233
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Facile biomimetic synthesis of AgNPs using aqueous extract of Helichrysum arenarium: characterization and antimicrobial activity

ORCID Icon, , , & ORCID Icon
Received 17 Nov 2021, Accepted 29 Mar 2022, Published online: 13 Jun 2022

References

  • Saravanan, M.; Ramachandran, B.; Barabadi, H. The Prevalence and Drug Resistance Pattern of Extended Spectrum β–Lactamases (ESBLs) Producing Enterobacteriaceae in Africa. Microb. Pathog. 2018, 114, 180–192.
  • Sharma, D.; Shandilya, P.; Saini, N.; Singh, P.; Thakur, V.; Saini, R.; Mittal, D.; Chandan, G.; Saini, V.; Saini, A. Insights into the Synthesis and Mechanism of Green Synthesized Antimicrobial Nanoparticles, Answer to the Multidrug Resistance. Mater. Today Chem. 2021, 19, 100391. DOI: https://doi.org/10.1016/j.mtchem.2020.100391.
  • Govindappa, M.; Farheen, H.; Chandrappa, C.; Rai, R. V.; Raghavendra, V. B. Mycosynthesis of Silver Nanoparticles Using Extract of Endophytic Fungi, Penicillium Species of Glycosmis Mauritiana, and Its Antioxidant, Antimicrobial, anti-Inflammatory and Tyrokinase Inhibitory Activity. Adv. Nat. Sci: Nanosci. Nanotechnol. 2016, 7, 035014.
  • Sunayana, N.; Uzma, M.; Dhanwini, R. P.; Govindappa, M.; Prakash, H. S.; Raghavendra, B. V. Green Synthesis of Gold Nanoparticles from Vitex Negundo Leaf Extract to Inhibit Lipopolysaccharide-Induced Inflammation through In Vitro and In Vivo. J. Clust. Sci. 2020, 31, 463–477. DOI: https://doi.org/10.1007/s10876-019-01661-1.
  • Sharma, V. K.; Yngard, R. A.; Lin, Y. Silver Nanoparticles: Green Synthesis and Their Antimicrobial Activities. Adv. Colloid Interface Sci. 2009, 145, 83–96. DOI: https://doi.org/10.1016/j.cis.2008.09.002.
  • Vijayaraghavan, K.; Nalini, S. K.; Prakash, N. U.; Madhankumar, D. Biomimetic Synthesis of Silver Nanoparticles by Aqueous Extract of Syzygium aromaticum. Mater. Lett. 2012, 75, 33–35. DOI: https://doi.org/10.1016/j.matlet.2012.01.083.
  • Vishwanath, R.; Negi, B. Conventional and Green Methods of Synthesis of Silver Nanoparticles and Their Antimicrobial Properties. Curr. Res. Green Sustain. Chem. 2021, 4, 100205. DOI: https://doi.org/10.1016/j.crgsc.2021.100205.
  • Borase, H. P.; Salunke, B. K.; Salunkhe, R. B.; Patil, C. D.; Hallsworth, J. E.; Kim, B. S.; Patil, S. V. Plant Extract: A Promising Biomatrix for Ecofriendly, Controlled Synthesis of Silver Nanoparticles. Appl. Biochem. Biotechnol. 2014, 173, 1–29.
  • Huang, Y.; He, L.; Liu, W.; Fan, C.; Zheng, W.; Wong, Y.-S.; Chen, T. Selective Cellular Uptake and Induction of Apoptosis of Cancer-Targeted Selenium Nanoparticles. Biomaterials 2013, 34, 7106–7116.
  • Murali, M.; Mahendra, C.; Rajashekar, N.; Sudarshana, M.; Raveesha, K.; Amruthesh, K. Antibacterial and Antioxidant Properties of Biosynthesized Zinc Oxide Nanoparticles from Ceropegia candelabrum L.–An Endemic Species. Spectrochim. Acta A 2017, 179, 104–109.
  • Vijayakumar, S.; Krishnakumar, C.; Arulmozhi, P.; Mahadevan, S.; Parameswari, N. Biosynthesis, Characterization and Antimicrobial Activities of Zinc Oxide Nanoparticles from Leaf Extract of Glycosmis pentaphylla (Retz.) DC. Microb. Pathog. 2018, 116, 44–48.
