488
Views
0
CrossRef citations to date
0
Altmetric
Review

An overview of green synthesis of zinc oxide nanoparticle by using various natural entities

, , , &
Received 17 Sep 2021, Accepted 29 Dec 2022, Published online: 16 Jan 2023

References

  • Sardabi, F.; Mohtadinia, J.; Shavakhi, F.; Jafari, A. A. The Effects of 1‐Methylcyclopropen (1‐MCP) and Potassium Permanganate Coated Zeolite Nanoparticles on Shelf Life Extension and Quality Loss of G Olden D Elicious Apples. J. Food Process. Preserv. 2014, 38, 2176–2182. DOI: 10.1111/jfpp.12197.
  • Fakruddin, M.; Hossain, Z.; Afroz, H. Prospects and Applications of Nanobiotechnology: A Medical Perspective. J. Nanobiotechnol. 2012, 10, 31–38. DOI: 10.1186/1477-3155-10-31.
  • Murphy, C. J. Sustainability as an Emerging Design Criterion in Nanoparticle Synthesis and Applications. J. Mater. Chem. 2008, 18, 2173–2176. DOI: 10.1039/b717456j.
  • Chaudhary, A.; Kumar, N.; Kumar, R.; Salar, R. K. Antimicrobial Activity of Zinc Oxide Nanoparticles Synthesized from Aloe Vera Peel Extract. SN Appl. Sci. 2019, 1, 136. DOI: 10.1007/s42452-018-0144-2.
  • Gnanasangeetha, D.; Thambavani, S. D. Facile and Eco-Friendly Method for the Synthesis of Zinc Oxide Nanoparticles Using Azadirachta and Emblica. Int. J. Pharm. Sci. Res. 2014, 5, 2866.
  • Ramesh, P.; Rajendran, A.; Meenakshisundaram, M. Green Syntheis of Zinc Oxide Nanoparticles Using Flower Extract Cassia Auriculata. J. Nanosci. Nanotechnol. 2014, 2, 41–45.
  • Jayarambabu, N.; Kumari, B. S.; Rao, K. V.; Prabhu, Y. T. Beneficial Role of Zinc Oxide Nanoparticles on Green Crop Production. IJMART 2015, 10, 273–282.
  • Vigneshwaran, N.; Ashtaputre, N. M.; Varadarajan, P. V.; Nachane, R. P.; Paralikar, K. M.; Balasubramanya, R. H. Biological Synthesis of Silver Nanoparticles Using the Fungus Aspergillus flavus. Mater. Lett. 2007, 61, 1413–1418. DOI: 10.1016/j.matlet.2006.07.042.
  • Senthilkumar, S.; Sivakumar, T. Green Tea (Camellia Sinensis) Mediated Synthesis of Zinc Oxide (ZnO) Nanoparticles and Studies on Their Antimicrobial Activities. Int. J. Pharm. Pharm. Sci. 2014, 6, 461–465.
  • Nava, O. J.; Luque, P. A.; Gómez-Gutiérrez, C. M.; Vilchis-Nestor, A. R.; Castro-Beltrán, A.; Mota-González, M. L.; Olivas, A. Influence of Camellia Sinensis Extract on Zinc Oxide Nanoparticle Green Synthesis. J. Mol. Struct. 2017, 1134, 121–125. DOI: 10.1016/j.molstruc.2016.12.069.
  • Aihara, N.; Torigoe, K.; Esumi, K. Preparation and Characterization of Gold and Silver Nanoparticles in Layered Laponite Suspensions. Langmuir 1998, 14, 4945–4949. DOI: 10.1021/la980370p.
  • Ijaz, M.; Zafar, M.; Afsheen, S.; Iqbal, T. A Review on Ag-Nanostructures for Enhancement in Shelf Time of Fruits. J. Inorg. Organomet. Polym. 2020, 30, 1475–1482. DOI: 10.1007/s10904-020-01504-x.
  • Ijaz, M.; Zafar, M.; Islam, A.; Afsheen, S.; Iqbal, T. A Review on Antibacterial Properties of Biologically Synthesized Zinc Oxide Nanostructures. J. Inorg. Organomet. Polym. 2020, 30, 2815–2826. DOI: 10.1007/s10904-020-01603-9.
  • de Azeredo, H. M. Antimicrobial Nanostructures in Food Packaging. Trends in Food Sci. Technol. 2013, 30, 56–69. DOI: 10.1016/j.tifs.2012.11.006.
  • Laiho, R.; Vlasenko, L.; Vlasenko, M. Optical Detection of Magnetic Resonance and Electron Paramagnetic Resonance Study of the Oxygen Vacancy and Lead Donors in ZnO. J. Appl. Phys. 2008, 103, 123709. DOI: 10.1063/1.2942403.
  • Kachynski, A. V.; Kuzmin, A. N.; Nyk, M.; Roy, I.; Prasad, P. N. Zinc Oxide Nanocrystals for Nonresonant Nonlinear Optical Microscopy in Biology and Medicine. J. Phys. Chem. C Nanomater. Interfaces. 2008, 112, 10721–10724. DOI: 10.1021/jp801684j.
  • Yuhas, B. D.; Yang, P. Nanowire-Based All-Oxide Solar Cells. J. Am. Chem. Soc. 2009, 131, 3756–3761. DOI: 10.1021/ja8095575.
  • Spencer, C. G.; Campbell, P. M.; Buschang, P. H.; Cai, J.; Honeyman, A. L. Antimicrobial Effects of Zinc Oxide in an Orthodontic Bonding Agent. Angle Orthod. 2009, 79, 317–322. DOI: 10.2319/011408-19.1.
  • Padmavathy, N.; Vijayaraghavan, R. Enhanced Bioactivity of ZnO Nanoparticles—an Antimicrobial Study. Sci. Technol. Adv. Mater. 2008, 9, 035004. DOI: 10.1088/1468-6996/9/3/035004.
  • Eslami, A.; Nasseri, S.; Yadollahi, B.; Mesdaghinia, A.; Vaezi, F.; Nabizadeh, R.; Nazmara, S. Photocatalytic Degradation of Methyl Tert‐Butyl Ether (MTBE) in Contaminated Water by ZnO Nanoparticles. J. Chem. Technol. Biotechnol. 2008, 83, 1447–1453. DOI: 10.1002/jctb.1919.
  • Lawrence, A. A.; Prakash, J. T. J. A Review on Nanotechnology and Plant Mediated Metal Nanoparticles and Its Applications. Int. J Sci. Res. Rev. 2019, 8, 269–287.
  • Ji, X.; Hou, C.; Shi, M.; Yan, Y.; Liu, Y. An Insight into the Research concerning Panax Ginseng CA Meyer Polysaccharides: A Review. Food Rev. Int. 2022, 38, 1149–1165. DOI: 10.1080/87559129.2020.1771363.
  • Hou, C.; Yin, M.; Lan, P.; Wang, H.; Nie, H.; Ji, X. Recent Progress in the Research of Angelica Sinensis (Oliv.) Diels Polysaccharides: extraction, Purification, Structure and Bioactivities. Chem. Biol. Technol. Agric. 2021, 8, 1–14. DOI: 10.1186/s40538-021-00214-x.
