390
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis and characterization of TiO2/LDH layered double hydroxide composites: Utilization as photocatalysts for amoxicillin degradation under UVA irradiation

, &
Pages 1197-1207 | Received 14 Jul 2021, Accepted 27 Mar 2022, Published online: 27 Apr 2022

References

  • Al-Musawi, T. J.; Mahvi, A. H.; Khatibi, A. D.; Balarak, D. Effective Adsorption of Ciprofloxacin Antibiotic Using Powdered Activated Carbon Magnetized by Iron(III) Oxide Magnetic Nanoparticles. J. Porous Mater. 2021, 28, 835–852. DOI: 10.1007/s10934-021-01039-7.
  • Bergamonti, L.; Bergonzi, C.; Graiff, C.; Lottici, P. P.; Bettini, R.; Elviri, L. 3D Printed Chitosan Scaffolds: A New TiO2 Support for the Photocatalytic Degradation of Amoxicillin in Water. Water Res. 2019, 163, 114841. DOI: 10.1016/j.watres.2019.07.008.
  • Balarak, D.; Mengelizadeh, N.; Rajiv, P.; Chandrika, K. Photocatalytic Degradation of Amoxicillin from Aqueous Solutions by Titanium Dioxide Nanoparticles Loaded on Graphene Oxide. Environ. Sci. Pollut. Res. 2021, 28, 49743–49754. DOI: 10.1007/s11356-021-13525-1.
  • Elmolla, E. S.; Chaudhuri, M. Comparison of Different Advanced Oxidation Processes for Treatment of Antibiotic Aqueous Solution. Desalination. 2010, 256, 43–47. DOI: 10.1016/j.desal.2010.02.019.
  • Mourid, E. H.; El Mouchtari, E. M.; El Mersly, L.; Benaziz, L.; Rafqah, S.; Lakraimi, M. Development of a New Recyclable Nanocomposite LDH-TiO2 for the Degradation of Antibiotic Sulfamethoxazole under UVA Radiation: An Approach towards Sunlight. J. Photochem. Photobiol A. 2020, 396, 112530. DOI: 10.1016/j.jphotochem.2020.112.
  • Basavarajappa, P. S.; Patil, S. B.; Ganganagappa, N.; Reddy, K. R.; Raghu, A. V.; Reddy, C. V. Recent Progress in Metal-Doped TiO2, Non-Metal Doped/Codoped TiO2, and TiO2 Nanostructured Hybrids for Enhanced Photocatalysis. Int. J. Hydrogen Energy. 2020, 45, 7764–7778,. DOI: 10.1016/j.ijhydene.2019.07.2.
  • Teymourinia, H.; Salavati-Niasari, M.; Amiri, O. Simple Synthesis of Cu2O/GQDs Nanocomposite with Different Morphologies Fabricated by Tuning the Synthesis Parameters as Novel Antibacterial Material. Compos. Part B: Eng. 2019, 172, 785–794. DOI: 10.1016/j.compositesb.2019.05.
  • Yan, S.-R.; Gholami, T.; Amiri, O.; Salavati-Niasari, M.; Seifi, S.; Amiri, M.; Sabet, M.; Foong, L. K. Effect of Adding TiO2, SiO2, and Graphene on Electrochemical Hydrogen Storage Performance and Coulombic Efficiency of CoAl2O4 Spinel. J. Alloys Compd. 2020, 828, 154353. DOI: 10.1016/j.jallcom.2020.154353.
  • Noman, M. T.; Ashraf, M. A.; Ali, A. Synthesis and Applications of nano-TiO2: A Review. Environ. Sci. Pollut. Res. 2018 26, 3262–3291. ) DOI: 10.1007/s11356-018-3884-z.
  • Ziental, D.; Czarczynska-Goslinska, B.; Mlynarczyk, D. T.; Glowacka-Sobotta, A.; Stanisz, B.; Goslinski, T.; Sobotta, L. Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials. 2020, 10, 387. DOI: 10.3390/nano10020387.
  • Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. Investigation into the Antibacterial Behavior of Suspensions of ZnO Nanoparticles (ZnO Nanofluids). J. Nanopart. Res. 2007, 9, 479–489. ) DOI: 10.1007/s11051-006-9150-1.
  • Costa, L. L.; Prado, A. G. TiO2 Nanotubes as Recyclable Catalyst for Efficient Photocatalytic Degradation of Indigo Carmine Dye. J. Photochem. Photobiol, A. 2009, 201, 45–49. DOI: 10.1016/j.jphotochem.2008.09.014.
  • Yu, J.; Kiwi, J.; Wang, T.; Pulgarin, C.; Rtimi, S. Evidence for a Dual Mechanism in the TiO2/CuxOphotocatalyst during the Degradation of Sulfamethazine under Solar or Visible Light: Critical Issues. J. Photochem. Photobiol, A. 2019, 375, 270–279. (), DOI: 10.1016/j.jphotochem.2019.02.033.
  • Seftel, E. M.; Mertens, M.; Cool, P. The Influence of the Ti4+ Location on the Formation of Self-Assembled Nanocomposite Systems Based on TiO2 and Mg/Al-LDHs with Photocatalytic Properties. Appl. Catalys. B: Environ. 2013, 134–135, 27285. DOI: 10.1016/j.apcatb.2013.01.032.
  • Berger, T. E.; Regmi, C.; Schäfer, A. I.; Richards, B. S. Photocatalytic Degradation of Organic Dye via Atomic Layer Deposited TiO2–Ceramic Membranes in Single-Pass Flow-through Operation. J. Membr. Sci. 2020, 604, 118015. DOI: 10.1016/j.memsci.2020.118015.
  • Nomura, Y.; Fukahori, S.; Fujiwara, T. Removal of Sulfamonomethoxine and Its Transformation Byproducts from Fresh Aquaculture Wastewater by a Rotating Advanced Oxidation Contactor Equipped with Zeolite/TiO2 Composite Sheets. Process Safe Environ. Protect.2019 , 134, 161–168. DOI: 10.1016/j.psep.2019.11.036.
  • Apopei, P.; Iroha, C.; IonelaPopescu, M.; Lazar, C.; Manea, F.; Catrinescu, C.; Teodosiu, C. Diclofenac Removal from Water by Photocatalysis- Assisted Filtration Using Activated Carbon Modified with N-Doped TiO2. Process Safe Environ. Protect.2020, 138, 324-336,. DOI: 10.1016/j.psep.2020.03.012.
  • Peñas-Garzón, M.; Gómez-Avilés, A.; Belver, C.; Rodriguez, J. J.; Bedia, J. 2020. Degradation Pathways of Emerging Contaminants Using TiO2-Activated Carbon.
  • Korošec, R. C.; Miljević, B.; Umek, P.; van der Bergh, J. M.; Vučetić, S.; Ranogajec, J. Photocatalytic Self-Cleaning Properties of Mo: TiO2 Loaded Zn–Al Layered Double Hydroxide Synthesized at Optimized pH Value for the Application on Mineral Substrates. Ceramic Int. 2019, 46, 6756–6766. DOI: 10.1016/j.ceramint.2019.11.166.
  • Miyata, S.; Kumura, T. Synthesis of New Hydrotalcite-like Compounds and Their Physico-Chemical Properties. Chem. Lett. 1973, 2, 843–848. DOI: 10.1246/cl.1973.843.
  • Roy Chowdhury, P.; Bhattacharyya, K. G. Ni/Ti Layered Double Hydroxide: Synthesis, Characterization and Application as a Photocatalyst for Visible Light Degradation of Aqueous Methylene Blue. Dalton Trans. 2015, 44, 6809–6824. DOI: 10.1039/c5dt00257e.
  • Iqbal, M. A.; Fedel, M. Ordering and Disordering of in Situ Grown MgAl-Layered Double Hydroxide and Its Effect on the Structural and Corrosion Resistance Properties. Int. J. Miner. Metall. Mater. 2019, 26, 1570–1577. DOI: 10.1007/s12613-019-1844-3.
