415
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Organo-soluble dendritic zinc phthalocyanine: photoluminescence and fluorescence properties

ORCID Icon, , ORCID Icon, , &
Received 10 Nov 2021, Accepted 28 Mar 2022, Published online: 27 May 2022

References

  • Gómez, A. R.; Sánchez-Hernández, C. M.; Fleitman-Levin, I.; Arenas-Alatorre, J.; Alonso-Huitrón, J. C.; Vergara, M. E. S. Optical Absorption and Visible Photoluminescence from Thin Films of Silicon Phthalocyanine Derivatives. Materials (Basel) 2014, 7, 6585–6603. DOI: https://doi.org/10.3390/ma7096585.
  • Gounden, D.; Nombona, N.; van Zyl, W. E. Recent Advances in Phthalocyanines for Chemical Sensor, Non-linear Optics (NLO) and Energy Storage Applications. Coord. Chem. Rev. 2020, 420, 213359–213389.
  • Soganci, T.; Baygu, Y.; Kabay, N.; Gök, Y.; Ak, M. Comparative Investigation of Peripheral and Nonperipheral Zinc Phthalocyanine-Based Polycarbazoles in Terms of Optical, Electrical, and Sensing Properties. ACS Appl. Mater. Interf. 2018, 10, 21654–21665., DOI: https://doi.org/10.1021/acsami.8b06206.
  • Cranston, R. R.; Lessard, B. H. Metal Phthalocyanines: thin-Film Formation, Microstructure, and Physical Properties. RSC Adv. 2021, 11, 21716–21737. DOI: https://doi.org/10.1039/d1ra03853b.
  • Yahya, M.; Nural, Y.; Seferoğlu, Z. Recent Advances in the Nonlinear Optical (NLO) Properties of Phthalocyanines: A Review. Dyes Pigm. 2022, 198, 109960–109973. DOI: https://doi.org/10.1016/j.dyepig.2021.109960.
  • Brogdon, P.; Cheema, H.; Delcamp, J. H. Near-Infrared-Absorbing Metal-Free Organic, Porphyrin, and Phthalocyanine Sensitizers for Panchromatic Dye-Sensitized Solar Cells. Chem. Sus. Chem. 2018, 11, 86–103. DOI: https://doi.org/10.1002/cssc.201701441.
  • Szybowicz, M.; Runka, T.; Drozdowski, M.; Bała, W.; Wojdyła, M.; Grodzicki, A.; Piszczek, P.; Bratkowski, A. Temperature Study of Raman, FT-IR and Photoluminescence Spectra of ZnPc Thin Layers on Si Substrate. J Mol. Struct. 2007, 830, 14–20. DOI: https://doi.org/10.1016/j.molstruc.2006.06.026.
  • Belogorokhov, I. A.; Ryabchikov, Y. V.; Tikhonov, E. V.; Pushkarev, V. E.; Breusova, M. O.; Tomilova, L. G.; Khokhlov, D. R. Photoluminescence in Semiconductor Structures Based on Butyl-Substituted Erbium Phthalocyanine Complexes. Semiconductors 2008, 42, 321–324. DOI: https://doi.org/10.1134/S1063782608030147.
  • Engel, M. K.; Bassoul, P.; Bosio, L.; Lehmann, H.; Hanack, M.; Simon, J. Mesomorphic Molecular Materials. Influence of Chain Length on the Structural Properties of Octa-Alkyl Substituted Phthalocyanines. Liq. Cryst. 1993, 15, 709–722. DOI: https://doi.org/10.1080/02678299308036489.
  • Cook, M. J. Properties of Some Alkyl Substituted Phthalocyanines and Related Macrocycles. Chem. Rec. 2002, 2, 225–236. DOI: https://doi.org/10.1002/tcr.10028.
  • Venuti, E.; Valle, R. G. D.; Bilotti, I.; Brillante, A.; Cavallini, M.; Calò, A.; Geerts, Y. H. Absorption, Photoluminescence, and Polarized Raman Spectra of a Fourfold Alkoxy-Substituted Phthalocyanine Liquid Crystal. J. Phys. Chem. C 2011, 115, 12150–12157. DOI: https://doi.org/10.1021/jp202926j.
