtier-Polloth, C. The Toxicological Mode of Action and Safety of Synthetic Amorphous Silica- a Nanostructured Material. Toxicology 2012, 294, 61–79.
  • Rana, S. V. S. Recent Advances on Renal Toxicity of Engineered Nanoparticles. J. Toxicol. Risk Assessment 2021, 7, 036. DOI: 23937/2572-4061.1510036.
  • Hussein, R. M.; Sarhan, O. M. M. Effects of Intraperitoneally Injected Silver Nanoparticles on Histological Structures and Blood Parameters in the Albino Rat. Int. J. Nanomedicine. 2014, 9, 1505–1517. DOI: 10.2147/IJN.S56729.
  • Tiwari, R.; Singh, R. D.; Khan, H.; Gangopadhyay, S.; Mittal, S.; Singh, V.; Arjaria, N.; Shankar, J.; Roy, S. K.; Singh, D.; Srivastava, V. Oral Subchronic Exposure to Silver Nanoparticles Causes Renal Damage through Apoptotic Impairment and Necrotic cell death. Nanotoxicology 2017, 11, 671–686. DOI: 10.1080/17435390.2017.1343874.
  • Saleh, H. M.; Soliman, O. A.; Elshazly, M. O.; Raafat, A.; Gohar, A. K.; Salaheldin, T. A. Acute Hematologic, Hepatologic, and Nephrologic Changes after Intraperitoneal Injections of 18 nm Gold Nanoparticles in Hamsters. Int. J. Nanomedicine 2016, 11, 2505–2513. DOI: 10.2147/IJN.S102919.
  • De Jong, W. H.; De Rijk, E.; Bonetto, A.; Wohlleben, W.; Stone, V.; Brunelli, A.; Badetti, E.; Marcomini, A.; Gosens, l.; Cassee, F. R. Toxicity of Copper Oxide and Basic Copper Carbonate Nanoparticles after Short-term Oral Exposure in Rats. Nanotoxicology 2019, 13, 50–72. DOI: 10.1080/17435390.2018.1530390.
  • Fartkhooni, F. M.; Noori, A.; Mohammadi, A. Effect of Titanium Dioxide Nanoparticles Toxicity in the Kidney of Male Rats. Int. J. Life Sci. 2016, 10, 65–69. DOI: 10.3126/ijls.v10i1.14513.
  • Rana, K.; Verma, Y.; Rani, V.; Rana, S. V. S. Renal Toxicity of Nanoparticles of Cadmium Sulphide in Rat. Chemosphere 2018, 193, 142–150. DOI: 10.1016/j.chemosphere.2017.11.011.
  • Liao, M.; Liu, H. Gene Expression Profiling of Nephrotoxicity from Copper Nanoparticles in Rats after Repeated Oral Administration. Environ. Toxicol. Pharmacol. 2012, 34, 67–80. DOI: 10.1016/j.etap.2011.05.014.
  • Abdulqadir, S. Z.; Aziz, F. M. Internalization and Effects on Cellular Ultrastructure of Nickel Nanoparticles in rat kidneys. Int. J. Nanomedicine 2019, 14, 3995–4005. DOI: 10.2147/IJN.S200909.
  • Abdulqadir, S. Z.; Aziz, F. M. Nickel Nanoparticle Induced Nephrotoxicity in Rats: Influence of Particle Size. PVJ 2019, 39, 548–552. DOI: 10.29261/pakvetj/2019.106.
  • Dumala, N.; Mangalampalli, B.; Kalyan Kamal, S. S.; Grover, P. Repeated Oral Dose Toxicity Study of Nickel Oxide Nanoparticles in Wistar rats: A Histological and Biochemical Perspective. J. Appl. Toxicol. 2019, 39, 1012–1029. DOI: 10.1002/jat.3790.
  • Toro, G.; Ackermann, P. Practical Clinical Chemistry, 1st ed. Little, Brown and Company: Boston. 1975, pp. 154.
  • Henry, R. J.; Sobel, C.; Kim, J. A Modified Carbonate-phosphotungstate Method for the Determination of Uric Acid and Comparison with the Spectrophotometric Uricase Method. Am. J. Clin. Pathol. 1957, 28, 152–160. DOI: 10.1093/ajcp/28.2.152.
