463
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

The antibacterial and biofilm inhibition activity of encapsulated silver nanoparticles in emulsions and its synergistic effect with E. coli bacteriophage

, , ORCID Icon, , , & show all
Pages 549-559 | Received 19 Aug 2021, Accepted 29 Mar 2022, Published online: 19 Jun 2022

References

  • Dadgostar, P. Antimicrobial Resistance: implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. DOI: 10.2147/IDR.S234610.
  • De Oliveira, D. M. P.; Forde, B. M.; Kidd, T. J.; Harris, P. N. A.; Schembri, M. A.; Beatson, S. A.; Paterson, D. L.; Walker, M. J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181–19. DOI: 10.1128/CMR.00181-19.
  • de Kraker, M. E. A.; Stewardson, A. J.; Harbarth, S. Will 10 Million People Die a Year Due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. DOI: 10.1371/journal.pmed.1002184.
  • Rangel, J. M.; Sparling, P. H.; Crowe, C.; Griffin, P. M.; Swerdlow, D. L. Epidemiology of Escherichia coli O157:H7 Outbreaks, United States, 1982-2002. Emerg. Infect. Dis. 2005, 11, 603–609. DOI: 10.3201/eid1104.040739.
  • Ameer MA, Wasey A, Salen P. Escherichia Coli (E Coli 0157 H7). In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2021. PMID: 29939622.
  • Argov, T.; Azulay, G.; Pasechnek, A.; Stadnyuk, O.; Ran-Sapir, S.; Borovok, I.; Sigal, N.; Herskovits, A. A. Temperate Bacteriophages as Regulators of Host Behavior. Curr. Opin. Microbiol. 2017, 38, 81–87. DOI: 10.1016/j.mib.2017.05.002.
  • Lukman, C.; Yonathan, C.; Magdalena, S.; Waturangi, D. E. Isolation and Characterization of Pathogenic Escherichia coli Bacteriophages from Chicken and Beef Offal. BMC Res. Notes. 2020, 13, 7–8. DOI: 10.1186/s13104-019-4859-y.
  • Sulakvelidze, A.; Alavidze, Z.; Morris, J. G. Jr Bacteriophage Therapy. Antimicrob. Agents Chemother. 2001, 45, 649–659. DOI: 10.1128/AAC.45.3.649-659.2001.
  • El-Shibiny, A.; Dawoud, A. Bacteriophage Applications for Food Safety. In Biocommunication of Phages, 1st ed.; Witzany, G., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp 463–484. DOI: 10.1007/978-3-030-45885-0_21.
  • Abdelsattar, A.; Nofal, R.; Makky, S.; El-Sayed, A.; El-Shibiny, A. A Modified High-Throughput Screening Protocol to Isolate Bacteriophages from Environmental Samples, 2021. Published online. 2021020410 (doi: 10.20944/preprints202102.0410.v2).
  • Hyman, P.; Abedon, S. T. Bacteriophage Host Range and Bacterial Resistance. Adv. Appl. Microbiol. 2010, 70, 217–248. DOI: 10.1016/S0065-2164(10)70007-1.
  • Manohar, P.; Loh, B.; Athira, S.; Nachimuthu, R.; Hua, X.; Welburn, S. C.; Leptihn, S. Secondary Bacterial Infections during Pulmonary Viral Disease: Phage Therapeutics as Alternatives to Antibiotics? Front. Microbiol. 2020, 11, 1434. doi:10.3389/FMICB.2020.01434
  • Labrie, S. J.; Samson, J. E.; Moineau, S. Bacteriophage Resistance Mechanisms. Nat. Rev. Microbiol. 2010, 8, 317–327. DOI: 10.1038/nrmicro2315.
  • Kutateladze, M.; Adamia, R. Bacteriophages as Potential New Therapeutics to Replace or Supplement Antibiotics. Trends Biotechnol. 2010, 28, 591–595. DOI: 10.1016/j.tibtech.2010.08.001.
  • Kutter, E.; De Vos, D.; Gvasalia, G.; Alavidze, Z.; Gogokhia, L.; Kuhl, S.; Abedon, S. T. Phage Therapy in Clinical Practice: Treatment of Human Infections. Curr. Pharm. Biotechnol. 2010, 11, 69–86. DOI: 10.2174/138920110790725401.
