270
Views
1
CrossRef citations to date
0
Altmetric
Review

A review on magnetic polymeric nanocomposite materials: Emerging applications in biomedical field

ORCID Icon &
Received 21 Sep 2021, Accepted 15 Feb 2023, Published online: 21 Mar 2023

References

  • McCarthy, J. R.; Weissleder, R. Multifunctional Magnetic Nanoparticles for Targeted Imaging and Therapy. Adv. Drug Deliv. Rev. 2008, 60, 1241–1251. DOI: 10.1016/j.addr.2008.03.014.
  • Maleki, H.; Simchi, A.; Imani, M.; Costa, B. F. O. Size-Controlled Synthesis of Superparamagnetic Iron Oxide Nanoparticles and Their Surface Coating by Gold for Biomedical Applications. J. Magn. Magn. Mater. 2012, 324, 3997–4005. DOI: 10.1016/j.jmmm.2012.06.045.
  • Coey, J. M. D. Whither Magnetic Materials? J. Magn. Magn. Mater. 1999, 196–197, 1–7.
  • Shull, R. D.; Bennett, L. H. Nanocomposite Magnetic Materials. Nanostruct Mater. 1992, 1, 83–88. DOI: 10.1016/0965-9773(92)90057-5.
  • Lu, A.-H.; Schmidt, W.; Matoussevitch, N.; Bönnemann, H.; Spliethoff, B.; Tesche, B.; Bill, E.; Kiefer, W.; Schüth, F. Nanoengineering of a Magnetically Separable Hydrogenation. Angew. Chem. Int. Ed. Engl. 2004, 43, 4303–4306.
  • Zhu, J.; Wei, S.; Chen, M.; Gu, H.; Rapole, S. B.; Pallavkar, S.; Ho, T. C.; Hopper, J.; Guo, Z. Magnetic Nanocomposites for Environmental Remediation. Adv. Powder Technol. 2013, 24, 459–467. DOI: 10.1016/j.apt.2012.10.012.
  • Gupta, S.; Ranjit, R.; Mitra, C.; Raychaudhuri, P.; Pinto, R. Enhanced Room-Temperature Magnetoresistance in La0.7 Sr0.3 MnO3-Glass Composites. Appl. Phys. Lett. 2001, 78, 362–364. DOI: 10.1063/1.1342044.
  • Huang, Y.-H.; Chen, X.; Wang, Z.-M.; Liao, C.-S.; Yan, C.-H.; Zhao, H.-W.; Shen, B.-G. Enhanced Magnetoresistance in Granular La2/3Ca1/3MnO3/Polymer Composites. J. Appl. Phys. 2002, 91, 7733–7735. DOI: 10.1063/1.1448302.
  • Lu, A.-H.; Salabas, E. L.; Schuth, F. Magnetic Nanoparticles: synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244. DOI: 10.1002/anie.200602866.
  • Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface Modification of Inorganic Nanoparticles for Development of Organic–Inorganic Nanocomposites—a Review. Prog. Polym. Sci. 2013, 38, 1232–1261. DOI: 10.1016/j.progpolymsci.2013.02.003.
  • Behrens, S.; Appel, I. Magnetic Nanocomposites. Curr. Opin. Biotechnol. 2016, 39, 89–96. DOI: 10.1016/j.copbio.2016.02.005.
  • Pramanik, A. Magnetic Behaviour of Nanomaterials. In Advances in Magnetic Materials: Processing, Properties, and Performance; Zhang, S., Zhao, D., Eds.; Sound Parkway NW, Taylor & Francis, Portland, OR, 2017.
  • Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic Nanoparticles: Preparation, Physical Properties, and Applications in Biomedicine. Nanoscale Res. Lett. 2012, 7, 144(1–144(13. DOI: 10.1186/1556-276X-7-144.
  • Sun, C.; Lee, J. S. H.; Zhang, M. Magnetic Nanoparticles in MR Imaging and Drug Delivery. Adv. Drug Deliv. Rev. 2008, 60, 1252–1265. DOI: 10.1016/j.addr.2008.03.018.
  • Nasir, S.; Saleemi, A. S.; Zahra, Fatima-tuz; Anis-Ur-Rehman, M. Enhancement in Dielectric and Magnetic Properties of Ni–Zn Ferrites Prepared by Sol–Gel Method. J. Alloys Compd. 2013, 572, 170–174. DOI: 10.1016/j.jallcom.2013.03.160.
  • Zhao, F.; Zhang, B.; Feng, L. Preparation and Magnetic Properties of Magnetite Nanoparticles. Mater. Lett. 2012, 68, 112–114. DOI: 10.1016/j.matlet.2011.09.116.
  • Manikandan, A.; Vijaya, J. J.; Kennedy, L. J.; Bououdina, M. Microwave Combustion Synthesis, Structural, Optical and Magnetic Properties of Zn1-xSrxFe2O4 Nanoparticles. Ceram Int. 2013, 39, 5909–5917. DOI: 10.1016/j.ceramint.2013.01.012.
  • Kulkarni, S. A.; Sawadh, P. S.; Palei, P. K.; Kokate, K. K. Effect of Synthesis Route on the Structural, Optical and Magnetic Properties of Fe3O4 Nanoparticles. Ceram Int. 2014, 40, 1945–1949. DOI: 10.1016/j.ceramint.2013.07.103.
  • Hashim, M.; Kumar, S.; Koo, B. H.; Shirsath, S. E.; Mohammed, E. M.; Shah, J.; Kotnala, R. K.; Choi, H. K.; Chung, H.; Kumar, R.; Alimuddin. Structural, Electrical and Magnetic Properties of Co–Cu Ferrite Nanoparticles. J. Alloys Compd. 2012, 518, 11–18. DOI: 10.1016/j.jallcom.2011.12.017.
  • Anand, G. T.; Kennedy, L. J.; Vijaya, J. J. Microwave Combustion Synthesis, Structural, Optical and Magnetic Properties of Zn1- xCoxAl2O4 (0 ≤ x ≤ 0.5) Spinel Nanostructures. J. Alloys Compd. 2013, 581, 558–566. DOI: 10.1016/j.jallcom.2013.07.081.
  • Al-Ghamdi, A. A.; Al-Hazmi, F.; Al-Tuwirqi, R. M.; Alnowaiser, F.; Al- Hartomy, O. A.; El-Tantawyd, F.; Yakuphanoglu, F. Synthesis, Magnetic and Ethanol Gas Sensing Properties of Semiconducting Magnetite Nanoparticles. Solid State Sci. 2013, 19, 111–116. DOI: 10.1016/j.solidstatesciences.2013.02.005.
  • Rajabi, M.; Srinivasan, M.; Mousa, S. Nanobiomaterials in Drug Delivery. In Nanobiomaterials in Drug Delivery: Applications of Nanobiomaterials; Grumezescu, A., Ed.; Elsevier: Amsterdam, 2016.
  • Kalia, S.; Kango, S.; Kumar, A.; Haldorai, Y.; Kumari, B.; Kumar, R. Magnetic Polymer Nanocomposites for Environmental and Biomedical Applications. Colloid Polym. Sci/. 2014, 292, 2025–2052. DOI: 10.1007/s00396-014-3357-y.
  • Sharma, P. K.; Dutta, R. K.; Pandey, A. C. Advances in Multifunctional Magnetic Nanoparticles. Adv. Mater. Lett 2011, 2, 246–263.
  • Diaconu, A.; Chiriac, A. P.; Tudorachi, N.; Nita, L. E.; Neamtu, I. Investigation concerning the Possibilities for the Deposition of Magnetic Nanoparticles onto a Metallic Stent. Rev. Roum. Chim. 2017, 62, 677–685.
  • Romero-Fierro, D.; Bustamante-Torres, M.; Hidalgo-Bonilla, S.; Bucio, E. Silver Composites as Antimicrobial Materials. In Environmental and Microbial Biotechnology; Inamuddin, A. A. M., Ahamed, M. I., Prasad, R., Eds.; Springer: Singapore, 2020; pp 127–147. ISBN 978-981-15-7098-8.
  • Reddy, K.; Adinaraya, P.; Venkata, C.; Shetti, N.; Babu, B.; Ravindranadh, K.; Venkatakrishnan, M.; Reddy, M.; Soni, S.; Naveen, S. Functionalized Magnetic Nanoparticles/Biopolymer Hybrids: Synthesis Methods, Properties and Biomedical Applications. In Methods in Microbiology, 1st ed.; Gurtler, V., Ball, A., Soni, S., Eds.; Elsevier Ltd.: Cham, Switzerland, 2019; pp 227–254. ISBN 978-0-12-814992-8.
  • Arias, L. S.; Pessan, J. P.; Vieira, A. P. M.; Lima, T.; Delbem, A. C. B.; Monteiro, D. R. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics 2018, 7, 46. DOI: 10.3390/antibiotics7020046.
  • Nochehdehi, A. R.; Thomas, S.; Sandri, S.; Afghahi, S. S. S.; Mehdi, H. S. M. Iron Oxide Biomagnetic Nanoparticles (IO-BMNPs); Synthesis, Characterization and Biomedical Application—a Review. J. Nanomed. Nanotechnol. 2017, 8, 423.
  • Ali, A.; Zafar, H.; Zia, M.; Ul Haq, I.; Phull, A. R.; Ali, J. S.; Hussain, A. Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67.
  • Deyang, C.; Yuying, M. Synthesis of Magnetic Oxide Nanoparticles for Biomedical Applications. Glob. J. Nanomed. 2017, 2, 555588–555592.
  • Shah, M., Bhat, M., Davim, J. (Eds.), Nanotechnology Applications for Improvements in Energy Efficiency and Environmental Management; IGI Global: Hershey, 2015; pp 1–40.
  • Hajba, L.; Guttman, A. The Use of Magnetic Nanoparticles in Cancer Theranostics: Toward Handheld Diagnostic Devices. Biotechnol. Adv. 2016, 34, 354–361. DOI: 10.1016/j.biotechadv.2016.02.001.
  • Wang, J.; Sun, J.; Sun, Q.; Chen, Q. One-Step Hydrothermal Process to Prepare Highly Crystalline Fe3O4 Nanoparticles with Improved Magnetic Properties. Mater. Res. Bull. 2003, 38, 1113–1118. DOI: 10.1016/S0025-5408(03)00129-6.
  • Togashi, T.; Naka, T.; Asahina, S.; Sato, K.; Takami, S.; Adschiri, T. Surfactant-Assisted One-Pot Synthesis of Superparamagnetic Magnetite Nanoparticle Clusters with Tunable Cluster Size and Magnetic Field Sensitivity. Dalton Trans 2011, 40, 1073–1078. DOI: 10.1039/c0dt01280g.
  • Wu, W.; He, Q.; Jiang, C. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Res. Lett. 2008, 3, 397–415. DOI: 10.1007/s11671-008-9174-9.
  • Jing, Z. H.; Han, D. Z.; Wu, S. H. Morphological Evolution of Hematite Nanoparticles with and without Surfactant by Hydrothermal Method. Mater. Lett. 2005, 59, 804–807. DOI: 10.1016/j.matlet.2004.11.025.
  • Giri, S.; Samanta, S.; Maji, S.; Ganguli, S.; Bhaumik, A. Magnetic Properties of α-Fe2O3 Nanoparticle Synthesized by a New Hydrothermal Method. J. Magn. Magn. Mater. 2005, 285, 296–302. DOI: 10.1016/j.jmmm.2004.08.007.
  • Jing, Z.; Wu, S. Synthesis and Characterization of Monodisperse Hematite Nanoparticles Modified by Surfactants via Hydrothermal Approach. Mater Lett. 2004, 58, 3637–3640. DOI: 10.1016/j.matlet.2004.07.010.
  • Liu, X.; Qiu, G.; Yan, A.; Wang, Z.; Li, X. Hydrothermal Synthesis and Characterization of α-FeOOH and α-Fe2O3 Uniform Nanocrystallines. J Alloys Compd. 2007, 433, 216–220. DOI: 10.1016/j.jallcom.2006.06.029.
