102
Views
0
CrossRef citations to date
0
Altmetric
Articles

Comparative study on cupric oxide nanoparticles synthesis in saline buffer versus basic water by Spondias mombin peel extract for biocatalysis

, , &
Pages 323-331 | Received 31 Oct 2021, Accepted 27 Mar 2022, Published online: 28 Apr 2022

References

  • de Jesus, R. A.; de Assis, G. C.; de Oliveira, R. J.; Costa, J.; da Silva, C.; Bilal, M.; Iqbal, H.; Ferreira, L.; Figueiredo, R. T. Environmental Remediation Potentialities of Metal and Metal Oxide Nanoparticles: Mechanistic Biosynthesis, Influencing Factors, and Application Standpoint. Environ. Technol. Innov. 2021, 24, 101851. DOI: 10.1016/j.eti.2021.101851.
  • Concina, I.; Ibupoto, Z. H.; Vomiero, A. Semiconducting Metal Oxide Nanostructures for Water Splitting and Photovoltaics. Adv. Energy Mater. 2017, 7, 1700706. DOI: 10.1002/aenm.201700706.
  • Dey, A. Semiconductor Metal Oxide Gas Sensors: A Review. Mater. Sci. Eng. B. 2018, 229, 206–217. DOI: 10.1016/j.mseb.2017.12.036.
  • Amiri, V.; Roshan, H.; Mirzaei, A.; Neri, G.; Ayesh, A. I. Nanostructured Metaloxide-Based Acetone Gas Sensors: A Review. Sensors 2020, 20, 3096. DOI: 10.3390/s20113096.
  • Alavi, M.; Varma, R. S. Phytosynthesis and Modification of Metal and Metal Oxide Nanoparticles/Nanocomposites for Antibacterial and Anticancer Activities: Recent Advances. Sustain. Chem. Pharm. 2021, 21, 100412. DOI: 10.1016/j.scp.2021.100412.
  • Fernández-García, M.; Martínez-Arias, A.; Hanson, J. C.; Rodríguez, J. A. Nanostructured Oxides in Chemistry: Characterization and Properties. Chem Rev. 2004, 104, 4063–4104. DOI: 10.1021/cr030032f.
  • Wyckoff, R. Crystal Structures, 2nd ed; Wiley: New York, 1964.
  • Chavali, M. S.; Nikolova, M. P. Metal Oxide Nanoparticles and Their Applications in Nanotechnology. SN. Appl. Sci. 2019, 1, 607.
  • Castro-Alarcón, N.; Herrera-Arizmendi, J. L.; Marroquín-Carteño, L. A.; Guzmán-Guzmán, I. P.; Pérez-Centeno, A.; Santana-Aranda, M. Á. Antibacterial Activities of Nanoparticles of Titanium Dioxide, Intrinsic and Doped with Indium and Iron Microbiol. Res. Int. 2016, 4, 55–62.
  • Bindhu, M. R.; Umadevi, M.; Micheal, M. K.; Arasu, M. V.; Al-Dhabi, N. A. Structural, Morphological and Optical Properties of MgO Nanoparticles for Antibacterial Applications. Mater. Lett. 2016, 166, 19–22. DOI: 10.1016/j.matlet.2015.12.020.
  • Liu, X.; Jiang, Z.; Li, J.; Zhang, Z.; Ren, L. Super-Hydrophobic Property of Nano-Sized Cupric Oxide Films. Surf. Coat. Technol. 2010, 204, 3200–3204. DOI: 10.1016/j.surfcoat.2010.03.012.
  • Badri, A.; Slimi, S.; Guergueb, M.; Kahri, H.; Mateos, X. Green Synthesis of Copper Oxide Nanoparticles Using Prickly Pear Peel Fruit Extract: Characterization and Catalytic Activity. Inorg. Chem. Commun. 2021, 134, 109027. DOI: 10.1016/j.inoche.2021.109027.
  • Hemalatha, K.; Madhumitha, G.; Kajbafvala, A.; Anupama, N.; Sompalle, R.; Roopan, S. M. Function of Nanocatalyst in Chemistry of Organic Compounds Revolution: An Overview. J. Nanomater. 2013, 2013, 1–23. DOI: 10.1155/2013/341015.
  • Tran, T. H.; Nguyen, V. T. Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications: A Brief Review. Int. Sch. Res. Notices 2014, 2014, 856592. DOI: 10.1155/2014/856592.