  • Barabadi, H.; Webster, T. J.; Vahidi, H.; Sabori, H.; Kamali, K. D.; Shoushtari, F. J.; Mahjoub, M. A.; Rashedi, M.; Mostafavi, E.; Cruz, D. M. Green Nanotechnology-Based Gold Nanomaterials for Hepatic Cancer Therapeutics: A Systematic Review. Iran. J. Pharm. Res. 2020, 19, 3–17.
  • Saravanan, M.; Barabadi, H.; Vahidi, H.; Webster, T. J.; Medina-Cruz, D.; Mostafavi, E.; Vernet-Crua, A.; Cholula-Diaz, J. L.; Periakaruppan, P. Emerging Theranostic Silver and Gold Nanobiomaterials for Breast Cancer: Present Status and Future Prospects, Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications; Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications, 2021; pp 439–456.
  • Saravanan, M.; Vahidi, H.; Cruz, D. M.; Vernet-Crua, A.; Mostafavi, E.; Stelmach, R.; Webster, T. J.; Mahjoub, M. A.; Rashedi, M.; Barabadi, H. Emerging Antineoplastic Biogenic Gold Nanomaterials for Breast Cancer Therapeutics: A Systematic Review. Int. J. Nanomed. 2020, 15, 3577–3595.
  • Shankar, S. S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid Synthesis of Au, Ag, and Bimetallic Au Core–Ag Shell Nanoparticles Using Neem (Azadirachta indica) Leaf Broth. J. Colloid Interface Sci. 2004, 275, 496–502.
  • Song, J. Y.; Kim, B. S. Rapid Biological Synthesis of Silver Nanoparticles Using Plant Leaf Extracts. Bioprocess Biosyst. Eng. 2009, 32, 79–84.
  • Mohammed, A. E.; Al-Qahtani, A.; Al-Mutairi, A.; Al-Shamri, B.; Aabed, K. Antibacterial and Cytotoxic Potential of Biosynthesized Silver Nanoparticles by Some Plant Extracts. Nanomaterials 2018, 8, 382. DOI: https://doi.org/10.3390/nano8060382.
  • Ahn, E.-Y.; Jin, H.; Park, Y. Assessing the Antioxidant, Cytotoxic, Apoptotic and Wound Healing Properties of Silver Nanoparticles Green-Synthesized by Plant Extracts. Mater. Sci. Eng. C 2019, 101, 204–216. DOI: https://doi.org/10.1016/j.msec.2019.03.095.
  • Ahn, E.-Y.; Park, Y. Anticancer Prospects of Silver Nanoparticles Green-Synthesized by Plant Extracts. Mater. Sci. Eng. C 2020, 116, 111253. DOI: https://doi.org/10.1016/j.msec.2020.111253.
  • Dutta, T.; Ghosh, N. N.; Das, M.; Adhikary, R.; Mandal, V.; Chattopadhyay, A. P. Green Synthesis of Antibacterial and Antifungal Silver Nanoparticles Using Citrus limetta Peel Extract: Experimental and Theoretical Studies. J. Environ. Chem. Eng. 2020, 8, 104019. DOI: https://doi.org/10.1016/j.jece.2020.104019.
  • Ibrahim, H. M. Green Synthesis and Characterization of Silver Nanoparticles Using Banana Peel Extract and Their Antimicrobial Activity against Representative Microorganisms. J. Radiat. Res. Appl. Sci. 2015, 8, 265–275. DOI: https://doi.org/10.1016/j.jrras.2015.01.007.
  • Taruna, K. J.; Bhatti, J.; Kumar, P. Green Synthesis and Physico-Chemical Study of Silver Nanoparticles Extracted from a Natural Source Luffa acutangula. J. Mol. Liq. 2016, 224, 991–998.
  • Ravichandran, V.; Vasanthi, S.; Shalini, S.; Shah, S. A. A.; Tripathy, M.; Paliwal, N. Green Synthesis, Characterization, Antibacterial, Antioxidant and Photocatalytic Activity of Parkia speciosa Leaves Extract Mediated Silver Nanoparticles. Results Phys. 2019, 15, 102565. DOI: https://doi.org/10.1016/j.rinp.2019.102565.
  • Tamilarasi, P.; Meena, P. Green Synthesis of Silver Nanoparticles (Ag NPs) Using Gomphrena globosa (Globe Amaranth) Leaf Extract and Their Characterization. Mater. Today: Proc. 2020, 33, 2209–2216. DOI: https://doi.org/10.1016/j.matpr.2020.04.025.
