184
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of microwave assisted synthesis of Schiff Base derived Metal-Chelates by liquid invert sugar containing D-Glucose

, , , , & ORCID Icon
Received 16 Jan 2022, Accepted 15 Feb 2023, Published online: 04 Apr 2023

References

  • Bagherzadeh, M.; Amini, M.; Derakhshandeh, P. G.; Haghdoost, M. M. An Efficient Glucose-Based Ligand for Heck and Suzuki Coupling Reactions in Aqueous Media. J. Iran. Chem. Soc. 2014, 11, 441–446. DOI: 10.1007/s13738-013-0316-3.
  • Dallinger, D.; Kappe, C. O. Microwave-Assisted Synthesis in Water as Solvent. Chem. Rev. 2007, 107, 2563–2591. DOI: 10.1021/cr0509410.
  • Thakur, K. G.; Ganapathy, D.; Sekar, G. D-Glucosamine as a Green Ligand for Copper Catalyzed Synthesis of Primary Aryl Amines from Aryl Halides and Ammonia. Chem Commun. (Camb) 2011, 47, 5076–5078. DOI: 10.1039/C1CC10568J.
  • Sheldon, R. A. Green Solvents for Sustainable Organic Synthesis: State of the Art. Green Chem. 2005, 7, 267–278. DOI: 10.1039/b418069k.
  • Thornalley, P. J.; Langborg, A.; Minhas, H. S. Formation of Glyoxal, Methylglyoxal and 3-Deoxyglucosone in the Glycation of Proteins by Glucose. Biochem. J. 1999, 344, 109–116. DOI: 10.1042/bj3440109.
  • Watkins, N. G.; Thorpe, S. R.; Baynes, J. W. Glycation of Amino-Groups in Protein - Studies on the Specificity of Modification of Rnase by Glucose. J. Biol. Chem. 1985, 260, 629–636. DOI: 10.1016/S0021-9258(19)85131-1.
  • Venkatraman, J.; Aggarwal, K.; Balaram, P. Helical Peptide Models for Protein Glycation: Proximity Effects in Catalysis of the Amadori Rearrangement. Chem. Biol. 2001, 8, 611–625. DOI: 10.1016/S1074-5521(01)00036-9.
  • Shakkottai, V. G.; Sudha, R.; Balaram, P.; Gramicidin, S. A Peptide Model for Protein Glycation and Reversal of Glycation Using Nucleophilic Amines. J. Pept. Res. 2002, 60, 112–120. DOI: 10.1034/j.1399-3011.2002.02901.x.
  • John, W. G.; Lamb, E. J. The Maillard or Browning Reaction in Diabetes. Eye 1993, 7, 230–237. DOI: 10.1038/eye.1993.55.
  • Wang, Y.; Ho, C. T. Flavour Chemistry of Methylglyoxal and Glyoxal. Chem. Soc. Rev. 2012, 41, 4140–4149. DOI: 10.1039/c2cs35025d.
  • Reyes, F. G. R.; Poocharoen, B.; Wrolstad, R. E. Maillard Browning Reaction of Sugar-Glycine Model Systems-Changes in Sugar Concentration, Color and Appearance. J. Food Sci. 1982, 47, 1376–1377. DOI: 10.1111/j.1365-2621.1982.tb07690.x.
  • Jalbout, A. F.; Shipar, M. A. H.; Navarro, J. L. Density Functional Computational Studies on Ribose and Glycine Maillard Reaction: Formation of the Amadori Rearrangement Products in Aqueous Solution. Food Chem. 2007, 103, 919–926. DOI: 10.1016/j.foodchem.2006.09.045.
  • Kaufmann, M.; Mugge, C.; Kroh, L. W. NMR Analyses of Complex D-Glucose Anomerization. Food Chem. 2018, 265, 222–226. DOI: 10.1016/j.foodchem.2018.05.100.
  • Jakus, V.; Rietbrock, N. Advanced Glycation End-Products and the Progress of Diabetic Vascular Complications. Physiol. Res. 2004, 53, 131–142.
  • Dhar, D. N.; Taploo, C. L. Schiff-Bases and Their Applications. J. Sci. Ind. Res. 1982, 41, 501–506.
  • Przybylski, P.; Huczynski, A.; Pyta, K.; Brzezinski, B.; Bartl, F. Biological Properties of Schiff Bases and Azo Derivatives of Phenols. COC. 2009, 13, 124–148. DOI: 10.2174/138527209787193774.