  • Smirnova, A. I.; Usol’tseva, N. V. Lyotropic Mesomorphism Of 2,3,9,10,16,17,23,24-Octa(Octyloxy)Phthalocyanine And İts Metal Complexes İn Organic Solvents. Liq. Cryst. Appl. 2002, 2, 96–107.
  • Cammidge, A. N.; Cook, M. J.; Haslam, S. D.; Richardson, R. M.; Harrison, K. J. Mesomorphic Properties of Some 1,4,8,11,15,18,22,25-Octa-Alkoxymethylphthalocyanines. Liq. Cryst. 1993, 14, 1847–1862. DOI: https://doi.org/10.1080/02678299308027720.
  • Usoltseva, N. V.; Bykova, V. V.; Kormilitsyn, N. M.; Ananieva, G. A.; Maizlish, V. E. The Dependence of Lyotropic Mesomorphism and Intermolecular Interactions of the Carboxyphtalocyanine Derivatives on the Metal Nature. Nuovo Cimento 12D 1990, 12, 1237–1242., DOI: https://doi.org/10.1007/BF02450389.
  • Usol'tseva, N.; Bykova, V.; Ananjeva, G.; Smirnova, A.; Shaposhnikov, G.; Maizlish, V.; Kudrik, E.; Shirokov, A. Lyomesomorphism of Carboxyl- and Alkoxycarbonyl Substituted Phthalocyanine Copper Complexes. Mol. Cryst. Liq.Cryst. 2000, 352, 45–57. DOI: https://doi.org/10.1080/10587250008023160.
  • Smirnova, A. I.; Maizlish, V. E.; Usol'tseva, N. V.; Bykova, V. V.; Anan'eva, G. A.; Kudrik, E. V.; Shirokov, A. V.; Shaposhnikov, G. P. Synthesis and Liquic Crystalline Properties of Copper Tetra-4-(n-Alkoxycarbonyl)Phthalocyanines. Russ. Chem. Bull. 1990, 49, 132–139. DOI: https://doi.org/10.1007/BF02499079.
  • Gaspard, S.; Hochaptel, A.; Viovy, R. Proc. Conf. on Liquid Crystals of One and Two Dimensions Order and Their Applications. Garmish Partenkirchen. 1980, 298–302.
  • Smirnova A. I.; Usol’tseva N. V. Lyotropic Behaviour Of Sheet-Like Chemical Compounds: Amphotropy Of Phthalocyanine And Porphyrin Derivatives. Mol. Cryst. Liq.Cryst 1996, 288, 201–210.
  • Usol’tseva, N.; Bykova, V.; Semeikin, A.; Ananjeva, G.; Smirnova, A.; Negrimovski, V. Lyotropic Phase Behaviour Of Phthalocyanine Derivatives İn Apolar Organic Solvents. Mol. Cryst. Liq. Cryst. 1997, 304, 201–206.
  • Sosa-Vargas, L.; Nekelson, F.; Okuda, D.; Takahashi, M.; Matsuda, Y.; Dao, Q.-D.; Hiroyuki, Y.; Fujii, A.; Ozaki, M.; Shimizu, Y. Liquid Crystalline and Charge Transport Properties of Novel Non-Peripherally Octasubstituted Perfluoroalkylated Phthalocyanines. J. Mater. Chem. C 2015, 3, 1757–1765. DOI: https://doi.org/10.1039/C4TC02557A.
  • Treacher, E. K.; Clarkson, G. J.; McKeown, N. B. Stable Glass Formation by a Hexagonal Ordered Columnar Mesophase of a Low Molar Mass Phthalocyanine Derivative. Liq. Cryst. 1995, 19, 887–889. DOI: https://doi.org/10.1080/02678299508031113.
  • Yoshioka, M.; Ohta, K.; Yasutake, M. Flying-Seed-like Liquid Crystals. Part 4: A Novel Series of Bulky Substituents Inducing Mesomorphism instead of Using Long Alkyl Chains. RSC Adv. 2015, 5, 13828–13839. DOI: https://doi.org/10.1039/C4RA13474E.
  • Smirnova, A. I.; Usol’tseva, N. V. X-Ray Diffraction Investigation of Two Mesomorphic Copper(II) Complexes of Tetra-4-[(4-Alkoxycarbonyl)Phenyleneoxy]Phthalocyanine. Crystallogr. Rep. 2006, 51, 258–264. DOI: https://doi.org/10.1134/S1063774506020118.