  • Viswanathiah, M. N.; Tareen, J. A. K.; Krishnamurthy, K. V. Low Temperature Hydrothermal Synthesis of Magnetite. J Cryst Growth 1980, 49, 189–192. DOI: 10.1016/0022-0248(80)90081-0.
  • Ni, S.; Wang, X.; Zhou, G.; Yang, F.; Wang, J.; Wang, Q.; He, D. Hydrothermal Synthesis of Fe3O4 Nanoparticles and Its Application in Lithium Ion Battery. Mater. Lett. 2009, 63, 2701–2703. DOI: 10.1016/j.matlet.2009.09.047.
  • Ramesh, R.; Rajalakshmi, M.; Muthamizhchelvan, C.; Ponnusamy, S. Synthesis of Fe3O4 Nanoflowers by One Pot Surfactant Assisted Hydrothermal Method and Its Properties. Mater Lett. 2012, 70, 73–75. DOI: 10.1016/j.matlet.2011.11.085.
  • Fan, R.; Chen, X. H.; Gui, Z.; Liu, L.; Chen, Z. Y. A New Simple Hydrothermal Preparation of Nanocrystalline Magnetite Fe3O4. Mater. Res. Bull. 2001, 36, 497–502. DOI: 10.1016/S0025-5408(01)00527-X.
  • Hu, M.; Ji, R.-P.; Jiang, J.-S. Hydrothermal Synthesis Ofmagnetite Crystals: fromsheet to Pseudo-Octahedron. Mater. Res. Bull. 2010, 45, 1811–1815. DOI: 10.1016/j.materresbull.2010.09.023.
  • Sreeja, V.; Joy, P. A. Microwave–Hydrothermal Synthesis of g- Fe2O3 Nanoparticles and Their Magnetic Properties. Mater. Res. Bull. 2007, 42, 1570–1576. DOI: 10.1016/j.materresbull.2006.11.014.
  • Chen, D.; Xu, R. Hydrothermal Synthesis and Characterization of Nano Crystalline Fe3O4 Powders. Mater. Res. Bull. 1998, 33, 1015–1021. DOI: 10.1016/S0025-5408(98)00073-7.
  • Haw, C. Y.; Mohamed, F.; Chia, C. H.; Radiman, S.; Zakaria, S.; Huang, N. M.; Lim, H. N. Hydrothermal Synthesis of Magnetite Nanoparticles as MRI Contrast Agents. Ceram Int. 2010, 36, 1417–1422. DOI: 10.1016/j.ceramint.2010.02.005.
  • Islam, M. S.; Kurawaki, J.; Kusumoto, Y.; Abdulla-Al-Mamun, M.; Bin Mukhlish, M. Z. Hydrothermal Novel Synthesis of Neck Structured Hyperthermia-Suitable Magnetic (Fe3O4, γ-Fe2O3 and α-Fe2O3) Nanoparticles. J. Sci. Res 2011, 4, 99–107. DOI: 10.3329/jsr.v4i1.8727.
  • Daou, T. J.; Pourroy, G.; Bégin-Colin, S.; Grenèche, J. M.; Ulhaq-Bouillet, C.; Legaré, P.; Bernhardt, P.; Leuvrey, C.; Rogez, G. Hydrothermal Synthesis of Monodisperse Magnetite Nanoparticles. Chem. Mater. 2006, 18, 4399–4404. DOI: 10.1021/cm060805r.
  • Baykal, A.; Kasapoğlu, N.; Köseoğlu, Y.; Toprak, M. S.; Bayrakdar, H. CTAB-Assisted Hydrothermal Synthesis of NiFe2O4 and Its Magnetic Characterization. J Alloys Compd 2008, 464, 514–518. DOI: 10.1016/j.jallcom.2007.10.041.
  • Yu, S. H.; Fujino, T.; Yoshimura, M. Hydrothermal Synthesis of ZnFe2O4 Ultrafine Particles with High Magnetization. J. Magn. Magn. Mater. 2003, 256, 420–424. DOI: 10.1016/S0304-8853(02)00977-0.
  • Liu, Q.; Sun, J.; Long, H.; Sun, X.; Zhong, X.; Xu, Z. Hydrothermal Synthesis of CoFe2O4 Nanoplatelets and Nanoparticles. Mater. Chem. Phys. 2008, 108, 269–273. DOI: 10.1016/j.matchemphys.2007.09.035.
  • Pauline, S.; Amaliya, A. P. Synthesis and Characterization of Highly Monodispersive cofe2o4 Magnetic Nanoparticles by Hydrothermal Chemical Route. Arch. Appl. Sci. Res. 2011, 3, 213–223.
  • Nejati, K.; Zabihi, R. Preparation and Magnetic Properties of Nano Size Nickel Ferrite Particles Using Hydrothermal Method. Chem. Cent. J. 2012, 6, 23(1–23(6.
  • Matijevic, E. Colloid Science of Composite System. In Science of Ceramic Chemical Processing; Hench, L. L., Ulrich, D. R., Ed.; Wiley: New York, 1986; p 463.
  • Tamura, H.; Matijevic, E. Precipitation of Cobalt Ferrites. J. Colloid Interface Sci. 1982, 90, 100–109. DOI: 10.1016/0021-9797(82)90402-7.
  • Morgan, P. E. D. Direct Aqueous Precipitation of Lithium Ferrite and Titanate. J. Am. Ceram. Soc. 1974, 57, 499–500. DOI: 10.1111/j.1151-2916.1974.tb11403.x.
  • Komarneni, S.; Fregeau, E.; Breval, E.; Roy, R. Hydrothermal Preparation of Ultrafine Ferrites and Their Sintering. J. Am. Ceram. Soc. 1988, 71, 26–28.
  • Zhang, X. Y.; Dai, J. Y.; Ong, H. C. Hydrothermal Synthesis and Properties of Diluted Magnetic Semiconductor Zn1-xMnxO Nanowires. OJPC 2011, 1, 6–10. DOI: 10.4236/ojpc.2011.11002.
  • Shaker, S.; Zafarian, S.; Chakra, C. H. S.; Rao, K. V. Preparation and Characterization of Magnetite Nanoparticles by Sol–Gel Method for Water Treatment. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 2969–2973.
  • Khodabakhshi, A.; Amin, M. M.; Mozaffari, M. Synthesis of Magnetite Nanoparticles and Evaluation of Its Efficiency for Arsenic Removal from Simulated Industrial Wastewater. Iran J. Environ. Health Sci. Eng. 2011, 8, 189–200.
  • Tuutijärvi, T.; Vahalaa, R.; Sillanpitää, M.; Chen, G. Maghemite Nanoparticles for as(V) Removal: Desorption Characteristics and Adsorbent Recovery. Environ. Technol. 2012, 33, 1927–1936. DOI: 10.1080/09593330.2011.651162.
  • Hu, J.; Chen, G. H.; Lo, I. M. C. Selective Removal of Heavy Metals from Industrial Wastewater Using Maghemite Nanoparticle: performance and Mechanisms. J. Environ. Eng. 2006, 132, 709–715. DOI: 10.1061/(ASCE)0733-9372(2006)132:7(709).
  • Qi, H.; Yan, B.; Li, C. Preparation and Magnetic Properties of Magnetite Nanoparticles by Sol–Gel Method. IEEE 3rd International Nanoelectronics Conference, 2010; 888–889.
  • Yang, L.; Wang, Z.; Zhai, B.; Shao, Y.; Zhang, Z.; Sun, Y.; Yang, J. Magnetic Properties of Eu3+ Lightly Doped ZnFe2O4 Nanoparticles. Ceram Int. 2013, 39, 8261–8266. DOI: 10.1016/j.ceramint.2013.04.011.
  • Van der Zaag, P. J.; Kolenbrander, M.; Rekveldt, M. T. The Effect of Intra Granular Domain Walls in MgMnZn-Ferrite. J. Appl. Phys. 1998, 83, 6870–6872. DOI: 10.1063/1.367562.
  • Khanna, L.; Verma, N. K. Synthesis, Characterization and in Vitro Cytotoxicity Study of Calcium Ferrite Nanoparticles. Mater. Sci. Semicond Process 2013, 16, 1842–1848. DOI: 10.1016/j.mssp.2013.07.016.
  • Khanna, L.; Verma, N. K. Size-Dependent Magnetic Properties of Calcium Ferrite Nanoparticles. J. Magn. Magn. Mater. 2013, 336, 1–7. DOI: 10.1016/j.jmmm.2013.02.016.
  • Sanpo, N.; Berndt, C. C.; Wen, C.; Wang, J. Transition Metal Substituted Cobalt Ferrite Nanoparticles for Biomedical Applications. Acta Biomater. 2013, 9, 5830–5837. DOI: 10.1016/j.actbio.2012.10.037.
  • Zālīte, I.; Heidemane, G.; Kodols, M.; Grabis, J.; Maiorov, M. The Synthesis, Characterization and Sintering of Nickel and Cobalt Ferrite Nano Powders. Mater. Sci – Medžg 2012, 18, 3–7.
  • Chen, D.-H.; He, X.-R. Synthesis of Nickel Ferrite Nanoparticles by Sol–Gel Method. Mater. Res. Bull. 2001, 36, 1369–1377. DOI: 10.1016/S0025-5408(01)00620-1.
  • Sambasivam, S.; Joseph, D. P.; Jeong, J. H.; Choi, B. C.; Lim, K. T.; Kim, S. S.; Song, T. K. Antiferromagnetic Interactions in Er-Doped SnO2 DMS Nanoparticles. J. Nanopart. Res. 2011, 13, 4623–4630. DOI: 10.1007/s11051-011-0426-8.
  • Mălăeru, T.; Neamţu, J.; Morari, C.; Sbarcea, G. Structural and Magnetic Properties of Nanocrystalline Powders of Ni-Doped ZnO Diluted Magnetic Semiconductors Synthesized by Sol–Gel Method. Rev. Roum Chim. 2012, 57, 857–862.
  • Ahmadipour, M.; Rao, K. V. Preparation of Nano Particle MgO.2FeO.80 by Solution Combustion Method and Their Characterization. Int. J. Eng. Adv. Technol. 2012, 1, 135–137.
  • Kheireddine, E. Magnetic Nanoparticles: From Synthesis to Theranostics. Global J. Nanomed. 2017, 1, 555571–555582.
  • Iwasaki, T.; Kosaka, K.; Mizutani, N.; Watano, S.; Yanagida, T.; Tanaka, H.; Kawai, T. Mechanochemical Preparation of Magnetite Nanoparticles by Coprecipitation. Mater Lett. 2008, 62, 4155–4157. DOI: 10.1016/j.matlet.2008.06.034.
  • Lee, B. Y.; Lee, J.; Bae, C. J.; Park, J.-G.; Noh, H.-J.; Park, J.-H.; Hyeon, T. Large Scale Synthesis of Uniform and Crystalline Magnetite Nanoparticles Using Reverse Micelles as Nanoreactors under Reflux Conditions. Adv. Funct. Mater 2005, 15, 503–509. DOI: 10.1002/adfm.200400187.
  • Mazar′ıo, E.; Herrasti, P.; Morales, M. P.; Men′endez, N. Synthesis and Characterization of CoFe2O4 Ferrite Nanoparticles Obtained by an Electrochemical Method. Nanotechnology 2012, 23, 355708. DOI: 10.1088/0957-4484/23/35/355708.
  • Rishikeshi, S. N.; Joshi, S. S.; Temgire, M. K.; Bellare, J. R. Chain Length Dependence of Polyol Synthesis of Zinc Ferrite Nanoparticles: why is Diethylene Glycol so Different. Dalton Trans. 2013, 42, 5430–5438. DOI: 10.1039/c2dt32026f.
  • Narayanan, T. N.; Shaijumon, M. M.; Ajayan, P. M.; Anantharaman, M. R. Synthesis of High Coercivity Core_Shell Nanorods Based on Nickel and Cobalt and Their Magnetic Properties. Nanosc. Res. Lett. 2009, 5, 164–168.