  • Jordan, R. A.; Schenkman, J. B. Relationship between Malondialdehyde Production and Arachidonate Consumption during NADPH-Supported Microsomal Lipid Peroxidation. Biochem. Pharmacol. 1982, 31, 1393–1400. DOI: 10.1016/0006-2952(82)90034-X.
  • Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein Measurement with the Follin Phenol Reagent. J. Bio. Chem. 1951, 193, 265–275. DOI: 10.1016/S0021-9258(19)52451-6.
  • Thurman, R. G.; Ley, H. G.; Scholz, R. Hepatic Microsomal Ethanol Oxidation. Hydrogen Peroxide Formation and the Role of Catalase. Eur. J. Biochem. 1972, 25, 420–426. DOI: 10.1111/j.1432-1033.1972.tb01711.x.
  • Cortas, N. K.; Wakid, N. W. Determination of Inorganic Nitrate in Serum and Urine by a Kinetic Cadmium Reduction Method. Clin. Chem. 1990, 36, 1440–1443. DOI: 10.1093/clinchem/36.8.1440.
  • Ellman, G. L. Tissue Sulfhydryl Groups. Arch. Biochem. Biophys. 1959, 82, 70–77. DOI: 10.1016/0003-9861(59)90090-6.
  • Marklund, S.; Marklund, G. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. Eur. J. Biochem. 1974, 47, 469–474. DOI: 10.1111/j.1432-1033.1974.tb03714.x.
  • Hadwan, M. H. Simple Spectrophotometric Assay for Measuring Catalase Activity in Biological Tissues. BMC Biochem. 2018, 19, 7. DOI: 10.1186/s12858-018-0097-5.
  • Paglia, D. E.; Valentine, W. N. Studies on the Quantitative and Qualitative Characterization of Erythrocyte Glutathione Peroxidase. J. Lab Clin. Med. 1967, 70, 158–169.
  • De Jong, W. H.; Borm, P. J. A. Drug Delivery and Nanoparticles: Applications and Hazards. Int. J. Nanomedicine. 2008, 3, 133–149. DOI: 10.2147/ijn.s596.
  • Jin, C. Y.; Zhu, B. S.; Wang, X. F.; Lu, Q. H. Cytotoxicity of Titanium Dioxide Nanoparticles in Mouse Fibroblast Cells. Chem. Res. Toxicol. 2008, 21, 1871–1877. DOI: 10.1021/tx800179f.
  • Kim, W. Y.; Kim, J.; Park, J. D.; Ryu, H. Y.; Yu, l. J. Histological Study of Gender Differences in Accumulation of Silver Nanoparticles in Kidneys of Fischer 344 Rats. J. Toxicol. Environ. Health. A. 2009, 72, 1279–1284. DOI: 10.1080/15287390903212287.
  • Chen, Z.; Meng, H.; Xing, G.; Chen, C.; Zhao, Y.; Jia, G.; Wang, T.; Yuan, H.; Ye, C.; Zhao, F.; et al. Acute Toxicological Effects of Copper Nanoparticles in Vivo. Toxicol. Lett. 2006, 163, 109–120. DOI: 10.1016/j.toxlet.2005.10.003.
  • Singh, M.; Verma, Y.; Rana, S. V. S. Attributes of Oxidative Stress in the Reproductive Toxicity of Nickel Oxide Nanoparticles in Male Rats. Environ. Sci. Pollut. Res. 2021, 29, 5703–5717. DOI: 10.1007/s11356-021-15657-w.
  • Hoet, P. H.; Nemery, B. Stimulation of Phagocytosis by Ultrafine Particles. Toxicol. Appl. Pharmacol. 2001, 176, 203. DOI: 10.1006/taap.2001.9263.
  • Dumala, N.; Mangalampalli, B.; Chinde, S.; Kumari, S. I.; Mahoob, M.; Rahman, M. F.; Grover, P. Genotoxicity Study of Nickel Oxide Nanoparticles in Female Wistar Rats after Oral Exposure. Mutagenesis 2017, 32, 417–427. DOI: 10.1093/mutage/gex007.
  • Abdel Aziz, I. I.; Zabut, B. M. Determination of Blood Indices of Albino Rats Treated with Aluminium Chloride and Investigation of Antioxidant Effects of Vitamin C and E. Egypt. J. Biol. 2011, 13, 1–7.