  • Znoiko, S. A.; Maizlish, V. E.; Shaposhnikov, G. P.; Abramov, I. G.; Ananieva, G. A.; Bykova, V. V.; Usol’tseva, N. V. Synthesis And Properties Of Benzotriazolyl-Substituted Phthalocyanines With Bulky Substituents. Liq.Cryst. Their Appl. 2009, 1, 24–32.
  • Usol'tseva, N.; Bykova, V.; Ananjeva, G.; Zharnikova, N.; Kudrik, E. Mesomorphism and Glass Formation of Phthalocyanine Metal Complexes with Bulky Substituents. Mol. Cryst. Liq. Cryst. 2004, 411, 329–336. DOI: https://doi.org/10.1080/15421400490435350.
  • Takagi, Y.; Ohta, K.; Shimosugi, S.; Fujii, T.; Itoh, E. Flying-Seed-like Liquid Crystals 2: Unprecedented Guidelines to Obtain Liquid Crystalline Compounds. J. Mater. Chem. 2012, 22, 14418–14425. DOI: https://doi.org/10.1039/c2jm32284f.
  • Wojdyła, M.; Bała, W.; Derkowska, B.; Rębarz, M.; Korcala, A. The Temperature Dependence of Photoluminescence and Absorption Spectra of Vacuum-Sublimed Magnesium Phthalocyanine Thin Films. Optic. Mater. 2008, 30, 734–739. DOI: https://doi.org/10.1016/j.optmat.2007.02.023.
  • Li, X.; Wang, H.; Wu, H. Phthalocyanines and Their Analogs Applied in Dye-Sensitized Solar Cell. Struct. Bond. 2010, 135, 229–274.
  • Leznoff, C. C.; Lever, A. B. P. Phthalocyanines: Properties and Applications. Cambridge: VCH Publishers, 1996; Vols 2–4.
  • McKeown, N. B. Phthalocyanine Materials. Synthesis, Structure and Function. Cambridge: Cambridge University Press, 1998.
  • Altın, Ş.; Dumludağ, F.; Oruç, Ç.; Altındal, A. Influence of Humidity on Kinetics of Xylene Adsorption onto Ball-Type Hexanuclear Metallophthalocyanine Thin Film. Microelectron. Eng. 2015, 134, 7–13. DOI: https://doi.org/10.1016/j.mee.2015.01.009.
  • Shi, J.; Luan, L.; Fang, W.; Zhao, T.; Liu, W.; Cui, D. High-Sensitive Low-Temperature NO2 Sensor Based on Zn (II) Phthalocyanine with Liquid Crystalline Properties. Sensor. Actuat. B-Chem. 2014, 204, 218–223. DOI: https://doi.org/10.1016/j.snb.2014.07.070.
  • Özceşmeci, İ.; Gelir, A.; Gül, A. Synthesis and Photophysical Properties Phthalocyanine–Pyrene Dyads. Dyes Pigment. 2012, 92, 954–960. DOI: https://doi.org/10.1016/j.dyepig.2011.08.013.
  • Sevim, A. M.; Arıkan, S.; Özçeşmeci, İ.; Gül, A. Photophysical Properties of Anthracenylmethyloxycarbonylmethylsulfanyl-Phthalocyanines. Synthetic Met. 2013, 183, 1–7. DOI: https://doi.org/10.1016/j.synthmet.2013.09.012.
  • Yokoyama, S.; Otomo, A.; Nakahama, T.; Okuno, Y.; Mashiko, S. Dendrimers for Optoelectronic Applications. Top Curr. Chem. 2003, 228, 205–226. DOI: https://doi.org/10.1007/b11012.
  • Lo, S. C.; Burn, P. L. Development of Dendrimers: Macromolecules for Use in Organic Light-Emitting Diodes and Solar Cells. Chem. Rev. 2007, 107, 1097–1116. [Database] DOI: https://doi.org/10.1021/cr050136l.
  • Jıang J. (Ed.). Functional Phthalocyanine Molecular Materials. Struct. Bond. 2010, 135. Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-04751-0.