  • Brown, S. B.; Bowes, M. A. Glycosylated Hemoglobins and Their Role in Management of Diabetes-Mellitus. Biochem. Educ. 1985, 13, 2–6. DOI: 10.1016/0307-4412(85)90112-8.
  • Arslaner, C.; Karakurt, S.; Koc, Z. E. Synthesis of Benzimidazole Schiff Base Derivatives and Cytotoxic Effects on Colon and Cervix Cancer Cell Lines. Biointerface Res. Appl. Chem. 2017, 7, 2103–2107.
  • Koc, Z. E.; Aladag, M. O.; Uysal, A. Synthesis of Novel Dopamine Derived Multidirectional Ligands from Cyanuric Chloride: Structural and Antimicrobial Studies. Excli J. 2013, 12, 396–403. DOI: 10.17877/DE290R-10849.
  • Safoura, F. Novel Synthesis of Schiff Bases Bearing Glucosamine Moiety Res. J. Chem. Sci 2014, 4, 25–28.
  • Sah, A. K.; Rao, C. P.; Saarenketo, P. K.; Kolehmainen, E.; Rissanen, K. Synthesis, Characterisation and Crystal Structures of Schiff Bases from the Reaction of 4,6-O-Ethylidene-Beta-D-Glucopyranosylamine with Substituted Salicylaldehydes. Carbohydr. Res. 2001, 335, 33–43. DOI: 10.1016/s0008-6215(01)00201-4.
  • Costamagna, J.; Lillo, L. E.; Matsuhiro, B.; Noseda, M. D.; Villagran, M. Ni(II) Complexes with Schiff Bases Derived from Amino Sugars. Carbohydr. Res. 2003, 338, 1535–1542. DOI: 10.1016/s0008-6215(03)00237-4.
  • Tanase, T.; Mano, K.; Yamamoto, Y. Synthesis and Characterization of Copper(II) Complexes Containing N-Glycoside Ligands and Their Use in the Catalytic Epoxidation of Olefins. Inorg. Chem. 1993, 32, 3995–4003. DOI: 10.1021/ic00071a007.
  • Perez, E. M. S.; Avalos, M.; Babiano, R.; Cintas, P.; Light, M. E.; Jimenez, J. L.; Palacios, J. C.; Sancho, A. Schiff Bases from D-Glucosamine and Aliphatic Ketones. Carbohydr. Res. 2010, 345, 23–32. DOI: 10.1016/j.carres.2009.08.032.
  • Higgins, P. J.; Bunn, H. F. Kinetic-Analysis of the Non-Enzymatic Glycosylation of Hemoglobin. J. Biol. Chem. 1981, 256, 5204–5208. DOI: 10.1016/S0021-9258(19)69387-7.
  • Pessoa, J. C.; Tomaz, I.; Henriques, R. T. Preparation and Characterisation of Vanadium Complexes Derived from Salicylaldehyde or Pyridoxal and Sugar Derivatives. Inorg. Chim. Acta 2003, 356, 121–132. DOI: 10.1016/S0020-1693(03)00395-5.
  • Tsubomura, T.; Yano, S.; Toriumi, K.; Ito, T.; Yoshikawa, S. Reactions of Metal-Complexes with Carbohydrates - Synthesis and Structure of (2-[(2-Aminoethyl)Amino]-2-deoxy-L-Sorbose)(Ethylenediamine)Nickel(II)Dichloride Hemi Methanol Solvate- [Ni(en)(L-Sor-en)]Cl2.1/2CH3OH (en = Ethylenediamine and Sor = Sorbose). BCSJ. 1984, 57, 1833–1838. DOI: 10.1246/bcsj.57.1833.
  • Clark, S. L. D.; Santin, A. E.; Bryant, P. A.; Holman, R. W.; Rodnick, K. J. The Initial Noncovalent Binding of Glucose to Human Hemoglobin in Nonenzymatic Glycation. Glycobiology 2013, 23, 1250–1259. DOI: 10.1093/glycob/cwt061.
  • Adam, M. J.; Hall, L. D. Synthesis of Metal-Chelates of Amino Sugars: Schiff’s Base Complexes. Can. J. Chem. 1982, 60, 2229–2237. DOI: 10.1139/v82-317.