  • Anandalakshmi, K.; Venugobal, J.; Ramasamy, V. Characterization of Silver Nanoparticles by Green Synthesis Method Using Pedalium murex Leaf Extract and Their Antibacterial Activity. Appl. Nanosci. 2016, 6, 399–408. DOI: https://doi.org/10.1007/s13204-015-0449-z.
  • Eroğlu, H. E.; Hamzaoğlu, E.; Aksoy, A.; Budak, Ü.; Albayrak, S. Cytogenetic Effects of Helichrysum arenarium in Human Lymphocytes Cultures. Turk. J. Biol. 2010, 34, 253–256.
  • Moghadam, H. D.; Sani, A. M.; Sangatash, M. M. Inhibitory Effect of Helichrysum arenarium Essential Oil on the Growth of Food Contaminated Microorganisms. J. Essent. Oil Bear. Plants 2014, 17, 911–921. DOI: https://doi.org/10.1080/0972060X.2014.890073.
  • Albayrak, S.; Aksoy, A.; Sağdıç, O.; Budak, Ü. Phenolic Compounds and Antioxidant and Antimicrobial Properties of Helichrysum Species Collected from Eastern Anatolia, Turkey. Turk. J. Biol. 2010, 34, 463–473.
  • Albayrak, S.; Aksoy, A.; Sagdic, O.; Hamzaoglu, E. Compositions, Antioxidant and Antimicrobial Activities of Helichrysum (Asteraceae) Species Collected from Turkey. Food Chem. 2010, 119, 114–122. DOI: https://doi.org/10.1016/j.foodchem.2009.06.003.
  • Czinner, E.; Kery, A.; Hagymási, K.; Blázovics, A.; Lugasi, A.; Szoke, E.; Lemberkovics, E. Biologically Active Compounds of Helichrysum arenarium (L.) Moench. Eur. J. Drug Metab. Pharmacokinet. 1999, 24, 309–313.
  • Sroka, Z.; Kuta, I.; Cisowski, W.; Dryś, A. Antiradical Activity of Hydrolyzed and Non-Hydrolyzed Extracts from Helichrysi inflorescentia and Its Phenolic Contents. Z. Naturforsch. C 2004, 59, 363–367. DOI: https://doi.org/10.1515/znc-2004-5-613.
  • Menon, S.; Rajeshkumar, S.; Kumar, V. A Review on Biogenic Synthesis of Gold Nanoparticles, Characterization, and Its Applications. Resour-Effic. Technol. 2017, 3, 516–527. DOI: https://doi.org/10.1016/j.reffit.2017.08.002.
  • Menon, S.; K.S, S. D.; Agarwal, H.; Shanmugam, V. K. Efficacy of Biogenic Selenium Nanoparticles from an Extract of Ginger towards Evaluation on anti-Microbial and anti-Oxidant Activities. Colloid Interface Sci. Commun. 2019, 29, 1–8. DOI: https://doi.org/10.1016/j.colcom.2018.12.004.
  • Wadhwani, S. A.; Shedbalkar, U. U.; Singh, R.; Chopade, B. A. Biogenic Selenium Nanoparticles: Current Status and Future Prospects. Appl. Microbiol. Biotechnol. 2016, 100, 2555–2566.
  • Bankura, K.; Maity, D.; Mollick, M. M.; Mondal, D.; Bhowmick, B.; Bain, M.; Chakraborty, A.; Sarkar, J.; Acharya, K.; Chattopadhyay, D. Synthesis, Characterization and Antimicrobial Activity of Dextran Stabilized Silver Nanoparticles in Aqueous Medium. Carbohydr. Polym. 2012, 89, 1159–1165.
  • Cakić, M.; Glišić, S.; Nikolić, G.; Nikolić, G. M.; Cakić, K.; Cvetinov, M. Synthesis, Characterization and Antimicrobial Activity of Dextran Sulphate Stabilized Silver Nanoparticles. J. Mol. Struct. 2016, 1110, 156–161. DOI: https://doi.org/10.1016/j.molstruc.2016.01.040.
  • Sathishkumar, M.; Sneha, K.; Won, S.; Cho, C.-W.; Kim, S.; Yun, Y.-S. Cinnamon Zeylanicum Bark Extract and Powder Mediated Green Synthesis of Nano-Crystalline Silver Particles and Its Bactericidal Activity. Colloids Surf. B Biointerfaces 2009, 73, 2, 332–338.