  • Yecheskel, Y.; Dror, I.; Berkowitz, B. Catalytic Degradation of Brominated Flame Retardants by Copper Oxide Nanoparticles. Chemosphere 2013, 93, 172–177. DOI: 10.1016/j.chemosphere.2013.05.026.
  • Kumar, V.; Masudy-Panah, S.; Tan, C. C.; Wong, T.; Chi, D. Z.; Dalapati, G. K. Copper Oxide Based Low Cost Thin Film Solar Cells. Proceedings of the IEEE 5th International Nanoelectronics Conference (INEC ’13), 2013, pp. 443–445.
  • Ishio, S.; Narisawa, T.; Takahashi, S.; Kamata, Y.; Shibata, S.; Hasegawa, T.; Yan, Z.; Liu, X.; Yamane, H.; Kondo, Y.; Ariake, J. L10 FePt Thin Films with [0 0 1] Crystalline Growth Fabricated by SiO2 Addition—Rapid Thermal Annealing and Dot Patterning of the Films. J. Magn. Magn. Mater. 2012, 324, 295–302. DOI: 10.1016/j.jmmm.2010.12.014.
  • Aslani, A.; Oroojpour, V. CO Gas Sensing of CuO Nanostructures, Synthesized by an Assisted Solvothermal Wet Chemical Route. Phys. Rev. B Condens. Matter. 2011, 406, 144–149. DOI: 10.1016/j.physb.2010.09.038.
  • Yang, M.; He, J.; Hu, X.; Yan, C.; Cheng, Z. CuO Nanostructures as Quartz Crystal Microbalance Sensing Layers for Detection of Trace Hydrogen Cyanide Gas. Environ. Sci. Technol. 2011, 45, 6088–6094. DOI: 10.1021/es201121w.
  • Li, Y.; Liang, J.; Tao, Z.; Chen, J. CuO Particles and Plates: Synthesis and Gas-Sensor Application. Mater. Res. Bull. 2008, 43, 2380–2385. DOI: 10.1016/j.materresbull.2007.07.045.
  • Wang, X.; Xu, X.; Choi, S. Thermal Conductivity of Nanoparticle - Fluid Mixture. J. Thermophys. Heat Trans. 1999, 13, 474–480. DOI: 10.2514/2.6486.
  • Gupta, D.; Meher, S. R.; Illyaskutty, N.; Alex, Z. C. Facile Synthesis of Cu2O and CuO Nanoparticles and Study of Their Structural, Optical and Electronic Properties. J. Alloys Compd. 2018, 743, 737–745. DOI: 10.1016/j.jallcom.2018.01.181.
  • Soon, A.; Todorova, M.; Delley, B.; Stampfl, C. Thermodynamic Stability and Structure of Copper Oxide Surfaces: A First-Principles Investigation. Phys. Rev. B. 2007, 75, 125420. DOI: 10.1103/PhysRevB.75.125420.
  • Shang, Y.; Liu, F.; Wang, Y.; Li, N.; Ding, B. Enzyme Mimic Nanomaterials and Their Biomedical Applications, Chem. ChemBioChem. 2020, 21, 2408–2418. DOI: 10.1002/cbic.202000123.
  • Chen, W.; Chen, J.; Feng, Y. B.; Hong, L.; Chen, Q. Y.; Wu, L. F.; Lin, X. H.; Xia, X. H. Peroxidase-like Activity of Water-Soluble Cupric Oxide Nanoparticles and Its Analytical Application for Detection of Hydrogen Peroxide and Glucose. Analyst 2012, 137, 1706–1712. DOI: 10.1039/c2an35072f.
  • Hong, L.; Liu, A. L.; Li, G. W.; Chen, W.; Lin, X. H. Chemiluminescent Cholesterol Sensor Based on Peroxidase-like Activity of Cupric Oxide Nanoparticles. Biosens. Bioelectron. 2013, 43, 1–5. DOI: 10.1016/j.bios.2012.11.031.
  • Hu, A. L.; Liu, Y. H.; Deng, H. H.; Hong, G. L.; Liu, A. L.; Lin, X. H.; Xia, X. H.; Chen, W. Fluorescent Hydrogen Peroxide Sensor Based on Cupric Oxide Nanoparticles and Its Application for Glucose and l-Lactate Detection. Biosens. Bioelectron. 2014, 61, 374–378. DOI: 10.1016/j.bios.2014.05.048.