  • Hedegaard, R. V.; Frandsen, H.; Skibsted, L. H. Kinetics of Formation of Acrylamide and Schiff Base Intermediates from Asparagine and Glucose. Food Chem. 2008, 108, 917–925. DOI: 10.1016/j.foodchem.2007.11.073.
  • Hijji, Y.; Rajan, R.; Ben Yahia, H.; Mansour, S.; Zarrouk, A.; Warad, I. One-Pot Microwave-Assisted Synthesis of Water-Soluble Pyran-2,4,5-Triol Glucose Amine Schiff Base Derivative: XRD/HSA Interactions, Crystal Structure, Spectral, Thermal and a DFT/TD-DFT. Cryst 2021, 11, 117. DOI: 10.3390/cryst11020117.
  • Kołodziej, B.; Grech, E.; Schilf, W.; Kamieński, B.; Makowski, M.; Rozwadowski, Z.; Dziembowska, T. Anomeric and Tautomeric Equilibria in D-2-Glucosamine Schiff Bases. J. Mol. Struct. 2007, 844-845, 32–37. DOI: 10.1016/j.molstruc.2007.07.038.
  • Xing, H. R.; Mossine, V. V.; Yaylayan, V. Diagnostic MS/MS Fragmentation Patterns for the Discrimination between Schiff Bases and Their Amadori or Heyns Rearrangement Products. Carbohydr. Res. 2020, 491, 107985. DOI: 10.1016/j.carres.2020.107985.
  • Naz, N.; Khatoon, S.; Ajaz, H.; Sadiq, Z.; Iqbal, M. Z. Synthesis, Spectral Characterization and Biological Evaluation of Schiff Base Transition Metal Complexes Derived from Ampicillin with D-Glucose. Asian J. Chem. 2013, 25, 2239–2242. DOI: 10.14233/ajchem.2013.13413.
  • Das, K.; Datta, A.; Roy, S.; Clegg, J. K.; Garribba, E.; Sinha, C.; Kara, H. Doubly Phenoxo-Bridged M-Na (M = Cu(II), Ni(II)) Complexes of Tetradentate Schiff Base: Structure, Photoluminescence, EPR, Electrochemical Studies and DFT Computation. Polyhedron 2014, 78, 62–71. DOI: 10.1016/j.poly.2014.04.032.
  • Donmez, A.; Oylumluoglu, G.; Coban, M. B.; Kocak, C.; Aygun, M.; Kara, H. Ferromagnetic Interactions in New Double End-On-Azide-Bridged Dinuclear Ni(II) Complex: Synthesis, Crystal Structures, Magnetic and Photoluminescence Properties. J. Mol. Struct. 2017, 1149, 569–575. DOI: 10.1016/j.molstruc.2017.08.027.
  • Gungor, E.; Kara, H.; Colacio, E.; Mota, A. J. Two Tetranuclear Copper(II) Complexes with Open Cubane-Like Cu4O4 Core Framework and Ferromagnetic Exchange Interactions between Copper(II) Ions: Structure, Magnetic Properties, and Density Functional Study. Eur. J. Inorg. Chem. 2014, 2014, 1552–1560. DOI: 10.1002/ejic.201301515.
  • Majumder, I.; Chakraborty, P.; Adhikary, J.; Kara, H.; Zangrando, E.; Bauza, A.; Frontera, A.; Das, D. Auxiliary Part of Ligand Mediated Unique Coordination Chemistry of Copper (II). Chemistryselect 2016, 1, 615–625. DOI: 10.1002/slct.201500030.
  • Li, S. M.; Liu, S. Y.; Ho, C. T. Safety Issues of Methylglyoxal and Potential Scavengers. Front. Agr. Sci. Eng. 2018, 5, 312–320. DOI: 10.15302/J-FASE-2017174.
  • Curtiss, L. K.; Witztum, J. L. A Novel Method for Generating Region-Specific Monoclonal-Antibodies to Modified Proteins-Application to the Identification of Human Glucosylated Low-Density Lipoproteins. J. Clin. Invest. 1983, 72, 1427–1438. DOI: 10.1172/JCI111099.
  • Al-Abed, Y.; Mitsuhashi, T.; Li, H. W.; Lawson, J. A.; FitzGerald, G. A.; Founds, H.; Donnelly, T.; Cerami, A.; Ulrich, P.; Bucala, R. Inhibition of Advanced Glycation Endproduct Formation by Acetaldehyde: Role in the Cardioprotective Effect of Ethanol. Proc. Natl. Acad. Sci. U S A 1999, 96, 2385–2390. DOI: 10.1073/pnas.96.5.2385.