  • Yu, J.; Zhu, Z.; Zhang, H.; Qiu, Y.; Yin, D. Mg-Fe Layered Double Hydroxide Assembled on Biochar Derived from Rice Husk Ash: Facile Synthesis and Application in Efficient Removal of Heavy Metals. Environ. Sci. Pollut. Res. Int. 2018, 25, 24293–24304. DOI: 10.1007/s11356-018-2500-6.
  • Huang, P.-P.; Cao, C.-Y.; Wei, F.; Sun, Y.-B.; Song, W.-G. MgAl Layered Double Hydroxides with Chloride and Carbonate Ions as Interlayer Anions for Removal of Arsenic and Fluoride Ions in Water. RSC Adv. 2015, 5, 10412–10417. DOI: 10.1039/C4RA15160G.
  • De Almeida, M. F.; Bellato, C. R.; Mounteer, A. H.; Ferreira, S. O.; Milagres, J. L.; Miranda, L. D. L. Enhanced Photocatalytic Activity of TiO2 -Impregnated with MgZnAl Mixed Oxides Obtained from Layered Double Hydroxides for Phenol Degradation. Appl. Surf. Sci. 2015, 357, 1765–1775. DOI: 10.1016/j.apsusc.2015.10.009.
  • Shao, L.; Yao, Y.; Quan, S.; Wei, H.; Wang, R.; Guo, Z. One-Pot in Situ Synthesized TiO2/Layered Double Hydroxides (LDHs) Composites toward Environmental Remediation. Mater. Lett. 2014, 114, 111–114. DOI: 10.1016/j.matlet.2013.09.121.
  • Zhang, Y.; Xiao, Y.; Zhong, Y.; Lim, T.-T. Comparison of Amoxicillin Photodegradation in the UV/H2O2 and UV/Persulfate Systems: Reaction Kinetics, Degradation Pathways, and Antibacterial Activity. Chem. Eng. J. 2019, 372, 420–428. DOI: 10.1016/j.cej.2019.04.160.
  • Dimitrakopoulou, D.; Rethemiotaki, I.; Frontistis, Z.; Xekoukoulotakis, N. P.; Venieri, D.; Mantzavinos, D. Degradation, Mineralization and Antibiotic Inactivation of Amoxicillin by UV-A/TiO₂ Photocatalysis. J. Environ. Manage. 2012, 98, 168–174. DOI: 10.1016/j.jenvman.2012.01.010.
  • Pawar, M.; Topcu Sendoğdular, S.; Gouma, P. A Brief Overview of TiO2 Photocatalyst for Organic Dye Remediation: Case Study of Reaction Mechanisms Involved in Ce-TiO2Photocatalysts System. J. Nanomater. 2018, 2018, 1–13. DOI: 10.1155/2018/5953609.
  • Prabha, I.; Lathasree, S. Photodegradation of Phenol by Zinc Oxide, Titania, and Zinc Oxide–Titania Composites: Nanoparticle Synthesis, Characterization, and Comparative Photocatalytic Efficiencies. Mater. Sci. Semicond. Process. 2014, 26, 603–613. DOI: 10.1016/j.mssp.2014.05.031.
  • Abdellah, M. H.; Nosier, S. A.; El-Shazly, A. H.; Mubarak, A. A. Photocatalytic Decolorization of Methylene Blue Using TiO2/UV System Enhanced by Air Sparging. Alexand. Eng. J. 2018, 57, 3727–3735. DOI: 10.1016/j.aej.2018.07.018.
  • Reza, K. M.; Kurny, A.; Gulshan, F. Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2: A Review. Appl. Water Sci. 2015, 7, 1569–1578. DOI: 10.1007/s13201-015-0367-y.
  • Gnanaprakasam, A.; Sivakumar, V. M.; Thirumarimurugan, M. Influencing Parameters in the Photocatalytic Degradation of Organic Effluent via Nanometal Oxide Catalyst: A Review. Indian J. Mater. Sci. 2015, 2015, 1–16. DOI: 10.1155/2015/601827.