  • Hu, A. L.; Deng, H. H.; Zheng, X. Q.; Wu, Y. Y.; Lin, X. L.; Liu, A. L.; Xia, X. H.; Peng, H. P.; Chen, W.; Hong, G. L. Self-Cascade Reaction Catalyzed by CuO Nanoparticle-Based Dual-Functional Enzyme Mimics. Biosens. Bioelectron. 2017, 97, 21–25. DOI: 10.1016/j.bios.2017.05.037.
  • Kumar, R. V.; Diamant, Y.; Gedanken, A. Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates. Chem. Mater. 2000, 12, 2301–2305. DOI: 10.1021/cm000166z.
  • Eliseev, A. A.; Lukashin, A. V.; Vertegel, A. A.; Heifets, L. I.; Zhirov, A. I.; Tretyakov, Y. D. Complexes of Cu(II) with Polyvinyl Alcohol as Precursors for the Preparation of CuO/SiO2 Nanocomposites. Mater. Res. Innov. 2000, 3, 308–312. DOI: 10.1007/PL00010877.
  • Xu, J. F.; Ji, W.; Shen, Z. X.; Tang, S. H.; Ye, X. R.; Jia, D. Z.; Xin, X. Q. Preparation and Characterization of CuO Nanocrystals. J. Solid State Chem. 1999, 147, 516–519. DOI: 10.1006/jssc.1999.8409.
  • Borgohain, K.; Singh, J. B.; Rao, M.; Shripathi, T.; Mahamuni, S. Quantum Size Effects in CuO Nanoparticles. Phys. Rev. B. 2000, 61, 11093–11096. DOI: 10.1103/PhysRevB.61.11093.
  • Yu, J. Q.; Xu, Z.; Jia, D. Z. Decontamination Procedure of CEES on to the Surface of CuO NPs. Chin. J. Func. Mater. Instrum. 1999, 5, 267.
  • Nakao, S.; Ikeyama, M.; Mizota, T.; Jin, P.; Tazawa, M.; Miyagawa, Y.; Miyagawa, S.; Wang, S.; Wang, L. Rep. Res. Cent. Ion Beam Technol. Hosei Univ. Suppl. 2000, 18, 153.
  • Akintelu, S. A.; Folorunso, A. S.; Folorunso, F. A.; Oyebamiji, A. K. A Review on Synthesis, Optimization, Mechanism, Characterization, and Antibacterial Application of Silver Nanoparticles Synthesized from Plants. Heliyon 2020, 6, e04508. DOI: 10.1016/j.heliyon.2020.e04508.
  • Lanje, A. S.; Sharma, S. J.; Pode, R. B.; Ningthoujam, R. S. Synthesis and Optical Characterization of Copper Oxide Nanoparticles. Adv. Appl. Sci. Res. 2010, 1, 36–40.
  • Bhattacharya, D.; Gupt, K. K. Nanotechnology and Potential of Microorganisms. Crit. Rev. Biotechnol. 2005, 25, 199–204. DOI: 10.1080/07388550500361994.
  • Keabadile, O. P.; Aremu, A. O.; Elugoke, S. E.; Fayemi, O. E. Green and Traditional Synthesis of Copper Oxide Nanoparticles—Comparative Study. Nanomaterials 2020, 10, 2502. DOI: 10.3390/nano10122502.
  • Haque, M. A.; Hossain, M. S.; Akanda, M. R.; Haque, M. A.; Naher, S. Procedure Optimization of Limonia Acidissima Leaf Extraction and Silver Nanoparticle Synthesis for Prominent Antibacterial Activity. ChemistrySelect 2019, 4, 14276–14280. DOI: 10.1002/slct.201904019.
  • Akanda, M. R.; Hasan, M. H.; Ema, U. H.; Hauqe, M. A. Optimization of Spondias Mombin Peel Extract Mediated Synthesis of Palladium Nanoparticles as Nanozyme Exhibits Potent Multienzyme Activity. J. Iran. Chem. Soc. 2021, 2021, 1–9.
  • Cuong, H. N.; Pansambal, S.; Ghotekar, S.; Oza, R.; Hai, N.; Viet, N. M.; Nguyen, V.-H. New Frontiers in the Plant Extract Mediated Biosynthesis of Copper Oxide (CuO) Nanoparticles and Their Potential Applications: A Review. Environ Res. 2022, 203, 111858. DOI: 10.1016/j.envres.2021.111858.
