62
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In situ electrochemical synthesis of poly4,4′methylene dianiline/metals hybrid for removal of dibenzothiophene as hazard material in model fuel

, &
Received 09 Sep 2021, Accepted 29 Dec 2022, Published online: 23 Jan 2023

References

  • Mehran, S.; Amarjeet, B.; Argyrios, M. Biodesulfurization of Refractory Organic Sulphur Compounds in Fossil Fuels. Biotechnol. Adv. 2007, 25, 570–596.
  • Agarwal, P.; Sharma, D. K. Comparative Studies on the Biodesulfurization of Crude Oil with Other Desulfurization Techniques and Deep Desulfurization through Integrated Processes. Energy Fuels 2010, 24, 518–524. DOI: 10.1021/ef900876j.
  • Zhang, L.; Lin, X.; Wang, J.; Jiang, F.; Wei, L.; Chen, G.; Xiaodi, H. Effects of Lead and Mercury on Sulfate-Reducing Bacterial Activity in a Biological Process for Flue Gas Desulfurization Wastewater Treatment. Sci. Rep. 2016, 6, 30455–30460. DOI: 10.1038/srep30455.
  • Robert, C. W.; Melvin, J. A.; William, H. B.; Weast, R. C. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, 1998.
  • Mosavi, S. H.; Zare-Dorabei, R.; Bereyhi, M. Microwave-Assisted Synthesis of Metal–Organic Framework MIL-47 for Effective Adsorptive Removal of Dibenzothiophene from Model Fuel. J. Iran. Chem. Soc. 2021, 18, 709–717. DOI: 10.1007/s13738-020-02057-z.
  • Wang, M.; Liu, W.; Hou, M.; Li, Q.; Han, Y.; Liu, G.; Haifeng, L.; Xiao, L.; Xuebin, C.; Zh, M. Removal of Polychlorinated Naphthalenes by Desulfurization and Emissions of Polychlorinated Naphthalenes from Sintering Plant. Sci. Rep. 2016, 6, 26444. DOI: 10.1038/srep26444.
  • Xiaochuan, J.; Yi, N.; Chunxi, L.; Zihao, W. Imidazolium-Based Alkylphosphate Ionic Liquids – A Potential Solvent for Extractive Desulfurization of Fuel. Fuel 2008, 87, 79–84. DOI: 10.1016/j.fuel.2007.03.045.
  • Andrea, D. G.; Marcello, C.; Francesco, D. A.; Claudia, C. R. Efficient Oxidation of Thiophene Derivatives with Homogeneous and Heterogeneous MTO/H2O2 Systems: A Novel Approach for, Oxidative Desulfurization (ODS) of Diesel Fuel. Appl. Catal. B: Environ. 2009, 89, 239–245.
  • Liu, L.; Lü, H.; Qian, J.; Xing, J. Progress in the Technology for Desulfurization of Crude Oil. China Pet. Process. Petrochem. Technol. 2010, 12, 1–6.
  • Bereyhi, M.; Zare‐Dorabei, R.; Mosavi, S. H. Microwave‐Assisted Synthesis of CuCl‐MIL‐47 and Application to Adsorptive Denitrogenation of Model Fuel: Response Surface Methodology. ChemistrySelect 2020, 5, 14583–14591. DOI: 10.1002/slct.202003873.
  • Pushkaraj, R.; Michael, T.; Caleb, A.; Robin, E.; Yuko, K.; Hector, H.; Jefferson, W.; William, H. Supercritical Water Desulfurization of Organic Sulfides is Consistent with Free-Radical Kinetics. Energy Fuels 2013, 27, 6108–6117.
  • Rahmani, A.; Mohseni, E.; Hamdi, Z. Electrosynthesis of Metal-Organic Frameworks (MOFs) Using 4,4′ Methylene Dianiline Polymer and Metals (Al, Cu, and Fe) for Imidacloprid Pesticide Adsorption in the Aquatic Environment. J. Environ. Anal. Chem. 2021, 101, 1–18. DOI: 10.1080/03067319.2021.1987424.