  • Goodridge, L. D. Designing Phage Therapeutics. Curr. Pharm. Biotechnol. 2010, 11, 15–27. DOI: 10.2174/138920110790725348.
  • Abedon, S. T.; Thomas-Abedon, C. Phage Therapy Pharmacology. Curr. Pharm. Biotechnol. 2010, 11, 28–47. DOI: 10.2174/138920110790725410.
  • Bae, E.; Park, H.-J.; Lee, J.; Kim, Y.; Yoon, J.; Park, K.; Choi, K.; Yi, J. Bacterial Cytotoxicity of the Silver Nanoparticle Related to Physicochemical Metrics and Agglomeration Properties. Environ. Toxicol. Chem. 2010, 29, 2154–2160. DOI: 10.1002/etc.278.
  • Abdelsattar, A. S.; Nofal, R.; Makky, S.; Safwat, A.; Taha, A.; El-Shibiny, A. The Synergistic Effect of Biosynthesized Silver Nanoparticles and Phage ZCSE2 as a Novel Approach to Combat Multidrug-Resistant Salmonella enterica. Antibiotics 2021, 10, 678. DOI: 10.3390/antibiotics10060678.
  • Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity following Various Routes of Exposure. IJMS. 2020, 21, 2375. DOI: 10.3390/ijms21072375.
  • Téllez-de-Jesús, D. G.; Flores-Lopez, N. S.; Cervantes-Chávez, J. A.; Hernández-Martínez, A. R. Antibacterial and Antifungal Activities of Encapsulated Au and Ag Nanoparticles Synthesized Using Argemone Mexicana L Extract, against Antibiotic-Resistant Bacteria and Candida albicans. Surf. Interfaces 2021, 27, 101456. DOI: 10.1016/j.surfin.2021.101456.
  • Slavin, Y. N.; Asnis, J.; Häfeli, U. O.; Bach, H. Metal Nanoparticles: understanding the Mechanisms behind Antibacterial Activity. J. Nanobiotechnol. 2017, 15, 1–20. DOI: 10.1186/s12951-017-0308-z.
  • Lara, H. H.; Ayala-Núñez, N. V.; del Turrent, L. C. I.; Padilla, C. R. Bactericidal Effect of Silver Nanoparticles against Multidrug-Resistant Bacteria. World J. Microbiol. Biotechnol. 2010, 26, 615–621. DOI: 10.1007/s11274-009-0211-3.
  • Su, H.-L.; Lin, S.-H.; Wei, J.-C.; Pao, I.-C.; Chiao, S.-H.; Huang, C.-C.; Lin, S.-Z.; Lin, J.-J. Novel Nanohybrids of Silver Particles on Clay Platelets for Inhibiting Silver-Resistant Bacteria. PLoS One. 2011, 6, e21125. DOI: 10.1371/journal.pone.0021125.
  • Hu, R.; Yong, K.-T.; Roy, I.; Ding, H.; He, S.; Prasad, P. N. Metallic Nanostructures as Localized Plasmon Resonance Enhanced Scattering Probes for Multiplex Dark Field Targeted Imaging of Cancer Cells . J. Phys. Chem. C. Nanomater. Interfaces. 2009, 113, 2676–2684. DOI: 10.1021/jp8076672.
  • Yin, B.; Ma, H.; Wang, S.; Chen, S. Electrochemical Synthesis of Silver Nanoparticles under Protection of Poly (N-Vinylpyrrolidone). J. Phys. Chem. B. 2003, 107, 8898–8904. DOI: 10.1021/jp0349031.
  • Dimitrijevic, N. M.; Bartels, D. M.; Jonah, C. D.; Takahashi, K.; Rajh, T. Radiolytically Induced Formation and Optical Absorption Spectra of Colloidal Silver Nanoparticles in Supercritical Ethane. J. Phys. Chem. B. 2001, 105, 954–959. DOI: 10.1021/jp0028296.
  • Wang, S.; Zhang, Y.; Ma, H.-L.; Zhang, Q.; Xu, W.; Peng, J.; Li, J.; Yu, Z.-Z.; Zhai, M. Ionic-Liquid-Assisted Facile Synthesis of Silver Nanoparticle-Reduced Graphene Oxide Hybrids by Gamma Irradiation. Carbon N. Y. 2013, 55, 245–252. DOI: 10.1016/j.carbon.2012.12.033.