  • Hu, K.; Wang, F.; Shen, Z.; Liu, H.; Xiong, J. Ternary Heterojunctions Synthesis and Sensing Mechanism of Pd/ZnO–SnO2 Hollow Nanofibers with Enhanced H2 Gas Sensing Properties. J. Alloys Compd. 2021, 850, 156663. DOI: 10.1016/j.jallcom.2020.156663.
  • Wang, P.; Wang, S.-Z.; Kang, Y.-R.; Sun, Z.-S.; Wang, X.-D.; Meng, Y.; Hong, M.-H.; Xie, W.-F. Cauliflower-Shaped Bi2O3–ZnO Heterojunction with Superior Sensing Performance towards Ethanol. J. Alloys Compd. 2021, 854, 157152. DOI: 10.1016/j.jallcom.2020.157152.
  • Xu, L.; Jiang, S.; Wu, J.; Zou, Q. An in Silico Approach to Identification, Categorization and Prediction of Nucleic Acid Binding Proteins. Briefings in Bioinformatics 2021, 22, bbaa171. DOI: 10.1093/bib/bbaa171.
  • Niu, M.; Lin, Y.; Zou, Q. sgRNACNN: identifying sgRNA on-Target Activity in Four Crops Using Ensembles of Convolutional Neural Networks. Plant Mol. Biol. 2021, 105, 483–495. DOI: 10.1007/s11103-020-01102-y.
  • Zhang, X.; Sun, X.; Lv, T.; Weng, L.; Chi, M.; Shi, J.; Zhang, S. Preparation of PI Porous Fiber Membrane for Recovering Oil-Paper Insulation Structure. J. Mater. Sci: Mater. Electron. 2020, 31, 13344–13351. DOI: 10.1007/s10854-020-03888-5.
  • Li, S.; Yu, Y.; Bian, X.; Yao, L.; Li, M.; Lou, Y.-R.; Yuan, J.; Lin, H-s.; Liu, L.; Han, B.; et al. Prediction of Oral Hepatotoxic Dose of Natural Products Derived from Traditional Chinese Medicines Based on SVM Classifier and PBPK Modeling. Arch. Toxicol. 2021, 95, 1683–1701. DOI: 10.1007/s00204-021-03023-1.
  • Sharma, R.; Kumar, V.; Kumar, R. Distribution of Phytoliths in Plants: A Review. Geol. Ecol. Landscapes 2019, 3, 123–148. DOI: 10.1080/24749508.2018.1522838.
  • Li, L.; He, H.; Jiang, S.; Qi, J.; Lu, Y.; Ding, N.; Lin, H.-S.; Wu, W.; Xiang, X. Simulation of the in Vivo Fate of Polymeric Nanoparticles Traced by Environment-Responsive near-Infrared Dye: A Physiologically Based Pharmacokinetic Modelling Approach. Molecules 2021, 26, 1271. DOI: 10.3390/molecules26051271.
  • Siddiqi, K. S.; Ur Rahman, A.; Husen, A.; Tajuddin. Properties of Zinc Oxide Nanoparticles and Their Activity against Microbes. Nanoscale Res. Lett. 2018, 13, 1–13. DOI: 10.1186/s11671-018-2532-3.
  • Wang, X.; Ahmad, M.; Sun, H. Three-Dimensional ZnO Hierarchical Nanostructures: solution Phase Synthesis and Applications. Materials 2017, 10, 1304. DOI: 10.3390/ma10111304.
  • Chaudhuri, S. K.; Malodia, L. Biosynthesis of Zinc Oxide Nanoparticles Using Leaf Extract of Calotropis Gigantea: characterization and Its Evaluation on Tree Seedling Growth in Nursery Stage. Appl. Nanosci. 2017, 7, 501–512. DOI: 10.1007/s13204-017-0586-7.
  • Joerger, R.; Klaus, T.; Granqvist, C. G. Biologically Produced Silver–Carbon Composite Materials for Optically Functional Thin‐Film Coatings. Adv. Mater. 2000, 12, 407–409. DOI: 10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA407>3.0.CO;2-O.
  • Ijaz, M.; Zafar, M.; Iqbal, T. Green Synthesis of Silver Nanoparticles by Using Various Extracts: A Review. Inorganic and Nano-Metal Chem. 2021, 51, 744–755. DOI: 10.1080/24701556.2020.1808680.
  • Bansal, V.; Rautaray, D.; Ahmad, A.; Sastry, M. Biosynthesis of Zirconia Nanoparticles Using the Fungus Fusarium oxysporum. J. Mater. Chem. 2004, 14, 3303–3305. DOI: 10.1039/b407904c.
  • Gardea-Torresdey, J. L.; Gomez, E.; Peralta-Videa, J. R.; Parsons, J. G.; Troiani, H.; Jose-Yacaman, M. Alfalfa Sprouts: A Natural Source for the Synthesis of Silver Nanoparticles. Langmuir 2003, 19, 1357–1361. DOI: 10.1021/la020835i.
  • Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S. R.; Khan, M. I.; Ramani, R.; Parischa, R.; Ajayakumar, P. V.; Alam, M.; et al. Bioreduction of AuCl4− Ions by the Fungus, Verticillium sp. and Surface Trapping of the Gold Nanoparticles Formed. Angew. Chem. Int. Ed. 2001, 40, 3585–3588. DOI: 10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K.
  • Mohanpuria, P.; Rana, N. K.; Yadav, S. K. Biosynthesis of Nanoparticles: technological Concepts and Future Applications. J. Nanopart. Res. 2008, 10, 507–517. DOI: 10.1007/s11051-007-9275-x.
  • Ishwarya, R.; Vaseeharan, B.; Kalyani, S.; Banumathi, B.; Govindarajan, M.; Alharbi, N. S.; Kadaikunnan, S.; Al-Anbr, M. N.; Khaled, J. M.; Benelli, G.; et al. Facile Green Synthesis of Zinc Oxide Nanoparticles Using Ulva Lactuca Seaweed Extract and Evaluation of Their Photocatalytic, Antibiofilm and Insecticidal Activity. J. Photochem. Photobiol. B 2018, 178, 249–258. DOI: 10.1016/j.jphotobiol.2017.11.006.
  • Raja, A.; Ashokkumar, S.; Pavithra Marthandam, R.; Jayachandiran, J.; Khatiwada, C. P.; Kaviyarasu, K.; Ganapathi Raman, R.; Swaminathan, M. Eco-Friendly Preparation of Zinc Oxide Nanoparticles Using Tabernaemontana Divaricata and Its Photocatalytic and Antimicrobial Activity. J. Photochem. Photobiol. B 2018, 181, 53–58. DOI: 10.1016/j.jphotobiol.2018.02.011.
  • Shi, L.; Naik, A. J. T.; Goodall, J. B. M.; Tighe, C.; Gruar, R.; Binions, R.; Parkin, I.; Darr, J. Highly Sensitive ZnO Nanorod-and Nanoprism-Based NO2 Gas Sensors: Size and Shape Control Using a Continuous Hydrothermal Pilot Plant. Langmuir 2013, 29, 10603–10609. DOI: 10.1021/la402339m.