  • Tang, W.; Gu, J.; Huang, H.; Liu, D.; Zhong, C. Metal‐Organic Frameworks for Highly Efficient Adsorption of Dibenzothiophene from Liquid Fuels. AIChE J. 2016, 62, 4491–4496. DOI: 10.1002/aic.15384.
  • Ania, C. O.; Bandosz, T. J. Importance of Structural and Chemical Heterogeneity of Activated Carbon Surfaces for Adsorption of Dibenzothiophene. Langmuir 2005, 21, 7752–7759. DOI: 10.1021/la050772e.
  • Zhu, W.; Wu, P.; Chao, Y.; Li, H.; Zou, F.; Xun, S.; Fengxia, Z.; Zhen, Z. A Novel Reaction-Controlled Foam-Type Polyoxometalate Catalyst for Deep Oxidative Desulfurization of Fuels. Ind. Eng. Chem. Res. 2013, 52, 17399–17406.
  • Naba, K. B.; Sudhir, K. R.; Mihir, K. C.; Ashis, K. M. Deep-Desulfurization of Dibenzothiophene and Its Derivatives Present in Diesel Oil by a Newly Isolated Bacterium Achromobacter sp. to Reduce the Environmental Pollution from Fossil Fuel Combustion. Fuel Process. Technol. 2014, 119, 236–244.
  • Bhasarkar, J. Ultrasound Assisted Biodesulfurization of Liquid Fuel Using Free and Immobilized Cells of Rhodococcus rhodochrous MTCC 3552: A Mechanistic Investigation. Ultrason. Sonochem. 2015, 24, 98–104.
  • Martinez, I.; Santos, V. E.; Alcon, A.; Garcia-Ochoa, F. Enhancement of the Biodesulfurization Capacity of Pseudomonas putida CECT5279 by Co-Substrate Addition. Process Biochem. 2015, 50, 119–124.
  • Lu, H.; Deng, C. Oxidative Desulfurization of Fuels Using Ionic Liquids: A Review. Fuel Process. Technol. 2015, 119, 89–91.
  • Teymouri, M.; Samadi-Maybodi, A.; Vahid, A.; Miranbeigi, A. Adsorptive Desulfurization of Low Sulfur Diesel Fuel Using Palladium Containing Mesoporous Silica Synthesized via a Novel in-Situ Approach. Fuel Process. Technol. 2013, 116, 257–264.
  • Rezvani, M. A.; Shaterian, M. Synthesis and Characterization of New Nanocomposite CTAB@ POM@ TiO2 as an Efficient Heterogeneous Catalyst for Oxidative Desulfurization of Gas Oil. Inorg. Nano-Met. Chem. 2019, 49, 23–32.
  • Granadeiro, C. M.; Nogueira, L. S.; Julião, D.; Mirante, F.; Ananias, D.; Balula, S. S.; Luís, C. S. Influence of a Porous MOF Support on the Catalytic Performance of Eu-Polyoxometalate Based Materials: Desulfurization of a Model Diesel. Catal. Sci. Technol. 2016, 6, 1515–1522.
  • Velu, S.; Xiaoliang, M.; Chunshan, S. Selective Adsorption for Removing Sulfur from Jet Fuel over Zeolite-Based Adsorbents. Ind. Eng. Chem. Res. 2003, 42, 5293–5304.
  • Tawfik, A. S.; Kazeem, O. S.; Saddam, A. A.; Dafalla, H.; Gaddafi, I. D. Adsorptive Desulfurization of Thiophene, Benzothiophene and Dibenzothiophene over Activated Carbon Manganese Oxide Nanocomposite: With Column System Evaluation. J. Clean. Prod. 2017, 154, 401–412.
  • Gaddafi, I. D.; Tawfik, A. S. Effects of Bimetallic Ce/Fe Nanoparticles on the Desulfurization of Thiophenes Using Activated Carbon. Chem. Eng. J. 2017, 307, 914–927.
  • Tawfik, A. S. Simultaneous Adsorptive Desulfurization of Diesel Fuel over Bimetallic Nanoparticles Loaded on Activated Carbon. Clean. Prod. 2018, 172, 2123–2132.