  • Priya, D. D.; Elango, G.; Roopan, S. M.; Shanavas, S.; Acevedo, R.; Golkonda, M.; Sridharan, M. Abutilon Indicum Mediated CuO Nanoparticles: EcoApproach, Optimum Process of Congo Red Dye Degradation, and Mathematical Model for Multistage Operation. ChemistrySelect 2020, 5, 8572–8857. DOI: 10.1002/slct.202000588.
  • Priya, D. D.; Roopan, S. M.; Singh, S.; Bansal, J.; Shanavas, S.; Khan, M. R.; Al-Dhabi, N. A.; Arasu, M. V.; Duraipandian, V. Phyto-Synthesis of CuO Nano-Particles and Its Catalytic Application in C-S Bond Formation. Mater. Lett. 2020, 266, 127486. DOI: 10.1016/j.matlet.2020.127486.
  • Rajeshkumar, S.; Nandhini, N. T.; Manjunath, K.; Sivaperumal, P.; Krishna Prasad, G.; Alotaibi, S. S.; Roopan, S. M. Environment Friendly Synthesis Copper Oxide Nanoparticles and Its Antioxidant, Antibacterial Activities Using Seaweed (Sargassum Longifolium) Extract. J. Mol. Struct. 2021, 1242, 130724. DOI: 10.1016/j.molstruc.2021.130724.
  • Asemani, M.; Anarjan, N. Green Synthesis of Copper Oxide Nanoparticles Using Juglans regia Leaf Extract and Assessment of Their Physico-Chemical and Biological Properties. Green Process Synth. 2019, 8, 557–567. DOI: 10.1515/gps-2019-0025.
  • Sukumar, S.; Rudrasenan, A.; Nambiar, D. P. Green-Synthesized Rice-Shaped Copper Oxide Nanoparticles Using Caesalpinia Bonducella Seed Extract and Their Applications. ACS Omega 2020, 5, 1040–1051. DOI: 10.1021/acsomega.9b02857.
  • Chowdhury, R.; Khan, A.; Rashid, M. H. Green Synthesis of CuO Nanoparticles Using Lantana Camara Flower Extract and Their Potential Catalytic Activity towards the aza-Michael Reaction. RSC Adv. 2020, 10, 14374–14385. DOI: 10.1039/D0RA01479F.
  • Alinezhad, H.; Pakzad, K. Green Synthesis of Copper Oxide Nanoparticles with an Extract of Euphorbia Maculata and Their Use in the Biginelli Reaction. Org. Prep. Proced. Int. 2020, 52, 319–327. DOI: 10.1080/00304948.2020.1764819.
  • Aminuzzaman, M.; Kei, L. M.; Liang, W. H. Green Synthesis of Copper Oxide (CuO) Nanoparticles Using Banana Peel Extract and Their Photocatalytic Activities. AIP. Conf. Proc. 2017, 1828, 020016.
  • Preeth, D. R.; Shairam, M.; Suganya, N.; Hootan, R.; Kartik, R.; Pierre, K.; Suvro, C.; Rajalakshmi, S. Green Synthesis of Copper Oxide Nanoparticles Using Sinapic Acid: An Underpinning Step towards Antiangiogenic Therapy for Breast Cancer. J. Biol. Inorg. Chem. 2019, 24, 633–645. DOI: 10.1007/s00775-019-01676-z.
  • Peternela, J.; Silva, M. F.; Vieira, M. F.; Bergamasco, R.; Vieira, A. Synthesis and Impregnation of Copper Oxide Nanoparticles on Activated Carbon through Green Synthesis for Water Pollutant Removal. Mater. Res. 2018, 21, e20160460.
  • Galan, C. R.; Silva, M. F.; Mantovani, D.; Bergamasco, R.; Vieira, M. F. Green Synthesis of Copper Oxide Nanoparticles Impregnated on Activated Carbon Using Moringa Oleifera Leaves Extract for the Removal of Nitrates from Water. Can. J. Chem. Eng. 2018, 96, 2378–2386. DOI: 10.1002/cjce.23185.