  • Agarwal, H.; Menon, S.; Kumar, S. V.; Rajeshkumar, S. Mechanistic Study on Antibacterial Action of Zinc Oxide Nanoparticles Synthesized Using Green Route. Chem. Biol. Interact. 2018, 286, 60–70.
  • Vishnukumar, P.; Vivekanandhan, S.; Misra, M.; Mohanty, A. K. Recent Advances and Emerging Opportunities in Phytochemical Synthesis of ZnO Nanostructures. Mater. Sci. Semicond. Process. 2018, 80, 143–161. DOI: 10.1016/j.mssp.2018.01.026.
  • Thema, F. T.; Manikandan, E.; Dhlamini, M. S.; Maaza, M. Green Synthesis of ZnO Nanoparticles via Agathosma Betulina Natural Extract. Mater. Lett. 2015, 161, 124–127. DOI: 10.1016/j.matlet.2015.08.052.
  • Mirzaei, H.; Darroudi, M. Zinc Oxide Nanoparticles: Biological Synthesis and Biomedical Applications. Ceram. Int. 2017, 43, 907–914. DOI: 10.1016/j.ceramint.2016.10.051.
  • Ovais, M.; Khalil, A.; Ayaz, M.; Ahmad, I.; Nethi, S.; Mukherjee, S. Biosynthesis of Metal Nanoparticles via Microbial Enzymes: A Mechanistic Approach. IJMS. 2018, 19, 4100. DOI: 10.3390/ijms19124100.
  • Pantidos, N.; Horsfall, L. E. Biological Synthesis of Metallic Nanoparticles by Bacteria, Fungi and Plants. J. Nanomed. Nanotechnol. 2014, 05, 1. DOI: 10.4172/2157-7439.1000233.
  • Rauf, M. A.; Owais, M.; Rajpoot, R.; Ahmad, F.; Khan, N.; Zubair, S. Biomimetically Synthesized ZnO Nanoparticles Attain Potent Antibacterial Activity against Less Susceptible S. aureus Skin Infection in Experimental Animals. RSC Adv. 2017, 7, 36361–36373. DOI: 10.1039/C7RA05040B.
  • Tripathi, R. M.; Bhadwal, A. S.; Gupta, R. K.; Singh, P.; Shrivastav, A.; Shrivastav, B. R. ZnO Nanoflowers: novel Biogenic Synthesis and Enhanced Photocatalytic Activity. J. Photochem. Photobiol. B. 2014, 141, 288–295.
  • Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N. H. M.; Ann, L. C.; Bakhori, S. K. M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: antibacterial Activity and Toxicity Mechanism. Nanomicro. Lett. 2015, 7, 219–242. DOI: 10.1007/s40820-015-0040-x.
  • Hulkoti, N. I.; Taranath, T. Biosynthesis of Nanoparticles Using Microbes—a Review. Colloids Surf. B Biointerfaces 2014, 121, 474–483. DOI: 10.1016/j.colsurfb.2014.05.027.
  • Busi, S.; Rajkumari, J.; Pattnaik, S.; Parasuraman, P.; Hnamte, S. Extracellular Synthesis of Zinc Oxide Nanoparticles Using Acinetobacter schindleri SIZ7 and Its Antimicrobial Property against Foodborne Pathogens. J. Microbiol. Biotechnol. Food Sci. 2021, 5, 407–411.
  • Dhandapani, P.; Siddarth, A. S.; Kamalasekaran, S.; Maruthamuthu, S.; Rajagopal, G. Bio-Approach: ureolytic Bacteria Mediated Synthesis of ZnO Nanocrystals on Cotton Fabric and Evaluation of Their Antibacterial Properties. Carbohydr. Polym. 2014, 103, 448–455. DOI: 10.1016/j.carbpol.2013.12.074.
  • Mishra, M.; Paliwal, J. S.; Singh, S. k.; Selvarajan, E.; Subathradevi, C.; Mohanasrinivasan, V. Studies on the Inhibitory Activity of Biologically Synthesized and Characterized Zinc Oxide Nanoparticles Using Lactobacillus Sporogens against Staphylococcus aureus. J. Pure Appl. Microbiol. 2013, 7, 1263–1268.
  • Li, G.; He, D.; Qian, Y.; Guan, B.; Gao, S.; Cui, Y.; Yokoyama, K.; Wang, L. Fungus-Mediated Green Synthesis of Silver Nanoparticles Using Aspergillus terreus. Int. J. Mol. Sci. 2012, 13, 466–476. DOI: 10.3390/ijms13010466.
  • Zielonka, A.; Klimek-Ochab, M. Fungal Synthesis of Size-Defined Nanoparticles. Adv. Nat. Sci: Nanosci. Nanotechnol. 2017, 8, 043001. DOI: 10.1088/2043-6254/aa84d4.
  • Kharissova, O. V.; Dias, H. V. R.; Kharisov, B. I.; Pérez, B. O.; Pérez, V. M. J. The Greener Synthesis of Nanoparticles. Trends Biotechnol. 2013, 31, 240–248. DOI: 10.1016/j.tibtech.2013.01.003.
  • Ahmed, S.; Ahmad, M.; Swami, B. L.; Ikram, S. A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise. J. Adv. Res. 2016, 7, 17–28. DOI: 10.1016/j.jare.2015.02.007.
  • Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.; Lightfoot, D. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. DOI: 10.3390/plants6040042.
  • Guldiken, B.; Ozkan, G.; Catalkaya, G.; Ceylan, F. D.; Ekin Yalcinkaya, I.; Capanoglu, E. Phytochemicals of Herbs and Spices: Health versus Toxicological Effects. Food Chem. Toxicol. 2018, 119, 37–49. DOI: 10.1016/j.fct.2018.05.050.
  • Xu, D.-P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.-J.; Li, H.-B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. IJMS. 2017, 18, 96. DOI: 10.3390/ijms18010096.
  • Anjum, N. A.; Hasanuzzaman, M.; Hossain, M. A.; Thangavel, P.; Roychoudhury, A.; Gill, S. S.; Rodrigo, M. A. M.; Adam, V.; Fujita, M.; Kizek, R.; et al. Jacks of Metal/Metalloid Chelation Trade in Plants—an Overview. Front. Plant Sci. 2015, 6, 192.
  • Nava, O. J.; Soto-Robles, C. A.; Gómez-Gutiérrez, C. M.; Vilchis-Nestor, A. R.; Castro-Beltrán, A.; Olivas, A.; Luque, P. A. Fruit Peel Extract Mediated Green Synthesis of Zinc Oxide Nanoparticles. J. Mol. Struct. 2017, 1147, 1–6. DOI: 10.1016/j.molstruc.2017.06.078.
  • Al-Kordy, H. M.; Sabry, S. A.; Mabrouk, M. E. Statistical Optimization of Experimental Parameters for Extracellular Synthesis of Zinc Oxide Nanoparticles by a Novel Haloalaliphilic Alkalibacillus sp. W7. Sci. Rep. 2021, 11, 1–14. DOI: 10.1038/s41598-021-90408-y.