  • Callegari, A.; Tonti, D.; Chergui, M. Photochemically Grown Silver Nanoparticles with Wavelength-Controlled Size and Shape. Nano Lett. 2003, 3, 1565–1568. DOI: 10.1021/nl034757a.
  • Pandey, S.; Goswami, G. K.; Nanda, K. K. Green Synthesis of Biopolymer-Silver Nanoparticle Nanocomposite: An Optical Sensor for Ammonia Detection. Int. J. Biol. Macromol. 2012, 51, 583–589. DOI: 10.1016/j.ijbiomac.2012.06.033.
  • Nayak, R. R.; Pradhan, N.; Behera, D.; Pradhan, K. M.; Mishra, S.; Sukla, L. B.; Mishra, B. K. Green Synthesis of Silver Nanoparticle by Penicillium Purpurogenum NPMF: The Process and Optimization. J. Nanopart. Res. 2011, 13, 3129–3137. DOI: 10.1007/s11051-010-0208-8.
  • Khalil, M. M. H.; Ismail, E. H.; El-Baghdady, K. Z.; Mohamed, D. Green Synthesis of Silver Nanoparticles Using Olive Leaf Extract and Its Antibacterial Activity. Arab. J. Chem. 2014, 7, 1131–1139. DOI: 10.1016/j.arabjc.2013.04.007.
  • Hussain, S. M.; Hess, K. L.; Gearhart, J. M.; Geiss, K. T.; Schlager, J. J. In Vitro Toxicity of Nanoparticles in BRL 3A Rat Liver Cells. Toxicol. In Vitro 2005, 19, 975–983. DOI: 10.1016/j.tiv.2005.06.034.
  • Lam, C.-W.; James, J. T.; McCluskey, R.; Hunter, R. L. Pulmonary Toxicity of Single-Wall Carbon Nanotubes in Mice 7 and 90 Days after Intratracheal Instillation. Toxicol. Sci. 2004, 77, 126–134.
  • Shimabuku, Q. L.; Ueda-Nakamura, T.; Bergamasco, R.; Fagundes-Klen, M. R. Chick-Watson Kinetics of Virus Inactivation with Granular Activated Carbon Modified with Silver Nanoparticles and/or Copper Oxide. Process Saf. Environ. Prot. 2018, 117, 33–42. DOI: 10.1016/j.psep.2018.04.005.
  • Gilcrease, E.; Williams, R.; Goel, R. Evaluating the Effect of Silver Nanoparticles on Bacteriophage Lytic Infection Cycle-a Mechanistic Understanding. Water Res. 2020, 181, 115900. DOI: 10.1016/j.watres.2020.115900.
  • Fahimirad, S.; Ajalloueian, F.; Ghorbanpour, M. Synthesis and Therapeutic Potential of Silver Nanomaterials Derived from Plant Extracts. Ecotoxicol. Environ. Saf. 2019, 168, 260–278. DOI: 10.1016/j.ecoenv.2018.10.017.
  • Ahiwale, S. S.; Bankar, A. V.; Tagunde, S.; Kapadnis, B. P. A Bacteriophage Mediated Gold Nanoparticles Synthesis and Their anti-Biofilm Activity. Indian J. Microbiol. . 2017, 57, 188–194. DOI: 10.1007/s12088-017-0640-x.
  • Manoharadas, S.; Altaf, M.; Alrefaei, A. F.; Devasia, R. M.; Badjah Hadj, A. Y. M.; Abuhasil, M. S. A. Concerted Dispersion of Staphylococcus aureus Biofilm by Bacteriophage and “ 'Green Synthesized' Silver Nanoparticles. RSC Adv. 2021, 11, 1420–1429. DOI: 10.1039/d0ra09725j.
  • Razavi, R.; Amiri, M.; Alshamsi, H. A.; Eslaminejad, T.; Salavati-Niasari, M. Green Synthesis of Ag Nanoparticles in Oil-in-Water Nano-Emulsion and Evaluation of Their Antibacterial and Cytotoxic Properties as Well as Molecular Docking. Arab. J. Chem. 2021, 14, 103323. DOI: 10.1016/j.arabjc.2021.103323.