  • Jae, H. K.; Xiaoliang, M.; Anning, Z.; Chunshan, S. Ultra-Deep Desulfurization and Denitrogenation of Diesel Fuel by Selective Adsorption over Three Different Adsorbents: A Study on Adsorptive Selectivity and Mechanism. Catal. Today 2006, 111, 74–83.
  • Nazmul, A. K.; Sung, H. J. Low-Temperature Loading of Cu+ Species over Porous Metal-Organic Frameworks (MOFs) and Adsorptive Desulfurization with Cu+-Loaded MOFs. J. Hazard. Mater. 2012, 237, 180–185.
  • Azari, A.; Yeganeh, M.; Gholami, M.; Salari, M. The Superior Adsorption Capacity of 2,4-Dinitrophenol under Ultrasound-Assisted Magnetic Adsorption System: Modeling and Process Optimization by Central Composite Design. J. Hazard. Mater. 2021, 418, 126348.
  • Azari, A.; Nabizadeh, R.; Mahvi, A. H.; Nasseri, S. Magnetic Multi-Walled Carbon Nanotubes-Loaded Alginate for Treatment of Industrial Dye Manufacturing Effluent: Adsorption Modelling and Process Optimisation by Central Composite Face-Central Design. J. Environ. Anal. Chem. 2021, 101, 1–21.
  • Mahmoudian, M. H.; Fazlzadeh, M.; Niari, M. H.; Azari, A.; Lima, E. C. A Novel Silica Supported Chitosan/Glutaraldehyde as an Efficient Sorbent in Solid Phase Extraction Coupling with HPLC for the Determination of Penicillin G from Water and Wastewater Samples. Arab. J. Chem. 2020, 13, 7147–7159.
  • Rashtbari, Y.; Hazrati, S.; Azari, A.; Afshin, S.; Fazlzadeh, M.; Vosoughi, M. A Novel, Eco-Friendly and Green Synthesis of PPAC-ZnO and PPAC-nZVI Nanocomposite Using Pomegranate Peel: Cephalexin Adsorption Experiments, Mechanisms, Isotherms and Kinetics. Adv. Powder. Technol. 2020, 3, 1612–1623.
  • Azari, A.; Nabizadeh, R.; Mahvi, A. H.; Nasseri, S. Integrated Fuzzy AHP-TOPSIS for Selecting the Best Color Removal Process Using Carbon-Based Adsorbent Materials: Multi-Criteria Decision Making vs. systematic Review Approaches and Modeling of Textile Wastewater Treatment in Real Conditions. J. Environ. Anal. Chem. 2020, 102, 7329–7344.
  • Mohseni, E.; Rahmani, A.; Hamdi, Z. Poly (4,4′-Methylenedianiline)-Graphene Oxide Nanocomposite: Synthesize and Application in Removal of Benzothiophene from Model Liquid Fuel. Environ. Monit. Assess. 2021, 193, 1–15.
  • Habila, M.; Alhenaki, B.; El‐Marghany, A.; Sheikh, M.; Ghfar, A.; ALOthman, Z.; Soylak, M. Metal Organic Frameworks Enhanced Dispersive Solid Phase Microextraction of Malathion before Detection by UHPLC‐MS/MS. J. Sep. Sci. 2020, 43, 3103–3109. DOI: 10.1002/jssc.202000033.
  • Gumus, Z. P.; Soylak, M. Metal Organic Frameworks as Nanomaterials for Analysis of Toxic Metals in Food and Environmental Applications. Trends Analyt. Chem. 2021, 143, 116417.
  • Mosavi, S. H.; Zare‐Dorabei, R.; Bereyhi, M. Rapid and Effective Ultrasonic‐Assisted Adsorptive Removal of Congo Red onto MOF‐5 Modified by CuCl2 in Ambient Conditions: Adsorption Isotherms and Kinetics Studies. ChemistrySelect 2021, 6, 4432–4439.
  • Rahmani, A.; Salem, M. Simulation of Fire in Super High-Rise Hospitals Using Fire Dynamics Simulator (FDS). Electron. J. Gen. Med. 2020, 17, 5.