  • Rao, M. D.; Gautam, P. Synthesis and Characterization of ZnO Nanoflowers Using C Hlamydomonas Reinhardtii: A Green Approach. Environ. Prog. Sustainable Energy 2016, 35, 1020–1026. DOI: 10.1002/ep.12315.
  • Kalpana, V. N.; Kataru, B. A. S.; Sravani, N.; Vigneshwari, T.; Panneerselvam, A.; Devi Rajeswari, V. Biosynthesis of Zinc Oxide Nanoparticles Using Culture Filtrates of Aspergillus Niger: Antimicrobial Textiles and Dye Degradation Studies. OpenNano 2018, 3, 48–55. DOI: 10.1016/j.onano.2018.06.001.
  • Chauhan, R.; Reddy, A.; Abraham, J. Biosynthesis of Silver and Zinc Oxide Nanoparticles Using Pichia Fermentans JA2 and Their Antimicrobial Property. Appl. Nanosci. 2015, 5, 63–71. DOI: 10.1007/s13204-014-0292-7.
  • Ezealisiji, K. M.; Siwe-Noundou, X.; Maduelosi, B.; Nwachukwu, N.; Krause, R. W. M. Green Synthesis of Zinc Oxide Nanoparticles Using Solanum Torvum (L) leaf Extract and Evaluation of the Toxicological Profile of the ZnO Nanoparticles–Hydrogel Composite in Wistar Albino Rats. Int. Nano Lett. 2019, 9, 99–107. DOI: 10.1007/s40089-018-0263-1.
  • Gharagozlou, M.; Baradaran, Z.; Bayati, R. A Green Chemical Method for Synthesis of ZnO Nanoparticles from Solid-State Decomposition of Schiff-Bases Derived from Amino Acid Alanine Complexes. Ceram. Int. 2015, 41, 8382–8387. DOI: 10.1016/j.ceramint.2015.03.029.
  • Matinise, N.; Fuku, X. G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M. ZnO Nanoparticles via Moringa Oleifera Green Synthesis: Physical Properties & Mechanism of Formation. Appl. Surf. Sci. 2017, 406, 339–347. DOI: 10.1016/j.apsusc.2017.01.219.
  • Singh, A. K.; Pal, P.; Gupta, V.; Yadav, T. P.; Gupta, V.; Singh, S. P. Green Synthesis, Characterization and Antimicrobial Activity of Zinc Oxide Quantum Dots Using Eclipta Alba. Mater. Chem. Phys. 2018, 203, 40–48. DOI: 10.1016/j.matchemphys.2017.09.049.
  • Sutradhar, P.; Saha, M. Green Synthesis of Zinc Oxide Nanoparticles Using Tomato (Lycopersicon esculentum) Extract and Its Photovoltaic Application. J. Exp. Nanosci. 2016, 11, 314–327. DOI: 10.1080/17458080.2015.1059504.
  • Gupta, M.; Tomar, R. S.; Kaushik, S.; Mishra, R. K.; Sharma, D. Effective Antimicrobial Activity of Green ZnO Nano Particles of Catharanthus Roseus. Front. Microbiol. 2018, 9, 2030.
  • Azizi, S.; Ahmad, M. B.; Namvar, F.; Mohamad, R. Green Biosynthesis and Characterization of Zinc Oxide Nanoparticles Using Brown Marine Macroalga Sargassum Muticum Aqueous Extract. Mater. Lett. 2014, 116, 275–277. DOI: 10.1016/j.matlet.2013.11.038.
  • Kelman, D.; Posner, E. K.; McDermid, K. J.; Tabandera, N. K.; Wright, P. R.; Wright, A. D. Antioxidant Activity of Hawaiian Marine Algae. Mar. Drugs. 2012, 10, 403–416. DOI: 10.3390/md10020403.
  • Nagarajan, S.; Kuppusamy, K. A. Extracellular Synthesis of Zinc Oxide Nanoparticle Using Seaweeds of Gulf of Mannar, India. J. Nanobiotechnology. 2013, 11, 39. DOI: 10.1186/1477-3155-11-39.
  • Iqbal, T.; Haqnawaz, M.; Sultan, M.; Tahir, M. B.; Khan, M. I.; Riaz, K. N.; Ijaz, M.; Rafique, M. Novel Graphene‐Based Transparent Electrodes for Perovskite Solar Cells. Int. J. Energy Res. 2018, 42, 4866–4874. DOI: 10.1002/er.4244.
  • Somorjai, G. A.; Park, J. Y. Colloid Science of Metal Nanoparticle Catalysts in 2D and 3D Structures. Challenges of Nucleation, Growth, Composition, Particle Shape, Size Control and Their Influence on Activity and Selectivity. Top. Catal. 2008, 49, 126–135. DOI: 10.1007/s11244-008-9077-0.
  • Pennycook, T. J.; McBride, J. R.; Rosenthal, S. J.; Pennycook, S. J.; Pantelides, S. T. Dynamic Fluctuations in Ultrasmall Nanocrystals Induce White Light Emission. Nano Lett. 2012, 12, 3038–3042. DOI: 10.1021/nl3008727.
  • Zafar, M.; Ijaz, M.; Iqbal, T. Efficient Au Nanostructures for NIR-Responsive Controlled Drug Delivery Systems. Chem. Pap. 2021, 75, 2277–2293. DOI: 10.1007/s11696-020-01465-y.
  • Patra, J. K.; Baek, K.-H. Green Nanobiotechnology: factors Affecting Synthesis and Characterization Techniques. J. Nanomater. 2014, 2014, 1–12. DOI: 10.1155/2014/417305.
  • Gamez, G.; Gardea-Torresdey, J. L.; Tiemann, K. J.; Parsons, J.; Dokken, K.; Jose Yacaman, M. Recovery of Gold (III) from Multi-Elemental Solutions by Alfalfa Biomass. Adv. Environ. Res. 2003, 7, 563–571. DOI: 10.1016/S1093-0191(02)00021-7.
  • Armendariz, V.; Herrera, I.; Peralta-Videa, J. R.; Jose-Yacaman, M.; Troiani, H.; Santiago, P.; Gardea-Torresdey, J. L. Size Controlled Gold Nanoparticle Formation by Avena Sativa Biomass: use of Plants in Nanobiotechnology. J. Nanopart. Res. 2004, 6, 377–382. DOI: 10.1007/s11051-004-0741-4.
  • Soni, N.; Prakash, S. Factors Affecting the Geometry of Silver Nanoparticles Synthesis in Chrysosporium Tropicum and Fusarium oxysporum. Am. J. Nanotechnol. 2011, 2, 112–121.
  • Zafar, M.; Iqbal, T.; Fatima, S.; Sanaullah, Q.; Aman, S. Carbon Nanotubes for Production and Storage of Hydrogen: challenges and Development. Chemical Papers 2021, 1–17.
  • Pandey, B. Synthesis of Zinc-Based Nanomaterials: A Biological Perspective. IET Nanobiotechnol. 2012, 6, 144–148. DOI: 10.1049/iet-nbt.2011.0051.
  • Darroudi, M.; Ahmad, M. B.; Zamiri, R.; Zak, A. K.; Abdullah, A. H.; Ibrahim, N. A. Time-Dependent Effect in Green Synthesis of Silver Nanoparticles. Int. J. Nanomedicine. 2011, 6, 677–681.