  • Parvekar, P.; Palaskar, J.; Metgud, S.; Maria, R.; Dutta, S. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of Silver Nanoparticles against Staphylococcus aureus. Biomater. Investig. Dent. 2020, 7, 105–109. DOI: 10.1080/26415275.2020.1796674.
  • Ajitha, B.; Reddy, Y. A. K.; Shameer, S.; Rajesh, K. M.; Suneetha, Y.; Reddy, P. S. Lantana Camara Leaf Extract Mediated Silver Nanoparticles: antibacterial, Green Catalyst. J. Photochem. Photobiol. B. 2015, 149, 84–92. DOI: 10.1016/j.jphotobiol.2015.05.020.
  • Gavade, S. J. M.; Nikam, G. H.; Dhabbe, R. S.; Sabale, S. R.; Tamhankar, B. V.; Mulik, G. N. Green Synthesis of Silver Nanoparticles by Using Carambola Fruit Extract and Their Antibacterial Activity. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015, 6, 45015.
  • Jafari, A.; Vaghari, H.; Jafarizadeh-Malmiri, H. Development of Antimicrobial Films Based on Aloe Vera and Fabricated AgNPs Using Propolis…. Proc. Natl. Acad. Sci. India Sect. B. Biol. Sci. 2020, 91, 1–9. Published Online.
  • Mohammadlou, M.; Maghsoudi, H.; Jafarizadeh-Malmiri, H. A Review on Green Silver Nanoparticles Based on Plants: Synthesis, Potential Applications and Eco-Friendly Approach. Int. Food Res. J. 2016, 23, 446-463.
  • Pan, K.; Zhong, Q. Organic Nanoparticles in Foods: Fabrication, Characterization, and Utilization. Annu. Rev. Food Sci. Technol. 2016, 7, 245–266. DOI: 10.1146/annurev-food-041715-033215.
  • Ullah Khan, S.; Saleh, T. A.; Wahab, A.; Khan, M. H. U.; Khan, D.; Ullah Khan, W.; Rahim, A.; Kamal, S.; Ullah Khan, F.; Fahad, S.; et al. Nanosilver: New Ageless and Versatile Biomedical Therapeutic Scaffold. Int. J. Nanomedicine. 2018, 13, 733–762. DOI: 10.2147/IJN.S153167.
  • Ahmed, S. W.; Anwar, H.; Siddiqui, A.; Shah, M. R.; Ahmed, A.; Ali, S. A. Synthesis and Chemosensing of Nitrofurazone Using Olive Oil Based Silver Nanoparticles (O-AgNPs). Sensors Actuators B. Chem. 2018, 256, 429–439. DOI: 10.1016/j.snb.2017.10.111.
  • Das, A.; Roy, A.; Rajeshkumar, S.; Lakshmi, T. Anti-Inflammatory Activity of Turmeric Oil Mediated Silver Nanoparticles. Res. J. Pharm. Technol. 2019, 12, 3507–3510. DOI: 10.5958/0974-360X.2019.00596.1.
  • Rizzello, L.; Pompa, P. P. Nanosilver-Based Antibacterial Drugs and Devices: mechanisms, Methodological Drawbacks, and Guidelines. Chem. Soc. Rev. 2014, 43, 1501–1518. DOI: 10.1039/c3cs60218d.
  • AMIN, N.; DAS, B. A Review on Formulation and Characterization of Nanoemulsion. Int. J. Curr. Pharm. Sci. 2019, 11, 1–5. Published online. DOI: 10.22159/ijcpr.2019v11i4.34925.
  • Rajaram, K.; Aiswarya, D. C.; Sureshkumar, P. Green Synthesis of Silver Nanoparticle Using Tephrosia Tinctoria and Its Antidiabetic Activity. Mater. Lett. 2015, 138, 251–254. DOI: 10.1016/j.matlet.2014.10.017.
  • Ogbu, I. M.; Ajiwe, V. I. E. FTIR Studies of Thermal Stability of the Oils and Methyl Esters from Afzelia Africana and Hura Crepitans Seeds. Renew Energy 2016, 96, 203–208. DOI: 10.1016/j.renene.2016.04.055.
  • Saran, S.; Manjari, G.; Devipriya, S. P. A Facile and Convenient Route for Synthesis of Silver Biopolymer Gel Bead Nanocomposites by Different Approach towards Immobilization and Its Catalytic Applications. Catal. Lett. 2018, 148, 1514–1524. DOI: 10.1007/s10562-018-2350-3.