  • Sunderman, F. W. Jr. Metals and Lipid Peroxidation. Acta. Pharmacol. Toxicol. 2009, 59, 248–255. DOI: 10.1111/j.1600-0773.1986.tb02755.x.
  • Valko, M.; Morris, H.; Cronin, M. T. D. Metals, Toxicity and Oxidative Stress. Curr. Med. Chem. 2005, 12, 1161–1208. DOI: 10.2174/0929867053764635.
  • Rubino, F. M. Toxicity of Glutathione-Binding Metals: A Review of Targets and Mechanisms. Toxics 2015, 3, 20–62. DOI: 10.3390/toxics3010020.
  • Siddiqui, M. A.; Ahamed, M.; Ahmad, J.; Majeed Khan, M. A.; Musarrat, J.; Al-Khedhairy, A. A.; Alrokayan, S. A. Nickel Oxide Nanoparticles Induce Cytotoxicity, Oxidative Stress and Apoptosis in Cultured Human Cells That is Abrogated by the Dietary Antioxidant Curcumin. Food Chem. Toxicol. 2012, 50, 641–647. DOI: 10.1016/j.fct.2012.01.017.
  • Stroh, A.; Zimmer, C.; Gutzeit, C.; Jakstadt, M.; Marschinke, F.; Jung, T.; Pilgrimm, H.; Grune, T. Iron Oxide Particles for Molecular Magnetic Resonance Imaging Cause Transient Oxidative Stress in Rat Macrophages. Free Radic. Biol. Med. 2004, 36, 976–984. DOI: 10.1016/j.freeradbiomed.2004.01.016.
  • Soto, K.; Garza, K. M.; Murr, L. E. Cytotoxic Effects of Aggregated Nanomaterials. Acta Biomater. 2007, 3, 351–358. DOI: 10.1016/j.actbio.2006.11.004.
  • Pisanic, T. R.; Jim, S.; Shubayav, V. I. Nanotoxicology from in Vivo to in Vitro Models to Health Risks. Seha, S.C. and Casciano, D.A. (eds). John Wiley and Sons Ltd: London, 2009, pp. 397–425.
  • Huang, C.; Aronstam, R. S.; Chen, D.; Huang, Y. Oxidative Stress, Calcium Homeostasis, and Altered Gene Expression in Human Lung Epithelial Cells Exposed to ZnO Nanoparticles. Toxicol In Vitro. 2010, 24, 45–55. DOI: 10.1016/j.tiv.2009.09.007.
  • Rana, S.V.S. Oxidative Stress and Liver Injury by Environmental Xenobiotics. In: Liver and Environmental Xenobiotics, Rana, S.V.S. and Taketa, K., Eds; Springer: Berlin, Heidelberg. 1997, pp. 114–134.
  • Valko, M.; Rhodes, C. J.; Moncol, J.; Izakovic, M.; Mazur, M. Free Radicals, Metals and Antioxidants in Oxidative Stress-induced Cancer. Chem. Biol. Interact. 2006, 160, 1–40. DOI: 10.1016/j.cbi.2005.12.009.
  • Rahman, K. Studies on Free Radicals, Antioxidants and Cofactors. Clin. Interv. Ageing 2007, 2, 219–236.
  • Fenoglio, I.; Corazzari, I.; Francia, C.; Bodoardo, S.; Fubini, B. The Oxidation of Glutathione by Cobalt/Tungsten Carbide Contributes to Hard Metal-induced Oxidative Stress . Free Radic. Res. 2008, 42, 437–745. DOI: 10.1080/10715760802350904.
  • Manke, A.; Wang, L.; Rojanasakul, Y. Mechanisms of Nanoparticle- Induced Oxidative Stress and Toxicity. Biomed. Res. Int. 2013, 2013, 1–15. DOI: 10.1155/2013/942916.
  • Saddick, S.; Afifi, M.; Abu Zinada, O. A. Effect of Zinc Nanoparticles on Oxidative Stress-Related Genes and Antioxidant Enzymes Activity in the Brain of Oreochromis niloticus and Tilapia zillii. Saudi J. Biol. Sci. 2017, 24, 1672–1678. DOI: 10.1016/j.sjbs.2015.10.021.