  • Kuchibhatla, S. V.; Karakoti, A. S.; Baer, D. R.; Samudrala, S.; Engelhard, M. H.; Amonette, J. E.; Thevuthasan, S.; Seal, S. Influence of Aging and Environment on Nanoparticle Chemistry: Implication to Confinement Effects in Nanoceria. J. Phys. Chem. C Nanomater. Interfaces. 2012, 116, 14108–14114. DOI: 10.1021/jp300725s.
  • Mudunkotuwa, I. A.; Pettibone, J. M.; Grassian, V. H. Environmental Implications of Nanoparticle Aging in the Processing and Fate of Copper-Based Nanomaterials. Environ. Sci. Technol. 2012, 46, 7001–7010. DOI: 10.1021/es203851d.
  • Baer, D. R. Surface Characterization of Nanoparticles: Critical Needs and Significant Challenges. J. Surf. Anal. 2011, 17, 163–169. DOI: 10.1384/jsa.17.163.
  • Iqbal, T.; Azhar, S.; Zafar, M.; Kiran, H.; Kebaili, I.; Alrobei, H. Synthesis and Characterization of Ag-ZnO Nano-Composites for Investigation of Variations in the Germination of Peanut and Kidney Beans. Appl. Nanosci. 2021, 11, 2767–2777. DOI: 10.1007/s13204-021-02244-1.
  • Akbari, B.; Tavandashti, M. P.; Zandrahimi, M. Particle Size Characterization of Nanoparticles–A Practicalapproach. Iran. J. Mater. Sci. Eng. 2011, 8, 48–56.
  • Yacamán, M. J.; Ascencio, J. A.; Liu, H. B.; Gardea-Torresdey, J. Structure Shape and Stability of Nanometric Sized Particles. J. Vac. Sci. Technol. B 2001, 19, 1091–1103. DOI: 10.1116/1.1387089.
  • Baer, D. R.; Engelhard, M. H.; Johnson, G. E.; Laskin, J.; Lai, J.; Mueller, K.; Munusamy, P.; Thevuthasan, S.; Wang, H.; Washton, N.; et al. Surface Characterization of Nanomaterials and Nanoparticles: Important Needs and Challenging Opportunities. J. Vacuum Sci. Technol. A: Vacuum, Surfaces, and Films 2013, 31, 050820. DOI: 10.1116/1.4818423.
  • Ruckenstein, E.; Kong, X. Z. Control of Pore Generation and Pore Size in Nanoparticles of Poly (Styrene‐Methyl Methacrylate‐Acrylic Acid). J. Appl. Polym. Sci. 1999, 72, 419–426. DOI: 10.1002/(SICI)1097-4628(19990418)72:3<419::AID-APP11>3.0.CO;2-8.
  • Sarathy, V.; Tratnyek, P. G.; Nurmi, J. T.; Baer, D. R.; Amonette, J. E.; Chun, C. L.; Penn, R. L.; Reardon, E. J. Aging of Iron Nanoparticles in Aqueous Solution: effects on Structure and Reactivity. J. Phys. Chem. C 2008, 112, 2286–2293. DOI: 10.1021/jp0777418.
  • Lynch, I.; Cedervall, T.; Lundqvist, M.; Cabaleiro-Lago, C.; Linse, S.; Dawson, K. A. The Nanoparticle–Protein Complex as a Biological Entity; a Complex Fluids and Surface Science Challenge for the 21st Century. Adv. Colloid Interface Sci. 2007, 134-135, 167–174. DOI: 10.1016/j.cis.2007.04.021.
  • Schilling, K.; Bradford, B.; Castelli, D.; Dufour, E.; Nash, J. F.; Pape, W.; Schulte, S.; Tooley, I.; van den Bosch, J.; Schellauf, F.; et al. Human Safety Review of “Nano” Titanium Dioxide and Zinc Oxide. Photochem. Photobiol. Sci. 2010, 9, 495–509. DOI: 10.1039/b9pp00180h.
  • Valsami-Jones, E.; Lynch, I. How Safe Are Nanomaterials? Science 2015, 350, 388–389.
  • Navya, P.; Daima, H. K. Rational Engineering of Physicochemical Properties of Nanomaterials for Biomedical Applications with Nanotoxicological Perspectives. Nano Converg. 2016, 3, 1–14. DOI: 10.1186/s40580-016-0064-z.
  • Jones, C. F.; Grainger, D. W. In Vitro Assessments of Nanomaterial Toxicity. Adv. Drug Deliv. Rev. 2009, 61, 438–456. DOI: 10.1016/j.addr.2009.03.005.
  • Chen, M.; Li, Y.; Zhou, J.; Yang, Z.; Wang, Z.; Yang, Y.; Zhang, H.; Li, Z.; Mei, X. In Vitro Toxicity Assessment of Nanocrystals in Tissue‐Type Cells and Macrophage Cells. J. Appl. Toxicol. 2018, 38, 656–664. DOI: 10.1002/jat.3570.
  • Ajdary, M.; Moosavi, M.; Rahmati, M.; Falahati, M.; Mahboubi, M.; Mandegary, A.; Jangjoo, S.; Mohammadinejad, R.; Varma, R. Health Concerns of Various Nanoparticles: A Review of Their in Vitro and in Vivo Toxicity. Nanomaterials 2018, 8, 634. DOI: 10.3390/nano8090634.
  • Najim, N.; Rusdi, R.; Hamzah, A. S.; Shaameri, Z.; Mat Zain, M.; Kamarulzaman, N. Effects of the Absorption Behaviour of ZnO Nanoparticles on Cytotoxicity Measurements. J. Nanomater. 2014, 2014, 1–10. DOI: 10.1155/2014/694737.
  • Pandurangan, M.; Kim, D. H. In Vitro Toxicity of Zinc Oxide Nanoparticles: A Review. J. Nanopart. Res. 2015, 17, 1–8. DOI: 10.1007/s11051-015-2958-9.
  • Farcal, L.; Torres Andón, F.; Di Cristo, L.; Rotoli, B. M.; Bussolati, O.; Bergamaschi, E.; Mech, A.; Hartmann, N. B.; Rasmussen, K.; Riego-Sintes, J.; et al. Comprehensive in Vitro Toxicity Testing of a Panel of Representative Oxide Nanomaterials: first Steps towards an Intelligent Testing Strategy. PLoS One. 2015, 10, e0127174. DOI: 10.1371/journal.pone.0127174.
  • Hong, T.-K.; Tripathy, N.; Son, H.-J.; Ha, K.-T.; Jeong, H.-S.; Hahn, Y.-B. A Comprehensive in Vitro and in Vivo Study of ZnO Nanoparticles Toxicity. J. Mater. Chem. B 2013, 1, 2985–2992. DOI: 10.1039/c3tb20251h.
  • Chen, R.; Qiao, J.; Bai, R.; Zhao, Y.; Chen, C. Intelligent Testing Strategy and Analytical Techniques for the Safety Assessment of Nanomaterials. Anal. Bioanal. Chem. 2018, 410, 6051–6066. DOI: 10.1007/s00216-018-0940-y.