  • Fischer, M. K. R.; López-Duarte, I.; Wienk, M. M.; Martı’nez-Dı’az, M. V.; Janssen, R. A. J.; Bauerle, P.; Torres, T. Functionalized Dendritic Oligothiophenes: Ruthenium Phthalocyanine Complexes and Their Application in Bulk Heterojunction Solar Cells. J. Am. Chem. Soc. 2009, 131, 8669–8676. DOI: https://doi.org/10.1021/ja901537d.
  • Armarego, W. L. F.; Chai, C. L. L. Purificaiton of Laboratory Chemicals. 5th ed. Tokyo: Butterworth/Heinemann, 2003.
  • Yabaş, E.; Sülü, M.; Özgür, A.; Tutar, Y. S. D. U. Effect of New Water-Soluble Dendritic Phthalocyanines on Human Colorectal and Liver Cancer Cell Lines. J. Natural Appl. Sci. 2017, 21, 689–695.
  • Newkome, G. R.; Lin, X. Symmetrical, Four-Directional, Poly(Ether-Amide) Cascade Polymers. Macromolecules 1991, 24, 1443–1444. DOI: https://doi.org/10.1021/ma00006a042.
  • Ogunsipe, A.; Nyokong, T. Effects of Substituents and Solvents on the Photochemical Properties of Zinc Phthalocyanine Complexes and Their Protonated Derivatives. J. Mol. Struct. 2004, 689, 89–97. DOI: https://doi.org/10.1016/j.molstruc.2003.10.024.
  • Fery-Forgues, S.; Lavabre, D. Are Fluorescence Quantum Yields so Tricky to Measure? A Demonstration Using Familiar Stationery Products. J. Chem. Educ. 1999, 76, 1260–1264. DOI: https://doi.org/10.1021/ed076p1260.
  • Maree, D.; Nyokong, T.; Suhling, K.; Phillips, D. Effects of Axial Ligands on the Photophysical Properties of Silicon Octaphenoxyphthalocyanine. J. Porphyrins Phthalocyanine. 2002, 06, 373–376. DOI: https://doi.org/10.1142/S1088424602000452.
  • Lutkus, L. V.; Rickenbach, S. S.; McCormick, T. M. Singlet Oxygen Quantum Yields Determined by Oxygen Consumption. J. Photochem. Photobiol. A 2019, 378, 131–135. DOI: https://doi.org/10.1016/j.jphotochem.2019.04.029.
  • Yabaş, E.; Özer, A. Farklı Türdeki Ftalosiyanin Bileşiklerinin İnce Film Yüzey Morfolojilerinin İncelenmesi, Chapter, Geleceğin Dünyasında Bilimsel ve Mesleki Çalışmalar: Fen ve Matematik Bilimleri, EKİN Basın Yayın Dağıtım 2018; ISBN: 978-605-327-788-0, Editors: İshak Altun, Yusuf Sert, Canan Başlak.
  • Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Fluorinated Organic Materials For Electronic And Optoelectronic Applications: The Role Of The Fluorine Atom. Chem. Commun. 2007, 1003–1022.
  • Zhang, Y.; Cai, X.; Bian, Y.; Jiang, J. Organic Semiconductors of Phthalocyanine Compounds for Field Effect Transistors (FETs). Struct. Bond. 2010, 135, 275–322.
  • Torre, G.; Bottari, G.; Hahn, U.; Torres, T. Functional Phthalocyanines: Synthesis, Nanostructuration, And Electro-Optical Applications. Struct. Bond. 2010, 135, 1–44.
  • Snow, A. W. Phthalocyanines: Properties and Materials: Phthalocyanine Aggregation. USA: Elsevier Science, 2003, pp. 130–173. ISBN 0-12-393220-3.
  • Nyokong, T. Effects of Substituents on the Photochemical and Photophysical Properties of Main Group Metal Phthalocyanines. Coord. Chem. Rev. 2007, 251, 1707–1722. [Database] DOI: https://doi.org/10.1016/j.ccr.2006.11.011.
  • Nyokong, T. Electronic Spectral And Electrochemical Behavior Of Near İnfrared Absorbing Metallophthalocyanines. Struct. Bond. 2010, 135, 45–88.
  • Leznoff, C. C.; Lever, A. B. P. Phthalocyanines Properties and Applications. Cambridge: VCH Publisher, 1989; Vol. 1.