  • Njoku, P. C.; Akumefula, M. I. Phytochemical and Nutrient Evaluation of Spondias Mombin Leaves. Pakistan J. Nutr. 2007, 6, 613–615. DOI: 10.3923/pjn.2007.613.615.
  • Mohamad, N. A. N.; Arham, N. A.; Jai, J.; Hadi, A. Plant Extract as Reducing Agent in Synthesis of Metallic Nanoparticles: A Review. AMR 2013, 832, 350–355. DOI: 10.4028/www.scientific.net/AMR.832.350.
  • Engels, C.; Gräter, D.; Esquivel, P.; Jiménez, V. M.; Gänzle, M. G.; Schieber, A. Characterization of Phenolic Compounds in Jocote (Spondias Purpurea L.) Peels by Ultra High-Performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry. Food Res. Int. 2012, 46, 557–562. DOI: 10.1016/j.foodres.2011.04.003.
  • Yugandhar, P.; Vasavi, T.; Devi, P.; Savithramma, N. Bioinspired Green Synthesis of Copper Oxide Nanoparticles from Syzygium Alternifolium (Wt.) Walp: Characterization and Evaluation of Its Synergistic Antimicrobial and Anticancer Activity. Appl Nanosci. 2017, 7, 417–427. DOI: 10.1007/s13204-017-0584-9.
  • de Carvalho, J. M.; Maia, G. A.; da Fonseca, A.; de Sousa, P.; Rodrigues, S. Effect of Processing on Physicochemical Composition, Bioactive Compounds and Enzymatic Activity of Yellow Mombin (Spondias mombin L.) Tropical Juice. J. Food Sci. Technol. 2015, 52, 1182–1187. DOI: 10.1007/s13197-013-1100-1.
  • Logpriya, S.; Bhuvaneshwari, V.; Vaidehi, D.; SenthilKumar, R. P.; Nithya Malar, R. S.; Pavithra Sheetal, B.; Amsaveni, R.; Kalaiselvi, M. Preparation and Characterization of Ascorbic Acid‑Mediated Chitosan–Copper Oxide Nanocomposite for anti‑Microbial, Sporicidal and Bioflm‑Inhibitory Activity. J. Nanostruct. Chem. 2018, 8, 301–309. DOI: 10.1007/s40097-018-0273-6.
  • Zak, A. K.; Yousefi, R.; Majid, W.; Muhamad, M. R. Facile Synthesis and X-Ray Peak Broadening Studies of Zn1 − xMgxO Nanoparticles. Ceram. Int. 2012, 38, 2059–2064. DOI: 10.1016/j.ceramint.2011.10.042.
  • Zak, A. K.; Majid, W.; Mahmoudian, M. R.; Darroudi, M.; Yousefi, R. Starch-Stabilized Synthesis of ZnO Nanopowders at Low Temperature and Optical Properties Study. Adv. Powder Technol. 2013, 24, 618–624. DOI: 10.1016/j.apt.2012.11.008.
  • Gan, Z. H.; Yu, G. Q.; Tay, B. K.; Tan, C. M.; Zhao, Z. W.; Fu, Y. Q. Preparation and Characterization of Copper Oxide Thin Films Deposited by Filtered Cathodic Vacuum Arc. J. Phys. D: Appl. Phys. 2004, 37, 81–85. DOI: 10.1088/0022-3727/37/1/013.
  • Morales, J.; Sánchez, L.; Martín, F.; Ramos-Barrado, J. R.; Sánchez, M. Nanostructured CuO Thin Film Electrodes Prepared by Spray Pyrolysis: A Simple Method for Enhancing the Electrochemical Performance of CuO in Lithium Cells. J. Electrochim. Acta 2004, 49, 4589–4597. DOI: 10.1016/j.electacta.2004.05.012.
  • Dahal, E.; Curtiss, J.; Subedi, D.; Chen, G.; Houston, J. P.; Smirnov, S. Evaluation of the Catalytic Activity and Cytotoxicity of Palladium Nanocubes: The Role of Oxygen. ACS Appl. Mater. Interfaces 2015, 7, 9364–9371. DOI: 10.1021/am509124x.
  • Chen, W.; Chen, J.; Liu, A.-L.; Wang, L.-M.; Li, G.-W.; Lin, X.-H. Peroxidase-Like Activity of Cupric Oxide Nanoparticle. Chem. Cat. Chem. 2011, 3, 1151–1154. DOI: 10.1002/cctc.201100064.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.