  • Ali, I. O.; Salama, T. M.; Mohamed, M. I.; Ghazy, M. B. M.; Bakr, M. F. Synthesis and Characterization of Ag Nanoparticles Embedded in PVA via UV-Photoreduction Technique for Synthesis of Prussian Blue Pigment. Iran. Polym. J. 2017, 26, 511–520. DOI: 10.1007/s13726-017-0540-2.
  • Rangayasami, A.; Kannan, K.; Joshi, S.; Subban, M. Bioengineered Silver Nanoparticles Using Elytraria Acaulis (Lf) Lindau Leaf Extract and Its Biological Applications. Biocatal. Agric. Biotechnol. 2020, 27, 101690. DOI: 10.1016/j.bcab.2020.101690.
  • Chen, J.; Li, S.; Luo, J.; Wang, R.; Ding, W. Enhancement of the Antibacterial Activity of Silver Nanoparticles against Phytopathogenic Bacterium Ralstonia solanacearum by Stabilization. J. Nanomater. 2016, 2016, 1–15. DOI: 10.1155/2016/7135852.
  • Randall, C. P.; Oyama, L. B.; Bostock, J. M.; Chopra, I.; O'Neill, A. J. The Silver Cation (Ag+): Antistaphylococcal Activity, Mode of Action and Resistance Studies. J. Antimicrob. Chemother. 2013, 68, 131–138. DOI: 10.1093/jac/dks372.
  • Cunha, F. A.; Maia, K. R.; Mallman, E. J. J.; Cunha, Md. C. D. S. O.; Maciel, A. A. M.; Souza, I. P. d.; Menezes, E. A.; Fechine, P. B. A. Silver Nanoparticles-Disk Diffusion Test against Escherichia Coli Isolates. Rev. Inst. Med. Trop. Sao Paulo 2016, 58, 73. DOI: 10.1590/S1678-9946201658073.
  • Abdelsattar, A. S.; Abdelrahman, F.; Dawoud, A.; Connerton, I. F.; El-Shibiny, A. Encapsulation of E. coli Phage ZCEC5 in Chitosan-Alginate Beads as a Delivery System in Phage Therapy. AMB Express 2019, 9, 87. DOI: 10.1186/s13568-019-0810-9.
  • Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding Biophysicochemical Interactions at the Nano-Bio Interface. Nat. Mater. 2009, 8, 543–557. DOI: 10.1038/nmat2442.
  • Abdelsattar, A. S.; Dawoud, A.; Helal, M. A. Interaction of Nanoparticles with Biological Macromolecules: A Review of Molecular Docking Studies. Nanotoxicology. 2021, 15, 66–30. Published Online. DOI: 10.1080/17435390.2020.1842537.
  • Standards NC for, C. L.; Barry, A. L. Methods for Determining Bactericidal Activity of Antimicrobial Agents: Approved Guideline, Vol 19; National Committee for Clinical Laboratory Standards Wayne: PA, 1999.
  • Liu, Y.-Q.; Zhang, Y.-Z.; Sun, C.-Y.; Gao, P.-J. A Novel Approach to Estimate in Vitro Antibacterial Potency of Chinese Medicine Using a Concentration-Killing Curve Method. Am. J. Chin. Med. 2005, 33, 671–682. DOI: 10.1142/S0192415X05003260.
  • Abdelsattar, A. S.; Dawoud, A.; Makky, S.; Nofal, R.; Aziz, R. K.; El-Shibiny, A. Bacteriophages: From Isolation to Application. Curr. Pharm. Biotechnol. 2021, 23,337-360. Published online. DOI: 10.2174/1389201022666210426092002.
  • Singh, P.; Pandit, S.; Garnaes, J.; Tunjic, S.; Mokkapati, V. R.; Sultan, A.; Thygesen, A.; Mackevica, A.; Mateiu, R. V.; Daugaard, A. E.; et al. Green Synthesis of Gold and Silver Nanoparticles from Cannabis Sativa (Industrial Hemp) and Their Capacity for Biofilm Inhibition. Int. J. Nanomedicine. 2018, 13, 3571–3591. DOI: 10.2147/IJN.S157958.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.