  • Hussain, S. M.; Warheit, D. B.; Ng, S. P.; Comfort, K. K.; Grabinski, C. M.; Braydich-Stolle, L. K. At the Crossroads of Nanotoxicology in Vitro: Past Achievements and Current Challenges. Toxicol. Sci. 2015, 147, 5–16. DOI: 10.1093/toxsci/kfv106.
  • Agarwal, H. S. V.; Kumar, S.; Rajeshkumar, A. Review on Green Synthesis of Zinc Oxide Nanoparticles–an Eco-Friendly Approach. Resour-Effic. Technol. 2017, 3, 406–413. DOI: 10.1016/j.reffit.2017.03.002.
  • Otari, S. V.; Patil, R. M.; Nadaf, N. H.; Ghosh, S. J.; Pawar, S. H. Green Biosynthesis of Silver Nanoparticles from an Actinobacteria Rhodococcus sp. Mater. Lett. 2012, 72, 92–94. DOI: 10.1016/j.matlet.2011.12.109.
  • Mehta, S. K.; Kumar, S.; Chaudhary, S.; Bhasin, K. K.; Gradzielski, M. Evolution of ZnS Nanoparticles via Facile CTAB Aqueous Micellar Solution Route: A Study on Controlling Parameters. Nanoscale Res. Lett. 2009, 4, 17–28. DOI: 10.1007/s11671-008-9196-3.
  • Jayaseelan, C.; Rahuman, A. A.; Kirthi, A. V.; Marimuthu, S.; Santhoshkumar, T.; Bagavan, A.; Gaurav, K.; Karthik, L.; Rao, K. V. B. Novel Microbial Route to Synthesize ZnO Nanoparticles Using Aeromonas hydrophila and Their Activity against Pathogenic Bacteria and Fungi. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2012, 90, 78–84. DOI: 10.1016/j.saa.2012.01.006.
  • Prasad, K.; Jha, A. K. ZnO Nanoparticles: synthesis and Adsorption Study. NS. 2009, 01, 129–135. DOI: 10.4236/ns.2009.12016.
  • Singh, B. N.; Rawat, A. K. S.; Khan, W.; Naqvi, A. H.; Singh, B. R. Biosynthesis of Stable Antioxidant ZnO Nanoparticles by Pseudomonas aeruginosa Rhamnolipids. PLoS One. 2014, 9, e106937. DOI: 10.1371/journal.pone.0106937.
  • Kundu, D.; Hazra, C.; Chatterjee, A.; Chaudhari, A.; Mishra, S. Extracellular Biosynthesis of Zinc Oxide Nanoparticles Using Rhodococcus pyridinivorans NT2: multifunctional Textile Finishing, Biosafety Evaluation and in Vitro Drug Delivery in Colon Carcinoma. J. Photochem. Photobiol. B 2014, 140, 194–204.
  • Saravanan, M.; Gopinath, V.; Chaurasia, M. K.; Syed, A.; Ameen, F.; Purushothaman, N. Green Synthesis of Anisotropic Zinc Oxide Nanoparticles with Antibacterial and Cytofriendly Properties. Microb. Pathog. 2018, 115, 57–63. DOI: 10.1016/j.micpath.2017.12.039.
  • Król, A.; Railean-Plugaru, V.; Pomastowski, P.; Złoch, M.; Buszewski, B. Mechanism Study of Intracellular Zinc Oxide Nanocomposites Formation. Colloids Surf, A 2018, 553, 349–358. DOI: 10.1016/j.colsurfa.2018.05.069.
  • Chakra, C. S.; Rao, K. V.; Pavani, T.; Kollu, N. V. Microbial Synthesis of ZnO Nano Particles by Lactobacillus Sporogenes and Effect of Size of Nano Particles by Temperature Variation and Antibacterial Studies. Nanomed. Nanobiol. 2015, 2, 1–9. DOI: 10.1166/nmb.2015.1019.
  • Rajabairavi, N.; Raju, C. S.; Karthikeyan, C.; Varutharaju, K.; Nethaji, S.; Hameed, A. S. H.; Shajahan, A. Biosynthesis of Novel Zinc Oxide Nanoparticles (ZnO NPs) Using Endophytic Bacteria Sphingobacterium thalpophilum. In Recent Trends in Materials Science and Applications; Springer: Switzerland, 2017; pp. 245–254.
  • Pillai, A. M.; Sivasankarapillai, V. S.; Rahdar, A.; Joseph, J.; Sadeghfar, F.; Anuf A, R.; Rajesh, K.; Kyzas, G. Z. Green Synthesis and Characterization of Zinc Oxide Nanoparticles with Antibacterial and Antifungal Activity. J. Mol. Struct. 2020, 1211, 128107. DOI: 10.1016/j.molstruc.2020.128107.
  • Al-Zahrani, H.; El-Waseif, A.; El-Ghwas, D. Biosynthesis and Evaluation of TiO2 and ZnO Nanoparticles from in Vitro Stimulation of Lactobacillus johnsonii. J. Innov. Pharm. Biol. Sci. 2018, 5, 16–20.
  • Selvarajan, E.; Mohanasrinivasan, V. Biosynthesis and Characterization of ZnO Nanoparticles Using Lactobacillus plantarum VITES07. Mater. Lett. 2013, 112, 180–182. DOI: 10.1016/j.matlet.2013.09.020.
  • Taran, M.; Rad, M.; Alavi, M. Biosynthesis of TiO2 and ZnO Nanoparticles by Halomonas elongata IBRC-M 10214 in Different Conditions of Medium. Bioimpacts 2018, 8, 81–89. DOI: 10.15171/bi.2018.10.
  • Bird, S. M.; El-Zubir, O.; Rawlings, A. E.; Leggett, G. J.; Staniland, S. S. A Novel Design Strategy for Nanoparticles on Nanopatterns: interferometric Lithographic Patterning of Mms6 Biotemplated Magnetic Nanoparticles. J. Mater. Chem. C Mater. 2016, 4, 3948–3955. DOI: 10.1039/c5tc03895b.
  • Rajiv, P.; Rajeshwari, S.; Venckatesh, R. Bio-Fabrication of Zinc Oxide Nanoparticles Using Leaf Extract of Parthenium Hysterophorus L. and Its Size-Dependent Antifungal Activity against Plant Fungal Pathogens. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2013, 112, 384–387. DOI: 10.1016/j.saa.2013.04.072.
  • Nagarajan, S.; Kuppusamy, K. A. Extracellular Synthesis of Zinc Oxide Nanoparticle Using Seaweeds of Gulf of Mannar, India. J. Nanobiotechnol. 2013, 11, 39. DOI: 10.1186/1477-3155-11-39.
  • Pati, R.; Mehta, R. K.; Mohanty, S.; Padhi, A.; Sengupta, M.; Vaseeharan, B.; Goswami, C.; Sonawane, A. Topical Application of Zinc Oxide Nanoparticles Reduces Bacterial Skin Infection in Mice and Exhibits Antibacterial Activity by Inducing Oxidative Stress Response and Cell Membrane Disintegration in Macrophages. Nanomedicine 2014, 10, 1195–1208. DOI: 10.1016/j.nano.2014.02.012.