  • Ivanov, Y. P.; Alfadhel, A.; Alnassar, M.; Perez, J. E.; Vazquez, M.; Chuvilin, A.; Kosel, J. Tunable Magnetic Nanowires for Biomedical and Harsh Environment Applications. Sci. Rep. 2016, 6, 24189–24199. DOI: 10.1038/srep24189.
  • Martı’n, J.; Mijangos, C. Tailored Polymer-Based nanofibers and Nanotubes by Means of Different Infiltration Methods into Alumina Nanopores. Langmuir 2009, 25, 1181–1187. DOI: 10.1021/la803127w.
  • Gu, Q.; Haynie, D. T. Palladium Nanoparticle-Controlled Growth of Magnetic Cobalt Nanowires on DNA Templates. Mater. Lett. 2008, 62, 3047–3050. DOI: 10.1016/j.matlet.2008.01.131.
  • Hou, Y.; Sellmyer, D.; Liu, J.; Liu, J.; Xu, M.; Zhang, J. Wet-Phase Synthesis of Typical Magnetic Nanoparticles with Controlled Morphologies. In Magnetic nanomaterials—fundamentals, synthesis and applications: Fundamentals, synthesis and applications; Hou, Y., Sellmyer, D., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2017.
  • Liu, X.; Zhang, H.; Chang, L.; Yu, B.; Liu, Q.; Wu, J. Human-like Collagen Protein-Coated Magnetic Nanoparticles with High Magnetic Hyperthermia Performance and Improved Biocompatibility. Nanosc. Res. Lett. 2015a, 10, 1–8.
  • Kumar, P.; Singh, R. K.; Rawat, N.; Barman, P. R.; Katyal, S. C.; Jang, H.; Lee, H.-L.; Kumar, R. A Novel Method for Controlled Synthesis of Nanosize Hematite (α-Fe2O3) Thin Film on Liquid-Vapor Interface. J. Nanoparticle Res. 2013, 15, 1532(1–1532(13.
  • Vijayakumar, R.; Koltypin, Y.; Felner, I.; Gedanken, A. Sonochemical Synthesis and Characterization of Pure Nanometersized Fe3O4 Particles. Mater. Sci. Eng. A. 2000, 286, 101–105. DOI: 10.1016/S0921-5093(00)00647-X.
  • Cabrera, L.; Gutierrez, S.; Menendez, N.; Morales, M. P.; Herrasti, P. Magnetite Nanoparticles: electrochemical Synthesis and Characterization. Electrochim. Acta 2008, 53, 3436–3441. DOI: 10.1016/j.electacta.2007.12.006.
  • Bharde, A. A.; Parikh, R. Y.; Baidakova, M.; Jouen, S.; Hannoyer, B.; Enoki, T.; Prasad, B. L.; Shouche, Y. S.; Ogale, S.; Sastry, M. Bacteria-Mediated Precursor-Dependent Biosynthesis of Superparamagnetic Iron Oxide and Iron Sulfide Nanoparticles. Langmuir 2008, 24, 5787–5794. DOI: 10.1021/la704019p.
  • Roh, Y.; Vali, H.; Phelps, T. J.; Moon, J. W. Extracellular Synthesis of Magnetite and Metal-Substituted Magnetite Nanoparticles. J. Nanosci. Nanotechnol. 2006, 6, 3517–3520.
  • Chow, G. M.; Kurihara, L. K.; Kemner, K. M.; Schoen, P. E.; Elam, W. T.; Ervin, A.; Keller, S.; Zhang, Y. D.; Budnick, J.; Ambrose, T. Structural, Morphological, and Magnetic Study of Nanocrystalline Cobalt-Copper Powders Synthesized by the Polyol Process. J. Mater. Res. 1995, 10, 1546–1554. DOI: 10.1557/JMR.1995.1546.
  • Barton, J.; Niemczyk, A.; Czaja, C.; Korach, L.; Sacher- Majewska, B. Polymer Composites, Biocomposites and Nanocomposites. Production, Composition, Properties and Application Fields. Chemik 2014, 68, 280–287.
  • Benjamin, J. S. Dispersion Strengthened Superalloys by Mechanical Alloying. Metallurgical Trans. 1970, 1, 2943–2951. DOI: 10.1007/BF03037835.
  • Jendrzej, S.; Gökce, B.; Epple, M.; Barcikowski, S. How Size Determines the Value of Gold: Economic Aspects of Wet Chemical and Laser-Based Metal Colloid Synthesis. ChemPhysChem. 2017, 18, 1012–1019. DOI: 10.1002/cphc.201601139.
  • Kotov, Y. A. Electric Explosion of Wires as a Method for Preparation of Nanopowders. J. Nanoparticle Res 2003, 5, 539–550. DOI: 10.1023/B:NANO.0000006069.45073.0b.
  • Jiang, W.; Yang, H. C.; Yang, S. Y.; Horng, H. E.; Hung, J. C.; Chen, Y. C.; Hong, C.-Y. Preparation and Properties of Superparamagnetic Nanoparticles with Narrow Size Distribution and Biocompatible. J. Magnetism Magn. Mater. 2004, 283, 210–214. DOI: 10.1016/j.jmmm.2004.05.022.
  • Faraji, M.; Yamini, Y.; Rezaee, M. Magnetic Nanoparticles: Synthesis, Stabilization, Functionalization, Characterization, and Applications. JICS 2010, 7, 1–37. DOI: 10.1007/BF03245856.
  • Vidal-Vidal, J.; Rivas, J.; López-Quintela, M. A. Synthesis of Monodisperse Maghemite Nanoparticles by the Microemulsion Method. Colloids Surf. A: Physicochemical Eng. Aspects 2006, 288, 44–51. DOI: 10.1016/j.colsurfa.2006.04.027.
  • Balan, V.; Popa, M. I.; Verestiuc, L.; Chiriac, A. P.; Neamtu, I.; Nita, L. E.; Nistor, M. T. Functionalized Magnetic Composites Based on Block Copolymers Poly (Succinimide)-Bpoly(Ethyleneglycol) with Potential Applications in Blood Detoxification. Compos. Part B: Eng. 2012, 43, 926–932. DOI: 10.1016/j.compositesb.2011.10.011.
  • Unsoy, G.; Yalcin, S.; Khodadust, R.; Gunduz, G.; Gunduz, U. Synthesis Optimization and Characterization of Chitosan-Coated Iron Oxide Nanoparticles Produced for Biomedical Applications. J. Nanopart Res. 2012, 14, 1–13. DOI: 10.1007/s11051-012-0964-8.
  • Namboodiri, V. V.; Varma, R. S. Microwave-Accelerated Suzuki CrossCoupling Reaction in Polyethylene Glycol (PEG). Green Chem. 2001, 3, 146–148. DOI: 10.1039/b102337n.
  • Sun, Y.-P.; Li, X.-Q.; Zhang, W.-X.; Wang, H. P. A Method for the Preparation of Stable Dispersion of Zero-Valent Iron Nanoparticles. Colloids Surf. A: Physicochemical Eng. Aspects 2007, 308, 60–66. DOI: 10.1016/j.colsurfa.2007.05.029.
  • Wang, Z. H.; Choi, C. J.; Kim, B. K.; Kim, J. C.; Zhang, Z. D. Characterization and Magnetic Properties of Carbon-Coated Cobalt Nanocapsules Synthesized by the Chemical Vapor-Condensation Process. Carbon 2003, 41, 1751–1758. DOI: 10.1016/S0008-6223(03)00127-1.
  • Borysiuk, J.; Grabias, A.; Szczytko, J.; Bystrzejewski, M.; Twardowski, A.; Lange, H. Structure and Magnetic Properties of Carbon Encapsulated Fe Nanoparticles Obtained by Arc Plasma and Combustion Synthesis. Carbon 2008, 46, 1693–1701. DOI: 10.1016/j.carbon.2008.07.011.
  • Wang, C. F.; Wang, J. N.; Sheng, Z. M. Solid-Phase Synthesis of Carbon-Encapsulated Magnetic Nanoparticles. J. Phys. Chem. 2007, C111, 6303–6307. DOI: 10.1021/jp0707283.
  • Komeili, A. Molecular Mechanisms of Compartmentalization and Biomineralization in Magnetotactic Bacteria. FEMS Microbiol. Rev. 2012, 36, 232–255. DOI: 10.1111/j.1574-6976.2011.00315.x.
  • Beji, Z.; Ben, C. T.; Smiri, L. S.; Ammar, S.; Fiévet, F.; Jouini, N.; Grenèche, J. M. Synthesis of Nickel–Zinc Ferrite Nanoparticles in Polyol: morphological, Structural and Magnetic Studies. Phys. Stat. Sol. (A) 2006, 203, 504–512. DOI: 10.1002/pssa.200521454.
  • Raman, N.; Sudharsan, S.; Pothiraj, K. Synthesis and Structural Reactivity of Inorganic-Organic Hybrid Nanocomposites—A Review. J. Saudi Chem. Soc. 2012, 16, 339–352. DOI: 10.1016/j.jscs.2011.01.012.
  • Bochmann, S.; Fernandez-Pacheco, A.; Mačković, M.; Neff, A.; Siefermann, K. R.; Spiecker, E.; Cowburn, R. P.; Bachmann, J. Systematic Tuning of Segmented Magnetic Nanowires into Three-Dimensional Arrays of ‘Bits. RSC Adv. 2017, 7, 37627–37635. DOI: 10.1039/C7RA06734H.
  • Mazuel, F.; Mathieu, S.; Di Corato, R.; Bacri, J.-C.; Meylheuc, T.; Pellegrino, T.; Reffay, M.; Wilhelm, C. Magnetic Nanorods: forced- and Self-Rotation of Magnetic Nanorods Assembly at the Cell Membrane: A Biomagnetic Torsion Pendulum. Small 2017, 13, 1701274–1701282. DOI: 10.1002/smll.201701274.
  • Ye, Y.; Geng, B. Magnetic Nanotubes: Synthesis, Properties, and Applications. Crit. Rev. Solid StateMater. Sci. 2012, 37, 75–93. DOI: 10.1080/10408436.2011.613491.
  • Song, H. M.; Zink, J. I.; Khashab, N. M. Selective Magnetic Evolution of MnxFe1_xO Nanoplates. J. Phys. Chem. C. 2015, 119, 10740–10748. DOI: 10.1021/acs.jpcc.5b01938.
  • Zheng, J.; Cao, Y.; Fu, J.-R.; Chen, C.; Cheng, C.; Yan, R.-W.; Huang, S.-G.; Wang, C.-C. Facile Synthesis of Magnetic Fe3S4 Nanosheets and Their Application in Lithium-Ion Storage. J. Alloys Compounds 2016, 668, 27–32. DOI: 10.1016/j.jallcom.2016.01.189.
  • Weisheit, M.; Fähler, S.; Marty, A.; Souche, Y.; Poinsignon, C.; Givord, D. Electric Field-Induced Modificationof Magnetism in Thin-Film Ferromagnets. Science 2007, 315, 349–351. DOI: 10.1126/science.1136629.
  • Kyeong, S.; Jeong, C.; Kang, H.; Cho, H.-J.; Park, S.-J.; Yang, J.-K.; Kim, S.; Kim, H.-M.; Jun, B.-H.; Lee, Y.-S. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation. PLoS One 2015, 10, e0143727. DOI: 10.1371/journal.pone.0143727.
  • Wang, C.; Xu, C.; Zeng, H.; Sun, S. Recent Progress in Syntheses and Applications of Dumbbell-like Nanoparticles. Adv. Mater. 2009, 21, 3045–3052. DOI: 10.1002/adma.200900320.
  • Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem. Rev. 2010, 110, 389–458. DOI: 10.1021/cr900137k.
  • Mezger, T. R. The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers; Vincentz Network: Hannover. 2006.
  • Reiss, G.; Hütten, A. Magnetic Nanoparticles: Applications beyond Data Storage. Nature Mater. 2005, 4, 725–726. DOI: 10.1038/nmat1494.
  • Dobson, J. Magnetic Micro- and Nanoparticle-Based Targeting for Drug and Gene Delivery. Nanomedicine 2006, 1, 31–37. DOI: 10.2217/17435889.1.1.31.