  • Harohally, N. V.; Srinivas, S. M.; Umesh, S. ZnCl2-Mediated Practical Protocol for the Synthesis of Amadori Ketoses. Food Chem. 2014, 158, 340–344. DOI: 10.1016/j.foodchem.2014.02.094.
  • Celik, S. C.; Vatansev, H.; Koc, Z. E, Department of Clinical Immunology and Allergy, Meram Faculty of Medicine, Necmettin Erbakan University, Konya 42090, Turkey Benzimidazole Schiff Bases Microwave Assisted Synthesis and the Effect on Leukemia Cells with Flow Cytometry. Rev. Roum. Chim. 2019, 64, 615–623. DOI: 10.33224/rrch/2019.64.7.08.
  • Koc, Z. E.; Ucan, H. I. Complexes of Iron(III) and Chrom(III) Salen and Saloph Schiff Bases with Bridging 2,4,6-Tris(4-Nitrophenylimino-4'-Formylphenoxy)-1,3,5-Triazine. J. Macromol. Sci. A 2008, 45, 1074–1079. DOI: 10.1080/10601320802458087.
  • Uysal, S.; Koc, Z. E. The Synthesis and Characterization of (MSalen/Salophen/Saldeta/Salpy) [M = Fe(III) or Cr(III)] Capped Heteromultinuclear Schiff Bases-Dioxime Ni(II) Complexes: Their Thermal and Magnetic Behaviours. J. Mol. Struct. 2018, 1165, 14–22. DOI: 10.1016/j.molstruc.2018.03.101.
  • Koc, Z. E.; Uysal, S. Synthesis and Characterization of Dendrimeric Bridged Salen/Saloph Complexes and Investigation of Their Magnetic and Thermal Behaviors. HCA. 2010, 93, 910–919. DOI: 10.1002/hlca.200900294.
  • Koc, Z. E.; Ucan, H. I. Complexes of Iron(III) Salen and Saloph Schiff Bases with Bridging 2,4,6-Tris(2,5-Dicarboxyphenylimino-4-Formylphenoxy)-1,3,5-Triazine and 2,4,6-Tris(4-Carboxyphenylimino-4'-Formylphenoxy)-1,3,5-Triazine. Transition Met. Chem. 2007, 32, 597–602. DOI: 10.1007/s11243-007-0213-7.
  • Celikbilek, S.; Koc, Z. E. Investigation of Dipodal Oxy-Schiff Base and Its Salen and Salophen Fe(III)/Cr(III)/Mn(III) Schiff Bases (N2O2) Caped Complexes and Their Magnetic and Thermal Behaviors. J. Mol. Struct. 2014, 1065-1066, 205–209. DOI: 10.1016/j.molstruc.2014.03.003.
  • Uysal, S.; Koc, Z. E.; Celikbilek, S.; Ucan, H. I. Synthesis of Star-Shaped Macromolecular Schiff Base Complexes Having Melamine Cores and Their Magnetic and Thermal Behaviors. Synth. Commun. 2012, 42, 1033–1044. DOI: 10.1080/00397911.2010.535635.
  • Koc, Z. E.; Uysal, S. Synthesis and Characterization of Tripodal Oxy-Schiff Base (2,4,6-Tris(4-Carboxymethylenephenylimino-4'-Formylphenoxy)-1,3,5-Triazine) and the Thermal and Magnetic Properties of Its Fe(III)/Cr(III) Complexes. J. Inorg. Organomet. Polym. 2011, 21, 400–406. DOI: 10.1007/s10904-011-9475-9.
  • Uysal, S.; Koc, Z. E. Synthesis and Characterization of Dendrimeric Melamine Cored [Salen/salophFe(III)] and [Salen/SalophCr(III)] Capped Complexes and Their Magnetic Behaviors. J. Hazard. Mater. 2010, 175, 532–539. DOI: 10.1016/j.jhazmat.2009.10.038.
  • Uysal, S.; Koc, Z. E. Synthesis and Characterization of Dopamine Substitue Tripodal Trinuclear [(Salen/Salophen/Salpropen)M] (M = Cr(III), Mn(III), Fe(III) Ions) Capped s-Triazine Complexes: Investigation of Their Thermal and Magnetic Properties. J. Mol. Struct 2016, 1109, 119–126. DOI: 10.1016/j.molstruc.2015.12.080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.