  • Liu, W.; Worms, I.; Slaveykova, V. I. Interaction of Silver Nanoparticles with Antioxidant Enzymes. Environ. Sci. Nano 2020, 7, 1507–1517. DOI: 10.1039/e9enO12846.
  • Tunçsoy, M.; Duran, S.; Ay, Ö.; Cicik, B.; Erdem, C. Effects of Copper Oxide Nanoparticles on Antioxidant Enzyme Activities and on Tissue Accumulation of Oreochromis niloticus. Bull. Environ. Contam. Toxicol. 2017, 99, 360–364. DOI: 10.1007/s00128-017-2129-z.
  • Jayaseelan, C.; Rahuman, A. A.; Ramkumar, R.; Perumal, P.; Rajakumar, G.; Kirthi, A. V.; Santhoshkumar, T.; Marimuthu, S. Effect of Sub-acute Exposure to Nickel Nanoparticles on Oxidative Stress and Histopathological Changes in Mozambique tilapia, Oreochromis mossambicus. Ecotoxicol. Environ. Saf. 2014, 107, 220–228. DOI: 10.1016/j.ecoenv.2014.06.012.
  • Hussain, M. F.; Ashiq, M. N.; Gulsher, M.; Akbar, A.; Iqbal, F. Exposure to Variable Doses of Nickel Oxide Nanoparticles Disturbs Serum Biochemical Parameters and Oxidative Stress Biomarkers from Vital Organs of Albino Mice in a Sex-Specific Manner. Biomarkers 2020, 25, 719–724. DOI: 10.1080/1354750X.2020.1841829.
  • Renwick, L. C.; Donaldson, K.; Clouter, A. Impairment of Alveolar Macrophage Phagocytosis by Ultrafine Particles. Toxicol. Appl. Pharmacol. 2001, 172, 119–127. DOI: 10.1006/taap.2001.9128.
  • Risom, L.; Moller, P.; Loft, S. Oxidative Stress- Induced DNA Damage by Particulate Air Pollution. Mutat. Res. 2005, 592, 119–137.
  • Abudayyak, M.; Guzel, E.; Ozhan, G. Nickel Oxide Nanoparticles Induce Oxidative DNA Damage and Apoptosis in Kidney Cell Line (NRK-52E). Biol. Trace Elem. Res. 2017, 178, 98–104. DOI: 10.1007/s12011-016-0892-z.
  • Ahamed, M.; Ali, D.; Alhadlaq, H. A.; Akhtar, M. J. Nickel Oxide Nanoparticles Exert Cytotoxicity via Oxidative Stress and Induce Apoptotic Response in Human Liver Cells (HepG2). Chemosphere 2013, 93, 2514–2522. DOI: 10.1016/j.chemosphere.2013.09.047.
  • Barzilai, A.; Yamamoto, K. I. DNA Damage Responses to Oxidative Stress. DNA Repair. (Amst) 2004, 3, 1109–1115. DOI: 10.1016/j.dnarep.2004.03.002.
  • Scott, T. L.; Rangaswamy, S.; Wicker, C. A.; Izumi, T. Repair of Oxidative DNA Damage and Cancer: Recent Progress in DNA Base Excision Repair. Antioxid. Redox Signal. 2014, 20, 708–726. DOI: 10.1089/ars.2013.5529.
  • Zou, L.; Su, L.; Sun, Y.; Han, A.; Chang, X.; Zh, A.; Liu, F.; Li, J.; Sun, Y. Nickel Sulfate Induced Apoptosis via Activating ROS-Dependent Mitochondria and Endoplasmic Reticulum Stress Pathways in Rat Leydig Cells. Environ. Toxicol. 2017, 32, 1918–1926. DOI: 10.1002/tox.22414.
  • Patel, E.; Lynch, C.; Ruff, V.; Reynolds, M. Co-exposure to Nickel and Cobalt Chloride Enhances Cytotoxicity and Oxidative Stress in Human Lung Epithelial cells. Toxicol. Appl. Pharmacol. 2012, 258, 367–375. DOI: 10.1016/j.taap.2011.11.019.
  • Guo, H.; Liu, H.; Wu, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Nickel Carcinogenesis Mechanism: DNA Damage. IJMS. 2019, 20, 4690. doi.org/10. 3390/ijms20194690. DOI: 10.3390/ijms20194690.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.