  • Khan, W.; Hamadneh, N.; Khan, W. Polymer Nanocomposites—Synthesis Techniques, Classification and Properties. In Science and Applications of Tailored Nanostructures; Di Sia, P., Ed.; One Central Press: Italy, 2017.
  • Th’evenot, J.; Oliveira, H.; Sandre, O.; Lecommandoux, S. Magnetic Responsive Polymer Composite Materials. Chem. Soc. Rev. 2013, 42, 7099–7116. DOI: 10.1039/c3cs60058k.
  • Talegaonkar, S.; Negi, L.; Sharma, H.; Zafar, S. Smart Polymers in Targeted Drug Delivery. In Handbook of Sustainable Polymers; Thakur, V., Thakur, M., Eds.; Pan Stanford: Singapore, 2016.
  • Simionescu, B.; Ivanov, D. Natural and Synthetic Polymers for Designing Composite Materials. In Handbook of Bioceramics and Biocomposites; Antoniac, I., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp 233–286.
  • Khalkhali, M.; Sadighian, S.; Rostamizadeh, K.; Khoeini, F.; Naghibi, M.; Bayat, N.; Habibizadeh, M.; Hamidi, M. Synthesis and Characterization of Dextran Coated Magnetite Nanoparticles for Diagnostics and Therapy. Bioimpacts 2017, 5, 141–150. DOI: 10.15171/bi.2015.19.
  • Bar-Shir, A.; Avram, L.; Yariv-Shoushan, S.; Anaby, D.; Cohen, S.; Segev-Amzaleg, N.; Frenkel, D.; Sadan, O.; Offen, D.; Cohen, Y. Alginatecoated Magnetic Nanoparticles for Noninvasive MRI of Extracellular Calcium. NMR Biomed. 2014, 27, 774–783. DOI: 10.1002/nbm.3117.
  • Parikh, N.; Parekh, K. Technique to Optimize Magnetic Response of Gelatin Coated Magnetic Nanoparticles. J. Mater. Sci. Mater. Med. 2015, 26, 202. DOI: 10.1007/s10856-015-5534-z.
  • Assa, F.; Jafarizadeh-Malmiri, H.; Ajamein, H.; Vaghari, H.; Anarjan, N.; Ahmadi, O.; Berenjian, A. Chitosan Magnetic Nanoparticles for Drug Delivery Systems. Crit. Rev. Biotechnol. 2017, 37, 492–509. DOI: 10.1080/07388551.2016.1185389.
  • Wilson, J. L.; Poddar, P.; Frey, N. A.; Srikanth, H.; Mohomed, K.; Harmon, J. P.; Kotha, S.; Wachsmuth, J. Synthesis and Magnetic Properties of Polymer Nanocomposites with Embedded Iron Nanoparticles. J Appl. Phys. 2004, 95, 1439–1443. DOI: 10.1063/1.1637705.
  • Safdarian, M.; Hashemi, P.; Adeli, M. One-Step Synthesis of Agarose Coated Magnetic Nanoparticles and Their Application in the Solid Phase Extraction of Pd(II) Using a New Magnetic Field Agitation Device. Anal. Chim. Acta. 2013, 774, 44–50. DOI: 10.1016/j.aca.2013.03.006.
  • Guo, X.; Xue, L.; Lv, W.; Liu, Q.; Li, R.; Li, Z.; Wang, J. Facile Synthesis of Magnetic Carboxymethylcellulose Nanocarriers for pH-Responsive Delivery of Doxorubicin. New J. Chem. 2015, 39, 7340–7347. DOI: 10.1039/C5NJ01190F.
  • Mitsumata, T.; Honda, A.; Kanazawa, H.; Kawai, M. Magnetically Tunable Elasticity for Magnetic Hydrogels Consisting of Carrageenan and Carbonyl Iron Particles. J. Phys. Chem. B. 2012, 116, 12341–12348. DOI: 10.1021/jp3049372.
  • Tóth, I. Y.; Ill’es, E.; Szekeres, M.; Tomb’acz, E. Preparation and Characterization of Chondroitin-Sulfate- A-Coated Magnetite Nanoparticles for Biomedical Applications. J. Magn. Magn. Mater. 2015, 380, 168–174. DOI: 10.1016/j.jmmm.2014.09.080.
  • Santiago-Rodríguez, L.; Lafontaine, M. M.; Castro, C.; Méndez-Vega, J.; Latorre-Esteves, M.; Juan, E. J.; Mora, E.; Torres-Lugo, M.; Rinaldi, C. Synthesis, Stability, Cellular Uptake, and Blood Circulation Time of Carboxymethyl-Inulin Coated Magnetic Nanoparticles. J. Mater. Chem. B 2013, 1, 2807–2817. DOI: 10.1039/c3tb20256a.
  • Saranya, D.; Rajan, R.; Suganthan, V.; Murugeswari, A.; Nambi Raj, N. Synthesis and Characterization of Pullulan Acetate Coated Magnetic Nanoparticle for Hyperthermic Therapy. Proc. Mater. Sci. 2015, 10, 2–9. DOI: 10.1016/j.mspro.2015.06.017.
  • Chen, Y.; Wang, Y.; Liu, X.; Lu, M.; Cao, J.; Wang, T. LSMO Nanoparticles Coated by Hyaluronic Acid for Magnetic Hyperthermia. Nanosc. Res. Lett. 2016, 11, 538.
  • Namanga, J.; Foba, J.; Ndinteh, D. T.; Yufanyi, D. M.; Krause, R. W. M. Synthesis and Magnetic Properties of a Superparamagnetic Nanocomposite “Pectin-Magnetite Nanocomposite. J. Nanomater. 2013, 2013, 1–8. DOI: 10.1155/2013/137275.
  • Mittal, H.; Parashar, V.; Mishra, S. B.; Mishra, A. K. Fe3O4 MNPs and Gum Xanthan Based Hydrogels Nanocomposites for the Efficient Capture of Malachite Green from Aqueous Solution. Chem. Eng. J. 2014, 255, 471–482. DOI: 10.1016/j.cej.2014.04.098.
  • Ziv-Polat, O.; Skaat, H.; Shahar, A.; Margel, S. Novel Magnetic Fibrin Hydrogel Scaffolds Containing Thrombin and Growth Factors Conjugated Iron Oxide Nanoparticles for Tissue Engineering. Int. J. Nanomed. 2012, 7, 1259–1274.
  • Tietze, R.; Zaloga, J.; Unterweger, H.; Lyer, S.; Friedrich, R. P.; Janko, C.; Pöttler, M.; Dürr, S.; Alexiou, C. Magnetic Nanoparticlebased Drug Delivery for Cancer Therapy. Biochem. Biophys. Res. Commun. 2015, 468, 463–470.
  • Yallapu, M. M.; Foy, S. P.; Jain, T. K.; Labhasetwar, V. PEG-Functionalized Magnetic Nanoparticles for Drug Delivery and Magnetic Resonance Imaging Applications. Pharm. Res. 2010, 27, 2283–2295. DOI: 10.1007/s11095-010-0260-1.
  • Zhao, H.; Saatchi, K.; Häfeli, U. O. Preparation of Biodegradable Magnetic Microspheres with Poly (Lactic Acid)-Coated Magnetite. J. Magn. Magn. Mater. 2009, 321, 1356–1363. DOI: 10.1016/j.jmmm.2009.02.038.
  • Tang, K. S.; Hashmi, S. M.; Shapiro, E. M. The Effect of Cryoprotection on the Use of PLGA Encapsulated Iron Oxide Nanoparticles for Magnetic Cell Labeling. Nanotechnology 2013, 24, 125101–125110. DOI: 10.1088/0957-4484/24/12/125101.
  • Balmayor, E.; Pashkuleva, I.; Frias, A.; Azevedo, H.; Reis, R. Synthesis and Functionalization of Super Paramagneticpoly-Caprolactone Microparticles for the Selective Isolation of Subpopulations of Human Adipose-Derived Stem Cells. J. R. Soc. Interface 2011, 8, 896–908. DOI: 10.1098/rsif.2010.0531.
  • Arabi, S.; Javar, A. H.; Khoobi, M. Preparation and Characterization of Modified Polyethyleneimine Magnetic Nanoparticles for Cancer Drug Delivery. J. Nanomater. 2016, 2016, 1–6. DOI: 10.1155/2016/2806407.
  • Rose, P. A.; Praseetha, P. K.; Bhagat, M.; Alexander, P.; Abdeen, S.; Chavali, M. Drug Embedded PVP Coated Magnetic Nanoparticles for Targeted Killing of Breast Cancer Cells. Technol. Cancer Res. Treat 2013, 12, 463–472. DOI: 10.7785/tcrt.2012.500333.
  • Nadeem, M.; Ahmad, M.; Akhtar, M. S.; Shaari, A.; Riaz, S.; Naseem, S.; Masood, M.; Saeed, M. A. Magnetic Properties of Polyvinyl Alcohol and Doxorubicine Loaded Iron Oxide Nanoparticles for Anticancer Drug Delivery Applications. PLoS One 2016, 11, e0158084. DOI: 10.1371/journal.pone.0158084.
  • Arias, J. L.; Gallardo, V.; Ruiz, M.; Delgado, A. ’ Magnetite/Poly(Alkylcyanoacrylate) (Core/Shell) Nanoparticles as 5-Fluorouracil Delivery Systems for Active Targeting. Eur. J. Pharm. Biopharm. 2008, 69, 54–63. DOI: 10.1016/j.ejpb.2007.11.002.
  • Rovers, S. A.; Dietz, C.; Poel, A.; Hoogenboom, R.; Kemmere, M.; Keurentjes, J. T. F. Influence of Distribution on the Heating of Superparamagnetic Iron Oxide Nanoparticles in Poly (Methylmethacrylate) in an Alternating Magnetic Field. J. Phys. Chem. C. 2010, 114, 8144–8149. DOI: 10.1021/jp911944y.
  • Asgharinezhad, A. A.; Karami, S.; Ebrahimzadeh, H.; Shekari, N.; Jalilian, N. Polypyrrole/Magnetic Nanoparticles Composite as an Efficient Sorbent for Dispersive Micro-Solid-Phase Extraction of Antidepressant Drugs from Biological Fluids. Int. J. Pharm. 2015, 494, 102–112. DOI: 10.1016/j.ijpharm.2015.08.001.
  • Liu, X. L.; Yang, Y.; Wu, J. P.; Zhang, Y. F.; Fan, H. M.; Ding, J. Novel Magnetic Vortex Nanorings/Nanodiscs: Synthesis and Theranostic Applications. Chinese Phys. B. 2015b, 24, 127505. DOI: 10.1088/1674-1056/24/12/127505.
  • Srikanth, H.; Poddar, P.; Gass, J. Materials Processing and Tunable Magnetism in Polymer Nanocomposites. In Processing and Fabrication of Advanced Materials XIII; Stallion Press: Singapore, 2004; Vol. 1, pp 367–375.
  • Kong, I.; Ahmad, S. H.; Abdullah, M. H.; Yusoff, A. N. The Effect of Temperature Onmagnetic Behavior of Magnetite Nanoparticles and Its Nanocomposites. AIP Conf Proc. 2009, 1136, 830–834.
  • Shannigrahi, S. R.; Pramoda, K. P.; Nugroho, F. A. A. Synthesis and Characterizations of Microwave Sintered Ferrite Powders and Their Composite Films for Practical Applications. J. Magn. Magn. Mater. 2012, 324, 140–145. DOI: 10.1016/j.jmmm.2011.07.050.
  • Giri, A. K. Magnetic Properties of Iron-Polyethylene Nanocomposites Prepared by High Energy Ball Milling. J. Appl. Phys. 1997, 81, 1348–1350. DOI: 10.1063/1.363870.
  • Raju, P.; Murthy, S. R. Preparation and Characterization of Ni_Zn Ferrite 1 Polymer Nanocomposites Using Mechanical Milling Method. Appl. Nanosci. 2013, 3, 469–475. DOI: 10.1007/s13204-012-0163-z.