  • Senthilarasu, S.; Velumani, S.; Sathyamoorthy, R.; Subbarayan, A.; Ascencio, J. A.; Canizal, G.; Sebastian, P. J.; Chavez, J. A.; Perez, R. Characterization of Zinc Phthalocyanine (ZnPc) for Photovoltaic Applications. Appl. Phys. A 2003, 77, 383–389. DOI: https://doi.org/10.1007/s00339-003-2184-7.
  • Senthilarasu, S.; Sathyamoorthy, R.; Lee, S. H.; Velumani, S. Characterization of Zinc-Phthalocyanine–CdS Composite Thin Films for Photovoltaic Applications. Vacuum 2010, 84, 1212–1215. DOI: https://doi.org/10.1016/j.vacuum.2009.10.027.
  • Timoumi, A.; Wederni, M. A.; Bouguila, N.; Jamoussi, B.; A. L.; Turkestani, M. K.; Chakroun, R.; Al-Mur, B. Electrical Impedance Spectroscopy Study of Unsubstituted Palladium (II) Phthalocyanine. Synt. Metal. 2021, 272, 116659–116666. DOI: https://doi.org/10.1016/j.synthmet.2020.116659.
  • Kannan, R. R.; Nelson, P. I.; Rajesh, S.; Selvan, T. P.; Mohan, A.; Vidhya, B.; Arivazhagan, D. N. Curtailed Recombination Rate And Fast Carrier Transport İn Znpc/Gaas/Znpc Stacked Hybrid Structure. Optic. Mater. 2018, 85, 287–294.
  • Sakakibara, Y.; Bera, R. N.; Mizutani, T.; Ishida, K.; Tokumoto, M.; Tani, T. Photoluminescence Properties of Magnesium, Chloroaluminum, Bromoaluminum, and Metal-Free Phthalocyanine Solid Films. J. Phys. Chem. B 2001, 105, 1547–1553. DOI: https://doi.org/10.1021/jp002943o.
  • Yabaş, E.; Aust, J. New Cobalt Phthalocyanine–Graphene Oxide Hybrid Nanomaterial Prepared by Strong π–π Interactions. J. Aust. Ceram. Soc. 2022, 58, 63–70. DOI: https://doi.org/10.1007/s41779-021-00656-4.
  • Nimith, K. M.; Satyanarayan, M. N.; Umesh, G. Enhancement in Fluorescence Quantum Yield of MEH-PPV:BT Blends for Polymer Light Emitting Diode Applications. Optic. Mater. 2018, 80, 143–148. DOI: https://doi.org/10.1016/j.optmat.2018.04.046.
  • Durmuş, M.; Nyokong, T. Photophysicochemical and Fluorescence Quenching Studies of Benzyloxyphenoxy-Substituted Zinc Phthalocyanines. Spectrochim. Acta A 2008, 69, 1170–1177. DOI: https://doi.org/10.1016/j.saa.2007.06.029.
  • Ghisla, S.; Massey, V.; Lhoste, J. M.; Mayhew, S. G. Fluorescence and Optical Characteristics of Reduced Flavines and Flavoproteins. Biochemistry 1974, 13, 589–597. DOI: https://doi.org/10.1021/bi00700a029.
  • Clement, S.; Deng, W.; Camilleri, E.; Wilson, B. C.; Goldys, E. M. X-Ray İnduced Singlet Oxygen Generation By Nanoparticle-Photosensitizer Conjugates For Photodynamic Therapy: Determination Of Singlet Oxygen Quantum Yield. Scient. Rep. 2016, 6, 19954–19962.
  • Guo, Q.; Chen, L.; Pan, S.; Ma, D.; Liu, X.; Chen, X.; Xu, G.; Yang, H.; Peng, Y. Morpholinyl Dendrimer Phthalocyanine: Synthesis, Photophysical Properties and Photoinduced İntramolecular Electron Transfer. Dalton Trans. 2018, 47, 13164-13170.
  • Ogunsipe, A.; Maree, D.; Nyokong, T. Solvent Effects on the Photochemical and Fluorescence Properties of Zinc Phthalocyanine Derivatives. J. Mol. Struct. 2003, 650, 131–140. [Database] DOI: https://doi.org/10.1016/S0022-2860(03)00155-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.