  • Yilmaz, M. T.; İspirli, H.; Taylan, O.; Dertli, E. Synthesis and Characterisation of Alternan-Stabilised Silver Nanoparticles and Determination of Their Antibacterial and Antifungal Activities against Foodborne Pathogens and Fungi. LWT 2020, 128, 109497. DOI: https://doi.org/10.1016/j.lwt.2020.109497.
  • Lee, S. M.; Song, K. C.; Lee, B. S. Antibacterial Activity of Silver Nanoparticles Prepared by a Chemical Reduction Method. Korean J. Chem. Eng. 2010, 27, 688–692. DOI: https://doi.org/10.1007/s11814-010-0067-0.
  • Kannan, N.; Selvaraj, S.; Murty, R. V. Microbial Production of Silver Nanoparticles. Dig. J. Nanomater. Biostruct. 2010, 5, 135–140.
  • Kreibig, U.; Vollmer, M. Theoretical Considerations. In Optical Properties of Metal Clusters; Springer, 1995; pp 13–201, Springer-Verlag Berlin Heidelberg New York.
  • Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wang, H.; Wang, Y.; Shao, W.; He, N.; et al. Biosynthesis of Silver and Gold Nanoparticles by Novel Sundried Cinnamomum camphora Leaf. Nanotechnology 2007, 18, 105104. DOI: https://doi.org/10.1088/0957-4484/18/10/105104.
  • Jayaprakasha, G. K.; Rao, L. J.; Sakariah, K. K. Chemical Composition of Volatile Oil from Cinnamomum zeylanicum Buds. Z. Naturforsch. C 2002, 57, 990–993. DOI: https://doi.org/10.1515/znc-2002-11-1206.
  • Schoene, N. W.; Kelly, M. A.; Polansky, M. M.; Anderson, R. A. Water-Soluble Polymeric Polyphenols from Cinnamon Inhibit Proliferation and Alter Cell Cycle Distribution Patterns of Hematologic Tumor Cell Lines. Cancer Lett. 2005, 230, 134–140.
  • Shan, B.; Cai, Y.-Z.; Brooks, J. D.; Corke, H. Antibacterial Properties and Major Bioactive Components of Cinnamon Stick (Cinnamomum burmannii): Activity against Foodborne Pathogenic Bacteria. J. Agric. Food Chem. 2007, 55, 5484–5490.
  • Yong, F.; Aisa, H.; Mukhamatkhanova, R.; Shamyanov, I.; Levkovich, M. New Flavanone and Other Constituents of Helichrysum arenarium Indigenous to China. Chem. Nat. Compd. 2011, 46, 872–875. DOI: https://doi.org/10.1007/s10600-011-9772-0.
  • Corbierre, M. K.; Cameron, N. S.; Sutton, M.; Mochrie, S. G.; Lurio, L. B.; Rühm, A.; Lennox, R. B. Polymer-Stabilized Gold Nanoparticles and Their Incorporation into Polymer Matrices. J. Am. Chem. Soc. 2001, 123, 10411–10412.
  • Mandal, T. K.; Fleming, M. S.; Walt, D. R. Preparation of Polymer Coated Gold Nanoparticles by Surface-Confined Living Radical Polymerization at Ambient Temperature. Nano Lett. 2002, 2, 3–7. DOI: https://doi.org/10.1021/nl015582c.
  • Shan, J.; Nuopponen, M.; Jiang, H.; Kauppinen, E.; Tenhu, H. Preparation of Poly (N-Isopropylacrylamide)-Monolayer-Protected Gold Clusters: Synthesis Methods, Core Size, and Thickness of Monolayer. Macromolecules 2003, 36, 4526–4533. DOI: https://doi.org/10.1021/ma034265k.
  • Teranishi, T.; Kiyokawa, I.; Miyake, M. Synthesis of Monodisperse Gold Nanoparticles Using Linear Polymers as Protective Agents. Adv. Mater. 1998, 10, 596–599. DOI: https://doi.org/10.1002/(SICI)1521-4095(199805)10:8<596::AID-ADMA596>3.0.CO;2-Y.