  • Shirinova, H.; Di Palma, L.; Sarasini, F.; Tirillo, ′J.; Ramazanov, M. A.; Hajiyeva, F. Synthesis and Characterization of Magnetic Nanocomposites for Environmental Remediation. Chem. Eng. Trans. 2016, 47, 103–108.
  • Guo, Q.; Ghadiri, R.; Weigel, T.; Aumann, A.; Gurevich, E.; Esen, C.; Medenbach, O.; Cheng, W.; Chichkov, B.; Ostendorf, A. Comparison of in Situ and Ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites. Polymers 2014, 6, 2037–2050. DOI: 10.3390/polym6072037.
  • Longmire, M.; Choyke, P. L.; Kobayashi, H. Clearance Properties of Nano-Sized Particles and Molecules as Imaging Agents: considerations and Caveats. Nanomedicine (Lond) 2008, 3, 703–717. DOI: 10.2217/17435889.3.5.703.
  • Lee, Y.; Lee, H.; Messersmith, P. B.; Park, T. G. A Bioinspired Polymeric Template for 1D Assembly of Metallic Nanoparticles, Semiconductor Quantum Dots, and Magnetic Nanoparticles. Macromol. Rapid Commun. 2010, 31, 2109–2114. DOI: 10.1002/marc.201000423.
  • Watt, J.; Collins, A. M.; Vreeland, E. C.; Montano, G. A.; Huber, D. L. Magnetic Nanocomposites and Their Incorporation into Higher Order Biosynthetic Functional Architectures. ACS Omega 2018, 3, 503–508. DOI: 10.1021/acsomega.7b02031.
  • Goubault, C.; Leal-Calderon, F.; Viovy, J. L.; Bibette, J. Self- Assembled Magnetic Nanowires Made Irreversible by Polymer Bridging. Langmuir 2005, 21, 3725–3729. DOI: 10.1021/la0471442.
  • He, K.; Xu, C. Y.; Zhen, L.; Shao, W. Z. Hydrothermal Synthesis and Characterization of Single-Crystalline Fe3O4 Nanowires with High Aspect Ratio and Uniformity. Mater. Lett. 2007, 61, 3159–3162. DOI: 10.1016/j.matlet.2006.11.023.
  • Huang, Z. B.; Zhang, Y. Q.; Tang, F. Q. Solution-Phase Synthesis of Single-Crystalline Magnetic Nanowires with High Aspect Ratio and Uniformity. Chem. Commun. 2005, 342–344. DOI: 10.1039/b410463c.
  • Huang, S.; Xu, J.; Zheng, J.; Zhu, F.; Xie, L.; Ouyang, G. Synthesis and Application of Magnetic Molecularly Imprinted Polymers in Sample Preparation. Anal. Bioanal. Chem. 2018, 410, 3991–4014. DOI: 10.1007/s00216-018-1013-y.
  • Sohn, B. H.; Choi, J. M.; Yoo, S. I.; Yun, S. H.; Zin, W. C.; Jung, J. C.; Kanehara, M.; Hirata, T.; Teranishi, T. Directed Self-Assembly of Two Kinds of Nanoparticles Utilizing Monolayer Films of Diblock Copolymer Micelles. J. Am. Chem. Soc. 2003, 125, 6368–6369. DOI: 10.1021/ja035069w.
  • Weeber, R.; Hermes, M.; Schmidt, A. M.; Holm, C. PolymerArchitecture of Magnetic Gels: A Review. J. Phys.: Condens. Matter. 2018, 30, 063002.
  • Hickey, R. J.; Koski, J.; Meng, X.; Riggleman, R. A.; Zhang, P.; Park, S. J. Size-Controlled Self-Assembly of Superparamagnetic Polymersomes. ACS Nano 2014, 8, 495–502. DOI: 10.1021/nn405012h.
  • Ma, S.; Hu, Y.; Wang, R. Amphiphilic Block Copolymer Aided Design of Hybrid Assemblies of Nanoparticles: Nanowire, Nanoring, and Nanocluster. Macromolecules 2016, 49, 3535–3541. DOI: 10.1021/acs.macromol.5b02778.
  • Bao, Y.; Wen, T.; Samia, A. C. S.; Khandhar, A.; Krishnan, K. M. Magnetic Nanoparticles: Material Engineering and Emerging Applications in Lithography and Biomedicine. J. Mater. Sci. 2016, 51, 513–553. DOI: 10.1007/s10853-015-9324-2.
  • Kim, H.; Park, Y.; Stevens, M. M.; Kwon, W.; Hahn, S. K. Multifunctional Hyaluronate - Nanoparticle Hybrid Systems for Diagnostic, Therapeutic and Theranostic Applications. J. Controlled Release 2019, 303, 55–66.
  • Lu, Y.; Dong, L.; Zhang, L. C.; Su, Y. D.; Yu, S. H. Biogenic and Biomimetic Magnetic Nanosized Assemblies. Nano Today 2012, 7, 297–315. DOI: 10.1016/j.nantod.2012.06.011.
  • Kim, J.; Tran, V. T.; Oh, S.; Kim, C. S.; Hong, J. C.; Kim, S.; Joo, Y. S.; Mun, S.; Kim, M. H.; Jung, J. W.; et al. Scalable Solvothermal Synthesis of SuperparamagneticFe3O4 Nanoclusters for Bioseparation and Theragnostic Probes. ACS Appl. Mater. Interfaces 2018, 10, 41935–41946. DOI: 10.1021/acsami.8b14156.
  • Geng, Y.; Dalhaimer, P.; Cai, S. S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Shape Effects of Filaments versus Spherical Particles in Flow and Drug Delivery. Nature Nanotech. 2007, 2, 249–255. DOI: 10.1038/nnano.2007.70.
  • Zhang, K.; Fang, H. F.; Chen, Z. Y.; Taylor, J. S. A.; Wooley, K. L. Shape Effects of Nanoparticles Conjugated with Cell-Penetrating Peptides (HIV Tat PTD) on CHO Cell Iptake. Bioconjugate Chem. 2008, 19, 1880–1887. DOI: 10.1021/bc800160b.
  • Zhang, K.; Rossin, R.; Hagooly, A.; Chen, Z. Y.; Welch, M. J.; Wooley, K. L. Folate-Mediated Cell Uptake of Shell-Crosslinked Spheres and Cylinders. J. Polym. Sci. A Polym. Chem. 2008, 46, 7578–7583. DOI: 10.1002/pola.23020.
  • Revia, R. A.; Zhang, M. Magnetite Nanoparticles for Cancer Diagnosis, Treatment, and Treatment Monitoring: Recent Advances. Mater. Today (Kidlington) 2016, 19, 157–168. DOI: 10.1016/j.mattod.2015.08.022.
  • Anselmo, A. C.; Mitragotri, S. Nanoparticles in the Clinic. Bioeng. Translat. Med. 2016, 1, 10–29. DOI: 10.1002/btm2.10003.
  • Valdiglesias, V.; Fernández-Bertólez, N.; Kiliç, G.; Costa, C.; Costa, S.; Fraga, S.; Bessa, M. J.; Pásaro, E.; Teixeira, J. P.; Laffon, B. Are Iron Oxide Nanoparticles Safe? Current Knowledge and Future Perspectives. J. Trace Elem. Med. Biol. 2016, 38, 53–63. DOI: 10.1016/j.jtemb.2016.03.017.
  • Krasia-Christoforou, T. Organic_Inorganic Polymer Hybrids: synthetic Strategies and Applications. In Hybrid and Hierarchical Composite Materials; Kim, C., Randow, C., Sano, T., Eds.; Springer International Publishing, Switzerland, 2015.
  • Chiu-Lam, A.; Rinaldi, C. Nanoscale Thermal Phenomena in the Vicinity of Magnetic Nanoparticles in Alternating Magnetic Fields. Adv. Funct. Mater. 2016, 26, 3933–3941. DOI: 10.1002/adfm.201505256.
  • Weaver, J. B.; Kuehlert, E. Measurement of Magnetic Nanoparticle Relaxation Time. Med. Phys. 2012, 39, 2765–2770. DOI: 10.1118/1.3701775.
  • Enpuku, K.; Tanaka, T.; Matsuda, T.; Dang, F.; Enomoto, N.; Hojo, J.; Yoshinaga, K.; Ludwig, F.; Ghaffari, F.; Heim, E.; Schilling, M. Properties of Magnetic Nanoparticles in the Brownian Relaxation Range for Liquid Phase Immunoassays. J. Appl. Phys. 2007, 102, 054901. DOI: 10.1063/1.2775882.
  • Tanaka, S.; Kaneti, Y. V.; Septiani, N. L. W.; Dou, S. X.; Bando, Y.; Hossain, M. S. A.; Kim, J.; Yamauchi, Y. A Review on Iron Oxide-Based Nanoarchitectures for Biomedical, Energy Storage, and Environmental Applications. Small Methods 2019, 3, 1800512. DOI: 10.1002/smtd.201800512.
  • Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic Iron Oxide Nanoparticles(SPIONs): Development, Surface Modification and Applications in Chemotherapy. Adv. Drug Deliv. Rev. 2011, 63, 24–46. DOI: 10.1016/j.addr.2010.05.006.
  • Mangaiyarkarasi, R.; Chinnathambi, S.; Karthikeyan, S.; Aruna, P.; Gane-San, S. Paclitaxel Conjugated Fe3O4@LaF3:Ce3+,Tb3 + Nanoparticles Asbifunctional Targeting Carriers for Cancer Theranostics Application. J. Magnetism and Magn. Mater. 2016, 399, 207–215. DOI: 10.1016/j.jmmm.2015.09.084.
  • An, J.; Zhang, X.; Guo, Q.; Zhao, Y.; Wu, Z.; Li, C. Glycopolymer Modifiedmagnetic Mesoporous Silica Nanoparticles for MR Imaging and Targeted Drugdelivery. Colloids Surf, A 2015, 482, 98–108. DOI: 10.1016/j.colsurfa.2015.04.035.
  • Anirudhan, T. S.; Divya, P. L.; Nima, J. Synthesis and Characterization Ofsilane Coated Magnetic Nanoparticles/Glycidylmethacrylate-Grafted-Maleatedcyclodextrin Maleatedcyclodextrin Composite Hydrogel as a Drug Carrier for the Controlled Deliveryof 5-Fluorouracil. Mater. Sci. Engin. 2015, C, 55, 471–481.
  • Elbialy, N. S.; Fathy, M. M.; Khalil, W. M. Doxorubicin Loaded Magneticgold Nanoparticles for in Vivo Targeted Drug Delivery. Int. J. Pharmaceutics 2015, 490, 190–199. DOI: 10.1016/j.ijpharm.2015.05.032.
  • Nazli, C.; Demirer, G. S.; Yar, Y.; Acar, H. Y.; Kizilel, S. Targeted Delivery Ofdoxorubicin into Tumor Cells via MMP-Sensitive PEG Hydrogel-Coated Magneticiron Oxide Nanoparticles (MIONPs). Colloids Surf, B 2014, 122, 674–683. DOI: 10.1016/j.colsurfb.2014.07.049.
  • Chen, Z.; Zhang, L.; Song, Y.; He, J.; Wu, L.; Zhao, C.; Xiao, Y.; Li, W.; Cai, B.; Cheng, H.; Li, W. Hierarchical Targetedhepatocyte Mitochondrial Multifunctional Chitosan Nanoparticles for Anticancerdrug Delivery. Biomaterials 2015, 52, 240–250. DOI: 10.1016/j.biomaterials.2015.02.001.
  • Patwardhan, S. V.; Mukherjee, N.; Steinitz-Kannan, M.; Clarson, S. J. Bioinspired Synthesis of New Silica structuresElectronic Supplementary Information (ESI) Available: Methods, EDS for Specimens in Fig. 2c and Fig. 2b; Additional SEM and TEM of Silica. See http://www.rsc.org/Suppdata/cc/b3/b302056h/. Chem. Commun. 2003, 1122–1123. DOI: 10.1039/b302056h.
  • Sugawara, A.; Kato, T. Aragonite CaCO3 Thin-Film Formation by Cooperation of Mg2+ and Organic Polymer Matrices. Chem. Commun 2000, 487–488. DOI: 10.1039/a909566g.