  • Anbari, Z.; Abbasinia, M.; Khadem, M.; Rahmani, A.; Asghari, M.; Nezhad, I. A.; Dehghan, S. F. Effects of the Quality of Working Life on Job Satisfaction in an Auto Parts Manufacturing Factory. Int. J. Emerg. Ment. Health 2015, 17, 151–155.
  • Jafarinasab, M.; Akbari, A.; Omidkhah, M.; Shakeri, M. An Efficient Co-Based Metal–Organic Framework Nanocrystal (Co-ZIF-67) for Adsorptive Desulfurization of Dibenzothiophene: Impact of the Preparation Approach on Structure Tuning. Energy Fuels 2020, 34, 12779–12791.
  • Matloob, A. M.; Abd El-Hafiz, D. R.; Saad, L.; Mikhail, S.; Guirguis, D. Metal Organic Framework-Graphene Nano-Composites for High Adsorption Removal of DBT as Hazard Material in Liquid Fuel. J. Hazard. Mater. 2019, 373, 447–458.
  • Rezvani, M. A.; Miri, O. F. Synthesis and Characterization of PWMn/NiO/PAN Nanosphere Composite with Superior Catalytic Activity for Oxidative Desulfurization of Real Fuel. Chem. Eng. J. 2019, 369, 775–783.
  • Bao, Q.; Lou, Y.; Xing, T.; Chen, J. Rapid Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8) in Aqueous Solution via Microwave Irradiation. Inorg. Chem. Commun. 2013, 37, 170–173.
  • Jie, B.; Gabriel, L.; Chuandayani, G. G.; Silvia, D.; Michael, T.; Armando, B. Desulfurization of Diesel Fuels by Selective Adsorption on Activated Carbons: Competitive Adsorption of Polycyclic Aromatic Sulfur Heterocycles and Polycyclic Aromatic Hydrocarbons. Chem. Eng. J. 2011, 166, 207–217.
  • Mykola, S.; Eleni, D.; Teresa, J. B. Role of Microporosity and Surface Chemistry in Adsorption of 4,6-Dimethyldibenzothiophene on Polymer-Derived Activated Carbons. Fuel 2010, 89, 1499–1507.
  • Muddassir, M. A New 1D Cu (II)-W (CN) 8 Based Coordination Polymer: Crystallographic Structural Architecture, Hirshfeld Surface, DFT and Luminescent Analyses. J. Organomet. Chem. 2020, 926, 121499.
  • Souri, B.; Hayati, P.; Rezvani, A. R.; Mendoza-Meroño, R.; Janczak, J. A Copper (II) Zig-Zag Metal–Organic Coordination Polymer: Synthesis, Crystal Structure, Topology Study, Hirshfeld Surface Analysis and Survey Different Conditions on Morphology of a Novel Nano Structure [Cu(L)(SCN)(H2O)2]n.2H2O. Inorg. Nano-Met. Chem. 2020, 50, 80–93.
  • Mohseni, E.; Hamdi, Z.; Parvizimehr, A.; Rahmani, A. Adsorptive Desulphurisation of Benzothiophene and Dibenzothiophene from Model Fuels with Modified Vermiculite. Int. J. Environ. Anal. Chem. 2021, 100, 1–6. DOI: 10.1080/03067319.2021.1942461.
  • Li, X.; Ai, S.; Huang, Y.; Huang, C.; Yu, W.; Mao, Z. Fast and Reversible Adsorption for Dibenzothiophene in Fuel Oils with Metallic Nano-Copper Supported on Mesoporous Silica. Environ. Sci. Pollut. Res. Int. 2021, 28, 2741–2752.
  • Mohammed-Taib, B. M.; Fadhil, A. B. Dibenzothiophene Capture from Model Fuel by Wild Mustard Stems Derived Activated Carbon: Kinetics and Isothermal Evaluations. Int. J. Environ. Anal. Chem. 2021, 101, 1–23.