  • Singh, A. K.; Talat, M.; Singh, D.; Srivastava, O. Biosynthesis of Gold and Silver Nanoparticles by Natural Precursor Clove and Their Functionalization with Amine Group. J. Nanopart. Res. 2010, 12, 1667–1675. DOI: https://doi.org/10.1007/s11051-009-9835-3.
  • Kalimuthu, K.; Babu, R. S.; Venkataraman, D.; Bilal, M.; Gurunathan, S. Biosynthesis of Silver Nanocrystals by Bacillus licheniformis. Colloids Surf. B Biointerfaces 2008, 65, 150–153.
  • Jyoti, K.; Baunthiyal, M.; Singh, A. Characterization of Silver Nanoparticles Synthesized Using Urtica dioica Linn. leaves and Their Synergistic Effects with Antibiotics. J. Radiat. Res. Appl. Sci. 2016, 9, 217–227. DOI: https://doi.org/10.1016/j.jrras.2015.10.002.
  • Mallikarjuna, K.; Narasimha, G.; Dillip, G.; Praveen, B.; Shreedhar, B.; Lakshmi, C. S.; Reddy, B.; Raju, B. D. P. Green Synthesis of Silver Nanoparticles Using Ocimum Leaf Extract and Their Characterization. Dig. J. Nanomater. Biostruct. 2011, 6, 1, 181–186.
  • Prakash, P.; Gnanaprakasam, P.; Emmanuel, R.; Arokiyaraj, S.; Saravanan, M. Green Synthesis of Silver Nanoparticles from Leaf Extract of Mimusops elengi, Linn. for Enhanced Antibacterial Activity against Multi Drug Resistant Clinical Isolates. Colloids Surf. B Biointerfaces 2013, 108, 255–259.
  • Niraimathi, K.; Sudha, V.; Lavanya, R.; Brindha, P. Biosynthesis of Silver Nanoparticles Using Alternanthera sessilis (Linn.) Extract and Their Antimicrobial, Antioxidant Activities. Colloids Surf. B Biointerfaces 2013, 102, 288–291.
  • Sathyavathi, R.; Krishna, M.; Rao, S.; Saritha, R.; Rao, D. Silver Has the Advantage of Having Broad Antimicrobial Biosynthesis of Silver Nanoparticles Using Coriandrum sativum Leaf Extract Activities against Gram-Negative and Gram-Positive Bacteria and Their Application in Nonlinear Optics. Adv. Sci. Lett. 2010, 3, 1–6.
  • Shukla, M. K.; Singh, R. P.; Reddy, C.; Jha, B. Synthesis and Characterization of Agar-Based Silver Nanoparticles and Nanocomposite Film with Antibacterial Applications. Bioresour. Technol. 2012, 107, 295–300.
  • Kanmani, P.; Lim, S. T. Synthesis and Characterization of Pullulan-Mediated Silver Nanoparticles and Its Antimicrobial Activities. Carbohydr. Polym. 2013, 97, 421–428.
  • Senthilkumar, P.; Yaswant, G.; Kavitha, S.; Chandramohan, E.; Kowsalya, G.; Vijay, R.; Sudhagar, B.; Kumar, D. R. S. Preparation and Characterization of Hybrid Chitosan-Silver Nanoparticles (Chi-Ag NPs); a Potential Antibacterial Agent. Int. J. Biol. Macromol. 2019, 141, 290–298.
  • Kutluk, I.; Aslan, M.; Orhan, I.; Özçelik, B. Antibacterial, Antifungal and Antiviral Bioactivities of Selected Helichrysum Species. S Afr. J. Bot. 2018, 119, 252–257. DOI: https://doi.org/10.1016/j.sajb.2018.09.009.
  • Dhand, V.; Soumya, L.; Bharadwaj, S.; Chakra, S.; Bhatt, D.; Sreedhar, B. Green Synthesis of Silver Nanoparticles Using Coffea arabica Seed Extract and Its Antibacterial Activity. Mater. Sci. Eng.: C 2016, 58, 36–43. DOI: https://doi.org/10.1016/j.msec.2015.08.018.
  • Glišić, S.; Cakić, M.; Nikolić, G.; Danilović, B. Synthesis, Characterization and Antimicrobial Activity of Carboxymethyl Dextrane Stabilized Silver Nanoparticles. J. Mol. Struct. 2015, 1084, 345–351. DOI: https://doi.org/10.1016/j.molstruc.2014.12.048.