  • Yokoyama, A.; Gelinsky, M.; Kawasaki, T. Biomimetic Porous Scaffolds with High Elasticity Made from Mineralized Collagen - an Animal Study. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 75, 464–472.
  • Darder, M.; Colilla, M.; Ruiz-Hitzky, E. Biopolymer-Clay Nanocomposites Based on Chitosan Intercalated in Montmorillonite. Chem. Mater. 2003, 15, 3774–3780. DOI: 10.1021/cm0343047.
  • Gómez-Avilés, A.; Darder, M.; Aranda, P.; Ruiz-Hitzky, E. Functionalized Carbon-Silicates from Caramel-Sepiolite Nanocomposites. Angew. Chem. Int. Ed 2007, 46, 923–925. DOI: 10.1002/anie.200603802.
  • Paul, M.-A.; Delcourt, C.; Alexandre, M.; Degée, P.; Monteverde, F.; Rulmont, A.; Dubois, P. (Plasticized) Polylactide/(Organo-)Clay Nanocomposites by in Situ Intercalative Polymerization. Macromol. Chem. Phys. 2005, 206, 484–498. DOI: 10.1002/macp.200400324.
  • Choy, J. H.; Kwak, S. Y.; Jeong, Y. J.; Park, J. S. Inorganic Layered Double Hydroxides as Nonviral Vectors. Angew. Chem. Int. Ed. 2000, 39, 4041–4045. DOI: 10.1002/1521-3773(20001117)39:22<4041::AID-ANIE4041>3.0.CO;2-C.
  • Ayyanaar, S.; Balachandran, C.; Bhaskar, R. C.; Kesavan, M. P.; Aoki, S.; Raja, R. P.; Rajesh, J.; Webster, T. J.; Rajagopal, G. ROS-Responsive Chitosan Coated Magnetic Iron Oxide Nanoparticles as Potential Vehicles for Targeted Drug Delivery in Cancer Therapy. IJN 2020, 15, 3333–3346. DOI: 10.2147/IJN.S249240.
  • Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. Applications of Magnetic Nanoparticles in Biomedicine. J. Phys. D Appl. Phys. 2003, 36, 167–181.
  • Dobson, J. Magnetic Nanoparticles for Drug Delivery. Drug Dev. Res. 2006, 67, 55–60. DOI: 10.1002/ddr.20067.
  • Duran, J. D. G.; Arias, J. L.; Gallardo, V.; Delgado, A. V. Magnetic Colloids as Drug Vehicles. J. Pharm. Sci. 2008, 97, 2948–2983. DOI: 10.1002/jps.21249.
  • McCarthy, J. R.; Kelly, K. A.; Sun, E. Y.; Weissleder, R. Targeted Delivery of Multifunctional Magnetic Nanoparticles. Nanomedicine 2007, 2, 153–167. DOI: 10.2217/17435889.2.2.153.
  • Cheon, S. J. Artificially Engineered Magnetic Nanoparticles for Ultra-Sensitive Molecular Imaging. Nat. Med. 2007, 13, 95–99.
  • Goya, G. F.; Grazu, V.; Ibarra, M. Magnetic Nanoparticles for Cancer Therapy. CNANO 2008, 4, 1–16. DOI: 10.2174/157341308783591861.
  • Jeon, H.; Kim, J.; Lee, Y. M.; Kim, J.; Choi, H. W.; Lee, J.; Park, H.; Kang, Y.; Kim, I.-S.; Lee, B.-H.; et al. Poly-Paclitaxel/cyclodextrin-SPION Nano-Assembly for Magnetically Guided Drug Delivery System. J. Control Release 2016, 231, 68–76. DOI: 10.1016/j.jconrel.2016.01.006.
  • Bardajee, G. R.; Hooshyar, Z.; Rastgo, F. Kappa Carrageenan-g-Poly (Acrylic Acid)/SPION Nanocomposite as a Novel Stimuli-Sensitive Drug Delivery System. Colloid Polym. Sci. 2013, 291, 2791–2803. DOI: 10.1007/s00396-013-3018-6.
  • Hałupka-Bryl, M.; Asai, K.; Thangavel, S.; Bednarowicz, M.; Krzyminiewski, R.; Nagasaki, Y. Synthesis and in Vitro and in Vivo Evaluations of Poly(Ethylene Glycol)-Block-Poly(4-Vinylbenzylphosphonate) Magnetic Nanoparticles Containing Doxorubicin as a Potential Targeted Drug Delivery System. Colloids Surf. B: Biointerf 2014, 118, 140–147. DOI: 10.1016/j.colsurfb.2014.03.025.
  • Bajpai, A. K.; Gupta, R. Magnetically Mediated Release of Ciprofloxacin from Polyvinyl Alcohol Based Superparamagnetic Nanocomposites. J Mater Sci: Mater Med. 2011, 22, 357–369. DOI: 10.1007/s10856-010-4214-2.
  • Sonvico, F.; Mornet, S.; Vasseur, S.; Dubernet, C.; Jaillard, D.; Degrouard, J.; Hoebeke, J.; Duguet, E.; Colombo, P.; Couvreur, P. Folate-Conjugated Iron Oxide Nanoparticles for Solid Tumor Targeting as Potential Specific Magnetic Hyperthermia Mediators: Synthesis, Physicochemical Characterization, and in Vitro Experiment. Bioconjugate Chem. 2005, 16, 1181–1188. DOI: 10.1021/bc050050z.
  • Zhang, J.; Rana, S.; Srivastava, R. S.; Misra, R. D. K. On the Chemical Synthesis and Drug Delivery Response of Folate Receptor-Activated, Polyethylene Glycol–Functionalized Magnetite Nanoparticles. Acta Biomater 2008, 4, 40–48. DOI: 10.1016/j.actbio.2007.06.006.
  • Ası’n, L.; Ibarra, M. R.; Tres, A.; Goya, G. F. Controlled Cell Death by Magnetic Hyperthermia: effects of Exposure Time, Field Amplitude, and Nanoparticle Concentration. Pharm. Res. 2012, 29, 1319–1327. DOI: 10.1007/s11095-012-0710-z.
  • Wu, P.-C.; Wang, W.-S.; Huang, Y.-T.; Sheu, H.-S.; Lo, Y.-W.; Tsai, T.-L.; Shieh, D.-B.; Yeh, C.-S. Porous Iron Oxide-Based Nanorods Developed as Delivery Nanocapsules. Chem. Eur. J. 2007, 13, 3878–3885. DOI: 10.1002/chem.200601372.
  • Gupta, A. K.; Gupta, M. Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications. Biomaterials 2005, 26, 3995–4021. DOI: 10.1016/j.biomaterials.2004.10.012.
  • Groman, E. V.; Bouchard, J. C.; Reinhardt, C. P.; Vaccaro, D. E. Ultra Small Mixed Ferrite Colloids as Multidimensional Magnetic Resonance Imaging, Cell Labelling, and Cell Sorting Agents. Bioconjugate Chem. 2007, 18, 1763–1771. DOI: 10.1021/bc070024w.
  • Schellenberger, E. A.; Reynolds, F.; Weissleder, R.; Josephson, L. Surface Functionalized Nanoparticle Library Yields Probes for Apoptotic Cells. Chem. Biol. Chem. 2004, 5, 275–279. DOI: 10.1002/cbic.200300713.
  • Dobson, J. Gene Therapy Progress and Prospects: magnetic Nanoparticle-Based Gene Delivery. Gene Ther. 2006, 13, 283–287. DOI: 10.1038/sj.gt.3302720.
  • Gobbo, O. L.; Sjaastad, K.; Radomski, M. W.; Volkov, Y.; Prina-Mello, A. Magnetic Nanoparticles in Cancer Theranostics. Theranostics 2015, 5, 1249–1263. DOI: 10.7150/thno.11544.
  • Li, L. C.; Keate, A. C. Targeting Cancer Gene Therapy with Magnetic Nanoparticles. Oncotarget 2012, 3, 365–370.
  • Kumar, A.; Jena, P. K.; Behera, S.; Lockey, R. F.; Mohapatra, S.; Mohapatra, S. Multifunctional Magnetic Nanoparticles for Targeted Delivery. Nanomed.: Nanotechnol. Biol. Med. 2010, 6, 64–69. DOI: 10.1016/j.nano.2009.04.002.
  • Scherer, F.; Anton, M.; Schillinger, U.; Henke, J.; Bergemann, C.; Krüger, A.; Gänsbacher, B.; Plank, C. Magnetofection: enhancing and Targeting Gene Delivery by Magnetic Force in Vitro and in Vivo. Gene Ther. 2002, 9, 102–109. DOI: 10.1038/sj.gt.3301624.
  • Tassa, C.; Shaw, S. Y.; Weissleder, R. Dextran-Coated Iron Oxide Nanoparticles: A Versatile Platform for Targeted Molecular Imaging, Molecular Diagnostics, and Therapy. Acc. Chem. Res. 2011, 44, 842–852. DOI: 10.1021/ar200084x.
  • Kayal, S.; Ramanujan, R. V. Doxorubicin Loaded PVA Coated Iron Oxide Nanoparticles for Targeted Drug Delivery. Mater. Sci. Eng. C 2010, 30, 484–490. DOI: 10.1016/j.msec.2010.01.006.
  • Vannier, E. A.; Cohen-Jonathan, S.; Gautier, J.; Herve-Aubert, K.; Munnier, E.; Souce, M.; Legras, P.; Passirani, C.; Chourpa, I. Pegylated Magnetic Nanocarriers for Doxorubicin Delivery: A Quantitative Determination of Stealthiness in Vitro and in Vivo. Eur. J. Pharm. Biopharm. 2012, 81, 498–505.
  • Kumar, B. N. P.; Puvvada, N.; Rajput, S.; Sarkar, S.; Das, S. K.; Emdad, L.; Sarkar, D.; Venkatesan, P.; Pal, I.; Dey, G.; et al. Sequential Release of Drugs from Hollow Manganese Ferrite Nanocarriers for Breast Cancer Therapy. J. Mater. Chem. B 2015, 3, 90–101. DOI: 10.1039/C4TB01098A.
  • Hoare, T.; Santamaria, J.; Goya, G. F.; Irusta, S.; Lin, D.; Lau, S.; Padera, R.; Langer, R.; Kohane, D. S. A Magnetically Triggered Composite Membrane for on-Demand Drug Delivery. Nano Lett. 2009, 9, 3651–3657. DOI: 10.1021/nl9018935.
  • Zhang, D.; Sun, P.; Li, P.; Xue, A.; Zhang, X.; Zhang, H.; Jin, X. A Magnetic Chitosan Hydrogel for Sustained and Prolonged Delivery of Bacillus Calmette–Guérin in the Treatment of Bladder Cancer. Biomaterials 2013, 34, 10258–10266. DOI: 10.1016/j.biomaterials.2013.09.027.
  • Arias, J. L.; Reddy, L. H.; Couvreur, P. Fe3O4/Chitosan Nanocomposite for Magnetic Drug Targeting to Cancer. J. Mater. Chem. 2012, 22, 7622–7632. DOI: 10.1039/c2jm15339d.
  • Koppolu, B.; Rahimi, M.; Nattama, S.; Wadajkar, A.; Nguyen, K. T. Development of Multiple Layer Polymeric Particles for Targeted and Controlled Drug Delivery. Nanomedicine: Nanotechnol., Biol. Med. 2010, 6, 355–361. DOI: 10.1016/j.nano.2009.07.008.
  • Alexiou, C.; Arnold, W.; Klein, R. J.; Parak, F. G.; Hulin, P.; Bergemann, C. Locoregional Cancer Treatment with Magnetic Drug Targeting. Cancer Res. 2000, 60, 6641–6650.
  • Chen, F. H.; Gao, Q.; Ni, J. Z. The Grafting and Release Behavior of Doxorubicin from Fe3O4@SiO2 Core Shell Structure Nanoparticles via an Acid Cleaving Amide Bond the Potential for Magnetic Targeting Drug Delivery. Nanotechnology 2008, 19, 165103–165112. DOI: 10.1088/0957-4484/19/16/165103.