  • Poudel, M. B.; Yu, C.; Kim, H. J. Synthesis of Conducting Bifunctional Polyaniline@Mn-TiO2 Nanocomposites for Supercapacitor Electrode and Visible Light-DrivenPhotocatalysis. Catalysts. 2020, 10, 546. DOI: 10.3390/catal10050546.
  • Kattel, E.; Kaur, B.; Trapido, M.; Dulova, N. Persulfate-Based Photodegradation of a Beta-Lactam Antibiotic Amoxicillin in Various Water Matrices. Environ. Technol. 2018, 41, 202–228. DOI: 10.1080/09593330.2018.1493149.
  • Al-Musawi, T. J.; Rajiv, P.; Mengelizadeh, N.; Sadat Arghavan, F.; Balarak, D. Photocatalytic Efficiency of CuNiFe2O4 Nanoparticles Loaded on Multi-Walled Carbon Nanotubes as a Novel Photocatalyst for Ampicillin Degradation. J. Mol. Liq. 2021, 337, 116470. DOI: 10.1016/j.molliq.2021.116470.
  • Kumar, A.; Pandey, G. A Review on the Factors Affecting the Photocatalytic Degradation of Hazardous Materials. Mater. Sci. Eng. Int. J. 2017, 1, 00018. DOI: 10.15406/MSEIJ.2017.01.00018.
  • Seftel, E. M.; Mertens, M.; Cool, P. The Influence of the Ti4+ Location on the Formation of Self-Assembled Nanocomposite Systems Based on TiO2 and Mg/Al-LDHs with Photocatalytic Properties. Appl. Catal. B: Environ. 2013, 134-135, 274–285. DOI: 10.1016/j.apcatb.2013.01.032.
  • Seftel, E. M.; Niarchos, M.; Vordos, N.; Nolan, J. W.; Mertens, M.; Mitropoulos, A.; Vansant, E. F.; Cool, P. LDH and TiO 2/LDH-Type Nanocomposite Systems: A Systematic Study on Structural Characteristics. Micropor. Mesopor. Mater. 2015, 203, 208–215. DOI: 10.1016/j.micromeso.2014.10.029.
  • Homsirikamol, C.; Sunsandee, N.; Pancharoen, U.; Nootong, K. Synergistic Extraction of Amoxicillin from Aqueous Solution by Using Binary Mixtures of Aliquat 336, D2EHPA, and TBP. Sep. Purif. Technol. 2016, 162, 30–36. DOI: 10.1016/j.seppur.2016.02.003.
  • Benacherine, M. e m.; Debbache, N.; Ghoul, I.; Mameri, Y. Heterogeneous Photoinduced Degradation of Amoxicillin by Goethite under Artificial and Natural Irradiation. J. Photochem. Photobiol, A. 2017, 335, 70–77. DOI: 10.1016/j.jphotochem.2016.11.008.
  • Radosavljevic, K.; Golubovic, A. V.; Radisic, M. M.; Mladenovic, A. R.; Mijin, D. Z.; Petrovic, S. D. Amoxicillin. CI&CEQ. 2017, 23, 187–−195. DOI: 10.2298/CICEQ160122030R.
  • Olama, N.; Dehghani, M.; Malakootian, M. The Removal of Amoxicillin from Aquatic Solutions Using the TiO2/UV-C Nano Photocatalytic Method Doped with Trivalent Iron. Appl. Water Sci. 2018, 8, 97DOI: 10.1007/s13201-018-0733-7.
  • Ikehata, K.; Jodeiri Naghashkar, N.; Gamal El-Din, M. Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review. Ozone Sci. Eng. 2006, 28, 353–414. DOI: 10.1080/01919510600985937.
  • Elmolla, E. S.; Chaudhuri, M. Photocatalytic Degradation of Amoxicillin, Ampicillin, and Cloxacillin Antibiotics in Aqueous Solution Using UV/TiO2 and UV/H2O2/TiO2photocatalysis. Desalination. 2010b, 252, 46–52. DOI: 10.1016/j.desal.2009.11.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.