  • Chandrasekaran, R.; Gnanasekar, S.; Seetharaman, P.; Keppanan, R.; Arockiaswamy, W.; Sivaperumal, S. Formulation of Carica Papaya Latex-Functionalized Silver Nanoparticles for Its Improved Antibacterial and Anticancer Applications. J. Mol. Liq. 2016, 219, 232–238. DOI: 10.1016/j.molliq.2016.03.038.
  • Mashrai, A.; Khanam, H.; Aljawfi, R. N. Biological Synthesis of ZnO Nanoparticles Using C. albicans and Studying Their Catalytic Performance in the Synthesis of Steroidal Pyrazolines. Arabian J. Chem. 2017, 10, S1530–S1536. DOI: 10.1016/j.arabjc.2013.05.004.
  • Sarkar, J.; Ghosh, M.; Mukherjee, A.; Chattopadhyay, D.; Acharya, K. Biosynthesis and Safety Evaluation of ZnO Nanoparticles. Bioprocess Biosyst. Eng. 2014, 37, 165–171. DOI: 10.1007/s00449-013-0982-7.
  • Shamim, A.; Abid, M. B.; Mahmood, T. Biogenic Synthesis of Zinc Oxide (ZnO) Nanoparticles Using a Fungus (Aspargillus Niger) and Their Characterization. IJC. 2019, 11, 119–126. DOI: 10.5539/ijc.v11n2p119.
  • Rajan, A.; Cherian, E.; Baskar, G. Biosynthesis of Zinc Oxide Nanoparticles Using Aspergillus fumigatus JCF and Its Antibacterial Activity. Int. J. Mod. Sci. Technol. 2016, 1, 52–57.
  • Raliya, R.; Tarafdar, J. C. ZnO Nanoparticle Biosynthesis and Its Effect on Phosphorous-Mobilizing Enzyme Secretion and Gum Contents in Clusterbean (Cyamopsis Tetragonoloba L.). Agric. Res. 2013, 2, 48–57. DOI: 10.1007/s40003-012-0049-z.
  • Pavani, K.; Kumar, N. S.; Sangameswaran, B. Synthesis of Lead Nanoparticles by Aspergillus Species. Pol. J. Microbiol. 2012, 61, 61–63. DOI: 10.33073/pjm-2012-008.
  • Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H.-C.; Kahru, A. Toxicity of Nanosized and Bulk ZnO, CuO and TiO2 to Bacteria Vibrio fischeri and Crustaceans Daphnia Magna and Thamnocephalus Platyurus. Chemosphere 2008, 71, 1308–1316. DOI: 10.1016/j.chemosphere.2007.11.047.
  • Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. DOI: 10.1021/cr00033a004.
  • Moghaddam, A. B.; Moniri, M.; Azizi, S.; Rahim, R. A.; Ariff, A. B.; Saad, W. Z.; Namvar, F.; Navaderi, M.; Mohamad, R. Biosynthesis of ZnO Nanoparticles by a New Pichia Kudriavzevii Yeast Strain and Evaluation of Their Antimicrobial and Antioxidant Activities. Molecules 2017, 22, 872. DOI: 10.3390/molecules22060872.
  • Qu, J.; Yuan, X.; Wang, X.; Shao, P. Zinc Accumulation and Synthesis of ZnO Nanoparticles Using Physalis Alkekengi L. Environ. Pollut. 2011, 159, 1783–1788. DOI: 10.1016/j.envpol.2011.04.016.
  • Vijayakumar, S.; Mahadevan, S.; Arulmozhi, P.; Sriram, S.; Praseetha, P. K. Green Synthesis of Zinc Oxide Nanoparticles Using Atalantia Monophylla Leaf Extracts: Characterization and Antimicrobial Analysis. Mater. Sci. Semicond. Process. 2018, 82, 39–45. DOI: 10.1016/j.mssp.2018.03.017.
  • Mishra, V.; Sharma, R. Green Synthesis of Zinc Oxide Nanoparticles Using Fresh Peels Extract of Punica Granatum and Its Antimicrobial Activities. Int. J. Pharma Res. Health Sci. 2015, 3, 694–699.
  • Elumalai, K.; Velmurugan, S. Green Synthesis, Characterization and Antimicrobial Activities of Zinc Oxide Nanoparticles from the Leaf Extract of Azadirachta Indica (L.). Appl. Surf. Sci. 2015, 345, 329–336. DOI: 10.1016/j.apsusc.2015.03.176.
  • Noorjahan, C. M.; Shahina, S. J.; Deepika, T.; Rafiq, S. Green Synthesis and Characterization of Zinc Oxide Nanoparticles from Neem (Azadirachta Indicia). Int. J. Sci. Engin. Technol. Res. 2015, 4, 5751–5753.
  • Sangeetha, G.; Rajeshwari, S.; Venckatesh, R. Green Synthesis of Zinc Oxide Nanoparticles by Aloe Barbadensis Miller Leaf Extract: Structure and Optical Properties. Mater. Res. Bull. 2011, 46, 2560–2566. DOI: 10.1016/j.materresbull.2011.07.046.
  • Jamdagni, P.; Khatri, P.; Rana, J. Green Synthesis of Zinc Oxide Nanoparticles Using Flower Extract of Nyctanthes Arbor-Tristis and Their Antifungal Activity. J. King Saud Univ.-Sci. 2018, 30, 168–175. DOI: 10.1016/j.jksus.2016.10.002.
  • Zare, E.; Pourseyedi, S.; Khatami, M.; Darezereshki, E. Simple Biosynthesis of Zinc Oxide Nanoparticles Using Nature’s Source, and It’s in Vitro Bio-Activity. J. Mol. Struct. 2017, 1146, 96–103. DOI: 10.1016/j.molstruc.2017.05.118.
  • Lingaraju, K.; Raja Naika, H.; Manjunath, K.; Basavaraj, R. B.; Nagabhushana, H.; Nagaraju, G.; Suresh, D. Biogenic Synthesis of Zinc Oxide Nanoparticles Using Ruta Graveolens (L.) and Their Antibacterial and Antioxidant Activities. Appl. Nanosci. 2016, 6, 703–710. DOI: 10.1007/s13204-015-0487-6.
  • Sagar Raut, D.; Thorat, R. T. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using OcimumTenuiflorum Leaves. Int. J. Sci. Res 2015, 4, 1225–1228.
  • Devi, R. S.; Gayathri, R. Green Synthesis of Zinc Oxide Nanoparticles by Using Hibiscus Rosa-Sinensis. Int. J. Curr. Engin. Technol. 2014, 4, 2444–2446.
  • Khatami, M.; Varma, R. S.; Zafarnia, N.; Yaghoobi, H.; Sarani, M.; Kumar, V. G. Applications of Green Synthesized Ag, ZnO and Ag/ZnO Nanoparticles for Making Clinical Antimicrobial Wound-Healing Bandages. Sustainable Chem. Pharm. 2018, 10, 9–15. DOI: 10.1016/j.scp.2018.08.001.
  • Khatami, M.; Alijani, H. Q.; Heli, H.; Sharifi, I. Rectangular Shaped Zinc Oxide Nanoparticles: Green Synthesis by Stevia and Its Biomedical Efficiency. Ceram. Int. 2018, 44, 15596–15602. DOI: 10.1016/j.ceramint.2018.05.224.