  • Mujahid, A.; Maryam, A.; Afzal, A.; Bajwa, S. Z.; Hussain, T.; Din, M. I.; Irshad, M. Molecularly Imprinted Poly (Methyl Methacrylate)-Nickel Sulfide Hybrid Membranes for Adsorptive Desulfurization of Dibenzothiophene. Purif. Technol. 2020, 237, 116453.
  • Wang, L.; Wang, H.; Wang, Y. Research of Desulfurization of Dibenzothiophene with SO3H-Functionalized Morpholine Heteropolyacid Ionic Liquid Catalyst. J. Mol. Struct. 2020, 1220, 128779.
  • Cao, Y.; Wang, H.; Ding, R.; Wang, L.; Liu, Z.; Lv, B. Highly Efficient Oxidative Desulfurization of Dibenzothiophene Using Ni Modified MoO3 Catalyst. Appl. Catal. A Gen. 2020, 589, 117308.
  • Jha, D.; Mubarak, N. M.; Haider, M. B.; Kumar, R.; Balathanigaimani, M. S.; Sahu, J. N. Adsorptive Removal of Dibenzothiophene from Diesel Fuel Using Microwave Synthesized Carbon Nanomaterials. Fuel 2019, 244, 132–139.
  • Wang, C.; Zhong, H.; Wu, W.; Pan, C.; Wei, X.; Zhou, G.; Yang, F. Fe3O4@ C Core–Shell Carbon Hybrid Materials as Magnetically Separable Adsorbents for the Removal of Dibenzothiophene in Fuels. ACS Omega 2019, 4, 1652–1661.
  • Hori, H.; Ogi, K.; Fujita, Y.; Yasuda, Y.; Nagashima, E.; Matsuki, Y.; Nomiya, K. Oxidative Removal of Dibenzothiophene and Related Sulfur Compounds from Fuel Oils under Pressurized Oxygen at Room Temperature with Hydrogen Peroxide and a Phosphorus-Free Catalyst: Sodium Decatungstate. Fuel Process. Technol. 2018, 179, 175–183.
  • Yang, E.; Yao, C.; Liu, Y.; Zhang, C.; Jia, L.; Li, D.; … & Yin, D. Bamboo-Derived Porous Biochar for Efficient Adsorption Removal of Dibenzothiophene from Model Fuel. Fuel 2018, 211, 121–129.
  • Shah, S. S.; Ahmad, I.; Ahmad, W. Adsorptive Desulphurization Study of Liquid Fuels Using Tin (Sn) Impregnated Activated Charcoal. J. Hazard. Mater. 2016, 304, 205–213.
  • Wang, J.; Xu, F.; Xie, W. J.; Mei, Z. J.; Zhang, Q. Z.; Cai, J.; Cai, W. M. The Enhanced Adsorption of Dibenzothiophene onto Cerium/Nickel-Exchanged Zeolite Y. J. Hazard. Mater. 2009, 163, 538–543.
  • Zhang, Z. Y.; Shi, T. B.; Jia, C. Z.; Ji, W. J.; Chen, Y.; He, M. Y. Adsorptive Removal of Aromatic Organosulfur Compounds over the Modified Na-Y Zeolites. Appl. Catal. B: Environ. 2008, 82, 1–10.
  • Fallah, R. N.; Azizian, S. Rapid and Facile Desulphurization of Liquid Fuel by Carbon Nanoparticles Dispersed in Aqueous Phase. Fuel 2012, 95, 93–96.
  • Roy, P.; Srivastava, S. K. Hydrothermal Growth of CuS Nanowires from Cu − Dithiooxamide, a Novel Sin-Gle-Source Precursor. Cryst. Growth Des. 2006, 6, 1921–1926.
  • Wu, L.; Xiao, J.; Wu, Y.; Xian, S.; Miao, G.; Wang, H.; Zhong, L. A Combined Experimental/Computational Study on the Adsorption of Organosulfur Compounds over Metal–Organic Frameworks from Fuels. Langmuir 2014, 30, 1080–1088.
  • Akemi, T.; Sebastian, B.; Annemarie, P. Mid-Infrared Characterization of Thiophene-Based Thin Polymer Films. Displays 2013, 34, 399–405.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.