  • Chen, C.; Jiang, X.; Kaneti, Y. V.; Yu, A. Design and Construction of Polymerized-Glucose Coated Fe3O4 Magnetic Nanoparticles for Delivery of Aspirin. Powder Technol. 2013, 236, 157–163. DOI: 10.1016/j.powtec.2012.03.008.
  • Mody, V. V.; Cox, A.; Shah, S.; Singh, A.; Bevins, W.; Parihar, H. Magnetic Nanoparticle Drug Delivery Systems for Targeting Tumor. Appl. Nanosci. 2014, 4, 385–392. DOI: 10.1007/s13204-013-0216-y.
  • Javed, Y.; Ali, K.; Jamil, Y. Magnetic Nanoparticle-Based Hyperthermia for Cancer Treatment: Factors Affecting Heat Generation Efficiency. In Complex Magnetic Nanostructures Synthesis, Assembly and Applications; Surender Kumar, S., Ed.; Springer International Publishing AG: Cham, 2017.
  • Jain, T. K.; Morales, M. A.; Sahoo, S. K.; Leslie-Pelecky, D. L.; Labhasetwar, V. Iron Oxide Nanoparticles for Sustained Delivery of Anticancer Agents. Mol. Pharm. 2005, 2, 194–205. DOI: 10.1021/mp0500014.
  • Luo, S.; Wang, L. F.; Ding, W. J.; Wang, H.; Zhou, J. M.; Jin, H. K. Clinical Trials of Magnetic Induction Hyperthermia for Treatment of Tumours. OA Cancer 2014, 18, 1–6.
  • Salunkhe, A. B.; Khot, V. M.; Pawar, S. H. Magnetic Hyperthermia with Magnetic Nanoparticles: A Status Review. CTMC 2014, 14, 572–594. DOI: 10.2174/1568026614666140118203550.
  • Martinez-Boubeta, C.; Simeonidis, K.; Makridis, A.; Angelakeris, M.; Iglesias, O.; Guardia, P.; Cabot, A.; Yedra, L.; Estradé, S.; Peiró, F.; et al. Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications. Sci Rep. 2013, 3, 1652. DOI: 10.1038/srep01652.
  • Bauer, L. M.; Situ, S. F.; Griswold, M. A.; Samia, A. C. S. High-Performance Iron Oxide Nanoparticles for Magnetic Particle Imaging – Guided Hyperthermia (hMPI). Nanoscale 2016, 8, 12162–12169. DOI: 10.1039/C6NR01877G.
  • Sharma, P. K.; Dutta, R. K.; Pandey, A. C. Advances in Multifunctional Magnetic Nanoparticles. Cheminform 2013, 44 (43), 246–263. DOI: 10.1002/chin.201343213.
  • Liao, S. H.; Liu, C. H.; Bastakoti, B. P.; Suzuki, N.; Chang, Y.; Yamauchi, Y.; Lin, F. H.; Wu, K. C. W. Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia. Int. J. Nanomed. 2015, 10, 3315–3328. DOI: 10.2147/IJN.S68719
  • Xiong, K.; Wei, W.; Jin, Y.; Wang, S.; Zhao, D.; Wang, S.; Gao, X.; Qiao, C.; Yue, H.; Ma, G.; Xie, H. Biomimetic Immuno-Magnetosomes for High-Performance Enrichment of Circulating Tumor Cells. Adv. Mater. 2016, 28, 7929–7935. DOI: 10.1002/adma.201601643.
  • Chowdhury, P.; Roberts, A. M.; Khan, S.; Hafeez, B. B.; Chauhan, S. C.; Jaggi, M.; Yallapu, M. M. Magnetic Nanoformulations for Prostate Cancer. Drug Discov. Today 2017, 22, 1233–1241.,. DOI: 10.1016/j.drudis.2017.04.018.
  • Hwu, J. R.; Lin, Y. S.; Josephrajan, T.; Hsu, M.-H.; Cheng, F.-Y.; Yeh, C.-S.; Su, W.-C.; Shieh, D.-B. Targeted Paclitaxel by Conjugation to Iron Oxide and Gold Nanoparticle. J. Am. Chem. Soc. 2009, 131, 66–68. DOI: 10.1021/ja804947u.
  • Hu, S. H.; Liao, B. J.; Chiang, C. S.; Chen, P. J.; Chen, I. W.; Chen, S. Y. Core-Shell Nanocapsules Stabilized by Single-Component Polymer and Nanoparticles for Magneto-Chemotherapy/Hyperthermia with Multiple Drugs. Adv. Mater. 2012, 24, 3627–3632. DOI: 10.1002/adma.201201251.
  • Roy, E.; Patra, S.; Madhuri, R.; Sharma, P. K. Stimuli-Responsive Poly (N-Isopropyl Acrylamide)-co-Tyrosine@ Gadolinium: iron Oxide Nanoparticle-Based Nanotheranostic for Cancer Diagnosis and Treatment. Colloids Surf. B: Biointerf 2016, 142, 248–258. DOI: 10.1016/j.colsurfb.2016.02.053.
  • Livingston, J. D. Driving Force: The Natural Magic of Magnets; Harvard University Press: Cambridge, 1996.
  • Elster, A.; Burdette, J. Questions and Answers in Magnetic Resonance Imaging; Mosby: St Louis, 2001.
  • Deng, Y.-H.; Wang, C.-C.; Hu, J.-H.; Yang, W.-L.; Fu, S.-K. Investigation of Formation of Silica-Coated Magnetite Nanoparticles via Sol–Gel Approach. Colloids Surf. A. 2005, 262, 87–93. DOI: 10.1016/j.colsurfa.2005.04.009.
  • Yu, J.; Lee, C. W.; Im, S. S.; Lee, J. S. Structure and Magnetic Properties of SiO2 Coated Fe2O3 Nanoparticles Synthesized by Chemical Vapor Condensation Process. Rev. Adv. Mater. Sci. 2004, 4, 55–59.
  • Wassel, R. A.; Grady, B.; Kopke, R. D.; Dormer, K. J. Dispersion of Super Paramagnetic Iron Oxide Nanoparticles in Poly(d, l-Lactide-co-Glycolide) Microparticles. Colloids Surf A 2007, 292, 125–130. DOI: 10.1016/j.colsurfa.2006.06.012.
  • Zhou, Y.; Wang, S. X.; Ding, B. J.; Yang, Z. M. Modification of Magnetite Nanoparticles via Surface-Initiated Atom Transfer Radical Polymerization (ATRP). Chem. Eng. J. 2008, 138, 578–585. DOI: 10.1016/j.cej.2007.07.030.
  • Zhu, L.; Wang, D.; Wei, X.; Zhu, X.; Li, J.; Tu, C.; Su, Y.; Wu, J.; Zhu, B.; Yan, D. Multifunctional pH-Sensitive Superparamagnetic Iron-Oxide Nanocomposites for Targeted Drug Delivery and MR Imaging. J. Control Release 2013, 169, 228–238. DOI: 10.1016/j.jconrel.2013.02.015.
  • Shi, J.; Yu, X.; Wang, L.; Liu, Y.; Gao, J.; Zhang, J.; Ma, R.; Liu, R.; Zhang, Z. PEGylated Fullrene/Iron Oxide Nanocomposites for Photodynamic Therapy, Targeted Drug Delivery and MR Imaging. Biomaterials 2013, 34, 9666–9677. DOI: 10.1016/j.biomaterials.2013.08.049.
  • Li, J.; Zheng, L.; Cai, H.; Sun, W.; Shen, M.; Zhang, G.; Shi, X. Polyethyleneimine-Mediated Synthesis of Folic Acid-Targeted Iron Oxide Nanoparticles for in Vivo Tumor MR Imaging. Biomaterials 2013, 34, 8382–8392. DOI: 10.1016/j.biomaterials.2013.07.070.
  • Peng, E.; Wang, F.; Xue, J. M. Nanostructured Magnetic Nanocomposites as MRI Contrast Agents. J. Mater. Chem. B. 2015, 3, 2241–2276. DOI: 10.1039/C4TB02023E.
  • Zhu, L.; Zhou, Z.; Mao, H.; Yang, L. Magnetic Nanoparticles for Precision Oncology: theranostic Magnetic Iron Oxide Nanoparticles for Image-Guided and Targeted Cancer Therapy. Nanomedicine (Lond) 2017, 12, 73–87. DOI: 10.2217/nnm-2016-0316.
  • Li, L.; Jiang, W.; Luo, K.; Song, H.; Lan, F.; Wu, Y.; Gu, Z. Superparamagnetic Iron Oxide Nanoparticles as MRI Contrast Agents for Non-Invasive Stem Cell Labeling and Tracking. Theranostics 2013, 3, 595–615. DOI: 10.7150/thno.5366.
  • Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W. S. Recent Progress on Magnetic Iron Oxide Nanoparticles: synthesis, Surface Functional Strategies and Biomedical Applications. Sci. Technol. Adv. Mater. 2015, 16, 023501–023544. DOI: 10.1088/1468-6996/16/2/023501.
  • Lu, M.; Cohen, M. H.; Rieves, D.; Pazdur, R. FDA Report: ferumoxytol for Intravenous Iron Therapy in Adult Patients with Chronic Kidney Disease. Am. J. Hematol. 2010, 85, 315–319. DOI: 10.1002/ajh.21656.
  • Bashir, M. R.; Bhatti, L.; Marin, D.; Nelson, R. C. Emerging Applications for Ferumoxytol as a Contrast Agent in MRI. J. Magn. Reson. Imaging 2015, 41, 884–898. DOI: 10.1002/jmri.24691.
  • Xu, H.; Cheng, L.; Wang, C.; Ma, X.; Li, Y.; Liu, Z. Polymer Encapsulated Upconversion Nanoparticle/Iron Oxide Nanocomposites for Multimodal Imaging and Magnetic Targeted Drug Delivery. Biomaterials 2011, 32, 9364–9373. DOI: 10.1016/j.biomaterials.2011.08.053.
  • Ling, Y.; Wei, K.; Luo, Y.; Gao, X.; Zhong, S. Dual Docetaxel/Superparamagnetic Iron Oxide Loaded Nanoparticles for Both Targeting Magnetic Resonance Imaging and Cancer Therapy. Biomaterials 2011, 32, 7139–7150. DOI: 10.1016/j.biomaterials.2011.05.089.
  • Nitin, N.; Laconte, L. E. W.; Zurkiya, O.; Hu, X.; Bao, G. Functionalization and Peptide-Based Delivery of Magnetic Nanoparticles as an Intracellular MRI Contrast Agent. J. Biol. Inorg. Chem. 2004, 9, 706–712. DOI: 10.1007/s00775-004-0560-1.
  • Wu, Y.; Chu, M.; Shi, B.; Li, Z. A Novel Magneto-Fluorescent Nano-Bioprobe for Cancer Cell Targeting, Imaging and Collection. Appl. Biochem. Biotechnol. 2011, 163, 813–825. DOI: 10.1007/s12010-010-9085-y.
  • Lin, G.; Makarov, D.; Schmidt, O. G. Magnetic Sensing Platform Technologies for Biomedical Applications. Lab Chip 2017, 17, 1884–1912. DOI: 10.1039/C7LC00026J.
  • Kolosnjaj-Tabi, J.; Wilhelm, C.; Cl’ement, O.; Gazeau, F. Cell Labeling with Magnetic Nanoparticles: opportunity for Magnetic Cell Imaging and Cell Manipulation. J. Nanobiotechnol. 2013, 11, S7. DOI: 10.1186/1477-3155-11-S1-S7.
  • Ahmad, R.; Sardar, M. Enzyme Immobilization: An Overview on Nanoparticles as Immobilization Matrix. Biochem. Anal. Biochem. 2015, 4, 1000178–1000186.
  • Park, W.; Yang, H. N.; Ling, D.; Yim, H.; Kim, K. S.; Hyeon, T.; Na, K.; Park, K.-H. Multi-Modal Transfection Agent Based on Monodisperse Magnetic Nanoparticles for Stem Cell Gene Delivery and Tracking. Biomaterials 2014, 35, 7239–7247. DOI: 10.1016/j.biomaterials.2014.05.010.