  • Ali, K.; Dwivedi, S.; Azam, A.; Saquib, Q.; Al-Said, M. S.; Alkhedhairy, A. A.; Musarrat, J. Aloe Vera Extract Functionalized Zinc Oxide Nanoparticles as Nanoantibiotics against Multi-Drug Resistant Clinical Bacterial Isolates. J. Colloid Interface Sci. 2016, 472, 145–156. DOI: 10.1016/j.jcis.2016.03.021.
  • Nagajyothi, P. C.; Sreekanth, T. V. M.; Tettey, C. O.; Jun, Y. I.; Mook, S. H. Characterization, Antibacterial, Antioxidant, and Cytotoxic Activities of ZnO Nanoparticles Using Coptidis Rhizoma. Bioorg. Med. Chem. Lett. 2014, 24, 4298–4303. DOI: 10.1016/j.bmcl.2014.07.023.
  • Anbuvannan, M.; Ramesh, M.; Viruthagiri, G.; Shanmugam, N.; Kannadasan, N. Synthesis, Characterization and Photocatalytic Activity of ZnO Nanoparticles Prepared by Biological Method. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2015, 143, 304–308. DOI: 10.1016/j.saa.2015.01.124.
  • Sundrarajan, M.; Ambika, S.; Bharathi, K. Plant-Extract Mediated Synthesis of ZnO Nanoparticles Using Pongamia Pinnata and Their Activity against Pathogenic Bacteria. Adv. Powder Technol. 2015, 26, 1294–1299. DOI: 10.1016/j.apt.2015.07.001.
  • Dobrucka, R.; Długaszewska, J. Biosynthesis and Antibacterial Activity of ZnO Nanoparticles Using Trifolium pratense Flower Extract. Saudi J. Biol. Sci. 2016, 23, 517–523. DOI: 10.1016/j.sjbs.2015.05.016.
  • Jafarirad, S.; Mehrabi, M.; Divband, B.; Kosari-Nasab, M. Biofabrication of Zinc Oxide Nanoparticles Using Fruit Extract of Rosa Canina and Their Toxic Potential against Bacteria: A Mechanistic Approach. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 296–302.
  • Ramesh, M.; Anbuvannan, M.; Viruthagiri, G. Green Synthesis of ZnO Nanoparticles Using Solanum Nigrum Leaf Extract and Their Antibacterial Activity. Spectrochim. Acta, Part A 2015, 136, 864–870. DOI: 10.1016/j.saa.2014.09.105.
  • Anbuvannan, M.; Ramesh, M.; Viruthagiri, G.; Shanmugam, N.; Kannadasan, N. Anisochilus Carnosus Leaf Extract Mediated Synthesis of Zinc Oxide Nanoparticles for Antibacterial and Photocatalytic Activities. Mater. Sci. Semicond. Process. 2015, 39, 621–628. DOI: 10.1016/j.mssp.2015.06.005.
  • Bhuyan, T.; Mishra, K.; Khanuja, M.; Prasad, R.; Varma, A. Biosynthesis of Zinc Oxide Nanoparticles from Azadirachta Indica for Antibacterial and Photocatalytic Applications. Mater. Sci. Semicond. Process. 2015, 32, 55–61. DOI: 10.1016/j.mssp.2014.12.053.
  • Krupa, A. N. D.; Vimala, R. Evaluation of Tetraethoxysilane (TEOS) Sol–Gel Coatings, Modified with Green Synthesized Zinc Oxide Nanoparticles for Combating Microfouling. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 61, 728–735. DOI: 10.1016/j.msec.2016.01.013.
  • Aladpoosh, R.; Montazer, M. The Role of Cellulosic Chains of Cotton in Biosynthesis of ZnO Nanorods Producing Multifunctional Properties: mechanism, Characterizations and Features. Carbohydr. Polym. 2015, 126, 122–129. DOI: 10.1016/j.carbpol.2015.03.036.
  • Elumalai, K.; Velmurugan, S.; Ravi, S.; Kathiravan, V.; Ashokkumar, S. RETRACTED: Green Synthesis of Zinc Oxide Nanoparticles Using Moringa Oleifera Leaf Extract and Evaluation of Its Antimicrobial Activity; Elsevier: Amsterdam, The Netherlands, 2015.
  • Madan, H. R.; Sharma, S. C.; Suresh, D.; Vidya, Y. S.; Nagabhushana, H.; Rajanaik, H.; Anantharaju, K. S.; Prashantha, S. C.; Sadananda Maiya, P.; Udayabhanu; et al. Facile Green Fabrication of Nanostructure ZnO Plates, Bullets, Flower, Prismatic Tip, Closed Pine Cone: their Antibacterial, Antioxidant, Photoluminescent and Photocatalytic Properties. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2016, 152, 404–416.
  • Fu, L.; Fu, Z. Plectranthus Amboinicus Leaf Extract–Assisted Biosynthesis of ZnO Nanoparticles and Their Photocatalytic Activity. Ceram. Int. 2015, 41, 2492–2496. DOI: 10.1016/j.ceramint.2014.10.069.
  • Ambika, S.; Sundrarajan, M. Green Biosynthesis of ZnO Nanoparticles Using Vitex Negundo L. extract: spectroscopic Investigation of Interaction between ZnO Nanoparticles and Human Serum Albumin. J. Photochem. Photobiol. B. 2015, 149, 143–148.
  • Vidya, C.; Hiremath, S.; Chandraprabha, M. N.; Antonyraj, M. L.; Gopal, I. V.; Jain, A.; Bansal, K. Green Synthesis of ZnO Nanoparticles by Calotropis Gigantea. Int. J. Curr. Eng. Technol. 2013, 1, 118–120.
  • Izadpanah, M. R.; Saleh Zadeh, A.; Zaiefi Zadeh, M.; Nik Pasand, M. The Effect of Nano-Pyrazole Derivative of Thiosemicarbazone Magnetite on BRCA1, p53 and Bcl-2 Gene Expression in MCF-7 Breast Cancer Cell Line. J. Ardabil. Univ. Med. Sci. 2019, 19, 227–238. DOI: 10.29252/jarums.19.2.9.
  • Yuvakkumar, R.; Suresh, J.; Nathanael, A. J.; Sundrarajan, M.; Hong, S. I. Novel Green Synthetic Strategy to Prepare ZnO Nanocrystals Using Rambutan (Nephelium Lappaceum L.) Peel Extract and Its Antibacterial Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 41, 17–27. DOI: 10.1016/j.msec.2014.04.025.
  • Ochieng, P. Green Route Synthesis and Characterization of ZnO Nanoparticles Using Spathodea Campanulata. Int. J. Biochem. Phys. 2015, 23, 53–61.
  • Asokan, A.; Ramachandran, T.; Koushik, C. V.; Rajendran, R.; Mahalakshmi, M. Preparation and Characterization of Zinc Oxide Nanoparticles and a Study of the anti-Microbial Property of Cotton Fabric Treated with the Particles. J. Textile Apparel, Technol. Manage. 2010, 6, 1–2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.