  • Barabadi, H.; Mojab, F.; Vahidi, H.; Marashi, B.; Talank, N.; Hosseini, O.; Saravanan, M. Green Synthesis, Characterization, Antibacterial and Biofilm Inhibitory Activity of Silver Nanoparticles Compared to Commercial Silver Nanoparticles. Inorg. Chem. Commun. 2021, 129, 108647. DOI: https://doi.org/10.1016/j.inoche.2021.108647.
  • Behravan, M.; Panahi, A. H.; Naghizadeh, A.; Ziaee, M.; Mahdavi, R.; Mirzapour, A. Facile Green Synthesis of Silver Nanoparticles Using Berberis Vulgaris Leaf and Root Aqueous Extract and Its Antibacterial Activity. Int. J. Biol. Macromol. 2019, 124, 148–154.
  • Panácek, A.; Kolár, M.; Vecerová, R.; Prucek, R.; Soukupová, J.; Krystof, V.; Hamal, P.; Zboril, R.; Kvítek, L. Antifungal Activity of Silver Nanoparticles against Candida Spp. Biomaterials 2009, 30, 6333–6340.
  • Kim, K.-J.; Sung, W. S.; Suh, B. K.; Moon, S.-K.; Choi, J.-S.; Kim, J. G.; Lee, D. G. Antifungal Activity and Mode of Action of Silver Nano-Particles on Candida albicans. Biometals 2009, 22, 235–242.
  • Li, J.; Sang, H.; Guo, H.; Popko, J. T.; He, L.; White, J. C.; Dhankher, O. P.; Jung, G.; Xing, B. Antifungal Mechanisms of ZnO and Ag Nanoparticles to Sclerotinia homoeocarpa. Nanotechnology 2017, 28, 155101.
  • Barabadi, H.; Vahidi, H.; Kamali, K. D.; Hosseini, O.; Mahjoub, M. A.; Rashedi, M.; Shoushtari, F. J.; Saravanan, M. Emerging Theranostic Gold Nanomaterials to Combat Lung Cancer: A Systematic Review. J. Cluster Sci. 2020, 31, 323–330.
  • Barabadi, H.; Vahidi, H.; Mahjoub, M. A.; Kosar, Z.; Kamali, K. D.; Ponmurugan, K.; Hosseini, O.; Rashedi, M.; Saravanan, M. Emerging Antineoplastic Gold Nanomaterials for Cervical Cancer Therapeutics: A Systematic Review. J. Clust. Sci. 2020, 31, 1173–1112. DOI: https://doi.org/10.1007/s10876-019-01733-2.
  • Khatua, A.; Prasad, A.; Priyadarshini, E.; Patel, A. K.; Naik, A.; Saravanan, M.; Barabadi, H.; Ghosh, l.; Paul, B.; Paulraj, R.; Meena, R. Emerging Antineoplastic Plant-Based Gold Nanoparticle Synthesis: A Mechanistic Exploration of Their Anticancer Activity toward Cervical Cancer Cells. J. Clust. Sci. 2020, 31, 1329–1340. DOI: https://doi.org/10.1007/s10876-019-01742-1.
  • Barabadi, H.; Vahidi, H.; Kamali, K. D.; Rashedi, M.; Saravanan, M. Antineoplastic Biogenic Silver Nanomaterials to Combat Cervical Cancer: A Novel Approach in Cancer Therapeutics. J. Clust. Sci. 2020, 31, 659–672. DOI: https://doi.org/10.1007/s10876-019-01697-3.
  • Naikoo, G. A.; Mustaqeem, M.; Hassan, I. U.; Awan, T.; Arshad, F.; Salim, H.; Qurashi, A. Bioinspired and Green Synthesis of Nanoparticles from Plant Extracts with Antiviral and Antimicrobial Properties: A Critical Review. J. Saudi Chem. Soc. 2021, 25, 101304. DOI: https://doi.org/10.1016/j.jscs.2021.101304.
  • Barabadi, H.; Najafi, M.; Samadian, H.; Azarnezhad, A.; Vahidi, H.; Mahjoub, M. A.; Koohiyan, M.; Ahmadi, A. A Systematic Review of the Genotoxicity and Antigenotoxicity of Biologically Synthesized Metallic Nanomaterials: Are Green Nanoparticles Safe Enough for Clinical Marketing? Medicina 2019, 55, 439. DOI: https://doi.org/10.3390/medicina55080439.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.