  • Yang, C. C.; Yang, S. S.; Ho, C. S.; Chang, J. F.; Liu, B. H.; Huang, K. W. Development of Antibody Functionalized Magnetic Nanoparticles for the Immunoassay of Carcinoembryonic Antigen: A Feasibility Study for Clinical Use. J. Nanobiotechnol. 2014, 12, 44–53. DOI: 10.1186/s12951-014-0044-6.
  • Duan, M.; Shapter, J. G.; Qi, W.; Yang, S.; Gao, G. Recent Progress in Magnetic Nanoparticles: Synthesis, Properties, and Applications. Nanotechnology 2018, 29, 452001. DOI: 10.1088/1361-6528/aadcec.
  • Lee, J.; Hwang, G.; Hong, Y. S.; Sim, T. One Step Synthesis of Quantum Dot_Magnetic Nanoparticle Heterodimers for Dual Modal Imaging Applications. Analyst 2015, 140, 2864–2868. DOI: 10.1039/C4AN02322F.
  • Abenojar, E. C.; Wickramasinghe, S.; Bas-Concepcion, J.; Samia, A. C. S. Structural Effects on the Magnetic Hyperthermia Properties of Iron Oxide Nanoparticles. Prog. Nat. Sci.: Mater. Int. 2016, 26, 440–448. DOI: 10.1016/j.pnsc.2016.09.004.
  • Ma, S.; Zhou, X.; Chen, Q.; Jiang, P.; Lan, F.; Yi, Q.; Wu, Y.; Colloid, J. Multi-Targeting Magnetic Hyaluronan Capsules Efficiently Capturing Circulating Tumor Cells. Interf. Sci. 2019, 545, 94–103. DOI: 10.1016/j.jcis.2019.03.025.
  • Zhou, X.; Luo, B.; Kang, K.; Zhang, Y.; Jiang, P.; Lan, F.; Yi, Q.; Wu, Y. Leukocyte‐Repelling Biomimetic Immunomagnetic Nanoplatform for High‐Performance Circulating Tumor Cells Isolation. Small 2019, 15, 1900558. DOI: 10.1002/smll.201900558.
  • Zhou, X.; Luo, B.; Kang, K.; Ma, S.; Sun, X.; Lan, F.; Yi, Q.; Wu, Y. Multifunctional Luminescent Immuno-Magnetic Nanoparticles: Toward Fast, Efficient, Cell-Friendly Capture and Recovery of Circulating Tumor Cells. J. Mater. Chem. 2019, B7, 393.
  • Hong, W.; Lee, S.; Chang, H. J.; Lee, E. S.; Cho, Y. Multifunctional Magnetic Nanowires: A Novel Breakthrough for Ultrasensitive Detection and Isolation of Rare Cancer Cells from Non-Metastatic Early Breast Cancer Patients Using Small Volumes of Blood. Biomaterials 2016, 106, 78–86. DOI: 10.1016/j.biomaterials.2016.08.020.
  • Zhang, P.; Zhang, Y.; Gao, M.; Zhang, X. Dendrimer-Assisted Hydrophilic Magnetic Nanoparticles as Sensitive Substrates for Rapid Recognition and Enhanced Isolation of Target Tumor Cells. Talanta 2016, 161, 925–931. DOI: 10.1016/j.talanta.2016.08.064.
  • Zhao, Y.; Xu, D.; Tan, W. Aptamer-Functionalized Nano/Micro-Materials for Clinical Diagnosis: isolation, Release and Bioanalysis of Circulating Tumor Cells. Integr. Biol. 2017, 9, 188–205. DOI: 10.1039/C6IB00239K.
  • Liu, W.; Nie, L.; Li, F.; Aguilar, Z. P.; Xu, H.; Xiong, Y.; Fu, F.; Xu, H. Folic Acid Conjugated Magnetic Iron Oxide Nanoparticles for Nondestructive Separation and Detection of Ovarian Cancer Cells from Whole Blood. Biomater. Sci. 2016, 4, 159–166. DOI: 10.1039/C5BM00207A.
  • Ding, J.; Wang, K.; Tang, W. J.; Li, D.; Wei, Y. Z.; Lu, Y.; Li, Z. H.; Liang, X. F. Construction of Epidermal Growth Factor Receptor Peptide Magnetic Nanovesicles with Lipid Bilayers for Enhanced Capture of Liver Cancer Circulating Tumor Cells. Anal. Chem. 2016, 88, 8997–9003. DOI: 10.1021/acs.analchem.6b01443.
  • Pramanik, A.; Vangara, A.; Viraka Nellore, B. P.; Sinha, S. S.; Chavva, S. R.; Jones, S.; Ray, P. C. Development of Multifunctional Fluorescent–Magnetic Nanoprobes for Selective Capturing and Multicolor Imaging of Heterogeneous Circulating Tumor Cells. ACS Appl. Mater. Interfaces 2016, 8, 15076–15085. DOI: 10.1021/acsami.6b03262.
  • Li, D.; Zhang, Y.; Li, R.; Guo, J.; Wang, C.; Tang, C. Selective Capture and Quick Detection of Targeting Cells with SERS-Coding Microsphere Suspension Chip. Small 2015, 11, 2200–2208. DOI: 10.1002/smll.201402531.
  • Xiao, L.; He, Z. B.; Cai, B.; Rao, L.; Cheng, L.; Liu, W.; Guo, S. S.; Zhao, X. Z. Effective Capture and Release of Circulating Tumor Cells Using Core-Shell Fe3O4@MnO2 Nanoparticles. Chem. Phys. Lett. 2017, 668, 35–41. DOI: 10.1016/j.cplett.2016.12.014.
  • Wu, J.; Wei, X.; Gan, J. R.; Huang, L.; Shen, T.; Lou, J. T.; Liu, B. H.; Zhang, J. X.; Qian, K. Multifunctional Magnetic Particles for Combined Circulating Tumor Cells Isolation and Cellular Metabolism Detection. Adv. Funct. Mater. 2016, 26, 4016–4025. DOI: 10.1002/adfm.201504184.
  • Wen, C.-Y.; Wu, L.-L.; Zhang, Z.-L.; Liu, Y.-L.; Wei, S.-Z.; Hu, J.; Tang, M.; Sun, E.-Z.; Gong, Y.-P.; Yu, J.; Pang, D.-W. Quick-Response Magnetic Nanospheres for Rapid, Efficient Capture and Sensitive Detection of Circulating Tumor Cells. ACS Nano 2014, 8, 941–949. DOI: 10.1021/nn405744f.
  • Chen, L.; Wu, L. L.; Zhang, Z. L.; Hu, J.; Tang, M.; Qi, C. B.; Li, N.; Pang, D. W. Biofunctionalized Magnetic Nanospheres-Based Cell Sorting Strategy for Efficient Isolation, Detection and Subtype Analyses of Heterogeneous Circulating Hepatocellular Carcinoma Cells. Biosens. Bioelectron 2016, 85, 633–640. DOI: 10.1016/j.bios.2016.05.071.
  • Lee, H. Y.; Bae, D. R.; Park, J. C.; Song, H.; Han, W. S.; Jung, J. H. A Selective Fluoroionophore Based on BODIPY-Functionalized Magnetic Silica Nanoparticles: Removal of Pb2+ from Human Blood. Angew. Chem. Int. Ed 2009, 48, 1239–1243. DOI: 10.1002/anie.200804714.
  • Wang, L.; Yang, Z.; Gao, J.; Xu, K.; Gu, H.; Zhang, B.; Zhang, X.; Xu, B. A Biocompatible Method of Decorporation: Bisphosphonate-Modified Magnetite Nanoparticles to Remove Uranyl Ions from Blood. J. Am. Chem. Soc 2006, 128, 13358–13359. DOI: 10.1021/ja0651355.
  • Jin, J.; Yang, F.; Zhang, F.; Hu, W.; Sun, S.; Ma, J. 2, 2′-(Phenylazanediyl) Diacetic Acid Modified Fe 3 O 4 @PEI for Selective Removal of Cadmium Ions from Blood. Nanoscale 2012, 4, 733–736. DOI: 10.1039/C2NR11481J.
  • Cai, K.; Li, J.; Luo, Z.; Hu, Y.; Hou, Y.; Ding, X. β-Cyclodextrin Conjugated Magnetic Nanoparticles for Diazepam Removal from Blood. Chem. Commun 2011, 47, 7719. DOI: 10.1039/c1cc11855b.
  • Herrmann, I. K.; Urner, M.; Koehler, F. M.; Hasler, M.; Roth-Z'Graggen, B.; Grass, R. N.; Ziegler, U.; Beck-Schimmer, B.; Stark, W. J. Blood Purification Using Functionalized Core/Shell Nanomagnets. Small 2010, 6, 1388–1392. DOI: 10.1002/smll.201000438.
  • Herrmann, I. K.; Urner, M.; Graf, S.; Schumacher, C. M.; Roth-Z’graggen, B.; Hasler, M.; Stark, W. J.; Beck-Schimmer, B. Endotoxin removal by magnetic separation-based blood purification. Adv. Health. Mater. 2013, 2, 829.
  • Galanzha, E. I.; Shashkov, E.; Sarimollaoglu, M.; Beenken, K. E.; Basnakian, A. G.; Shirtliff, M. E.; Kim, J. W.; Smeltzer, M. S.; Zharov, V. P. In Vivo Magnetic Enrichment, Photoacoustic Diagnosis, and Photothermal Purging of Infected Blood Using Multifunctional Gold and Magnetic Nanoparticles. PLoS One 2012, 7, e45557. DOI: 10.1371/journal.pone.0045557.
  • Herrmann, I. K.; Schlegel, A.; Graf, R.; Schumacher, C. M.; Senn, N.; Hasler, M.; Gschwind, S.; Hirt, A. M.; Günther, D.; Clavien, P. A.; et al. Nanomagnet-Based Removal of Lead and Digoxin from Living Rats. Nanoscale 2013, 5, 8718. DOI: 10.1039/c3nr02468g.
  • Köhler, T.; Feoktystov, A.; Petracic, O.; Kentzinger, E.; Bhatnagar-Schöffmann, T.; Feygenson, M.; Nandakumaran, N.; Landers, J.; Wende, H.; Cervellino, A.; et al. Mechanism of Magnetization Reduction in Iron Oxide Nanoparticles. Nanoscale 2021, 13, 6965–6976. DOI: 10.1039/d0nr08615k.
  • Abdullah, J.; Salah-Eddine, L.; Abderrhmane, B.; Alonso-González, M.; Guerrero, A.; Romero, A. Green Synthesis and Characterizationof Iron Oxide Nanoparticles by Pheonix Dactylifera Leaf Extract and Evaluation of Their Antioxidant Activity. Sustain. Chem.Pharm. 2020, 17, 100280.
  • Magro, M.; Baratella, D.; Bonaiuto, E.; de, A.; Roger, J.; Vianello, F. New Perspectives on Biomedical Applications of Iron OxideNanoparticles. CMC 2018, 25, 540–555.
  • Bustamante-Torres, M.; Romero-Fierro, D.; Arcentales-Vera, B.; Palomino, K.; Magaña, H.; Bucio, E. Hydrogels Classification according to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels 2021, 7, 182.
  • Bustamante-Torres, M.; Romero-Fierro, D.; Hidalgo-Bonilla, S.; Bucio, E. Basics and Green Solvent Parameter for Environmental Remediation. In Green Sustainable Process for Chemical and Environmental Engineering and Science, 1st ed.; Inamuddin, D., Boddula, R., Asiri, A., Eds.; Elsevier Inc.: Cham, Switzerland, 2021; pp 219–237. ISBN 978-0-12-821884-6.
  • Salehipour, M.; Rezaei, S.; Mosafer, J.; Pakdin-Parizi, Z.; Motaharian, A.; Mogharabi-Manzari, M. Recent Advances in Polymercoated Iron Oxide Nanoparticles as Magnetic Resonance Imaging Contrast Agents. J Nanopart Res 2021, 23, 48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.