94
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Antibacterial and anticancer activity (PANC-1) of green synthesized copper oxide nanoparticles from Catharanthus roseus

, , &
Received 20 Oct 2022, Accepted 06 May 2023, Published online: 03 Jul 2023

References

  • Sivaraj, R.; Rahman, P. K. S. M.; Rajiv, P.; Narendhran, S.; Venckatesh, R. Biosynthesis and Characterization of Acalypha indica Mediated Copper Oxide Nanoparticles and Evaluation of Its Antimicrobial and Anticancer Activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 129, 255–258. DOI: 10.1016/j.saa.2014.03.027.
  • Basnet, P.; Samanta, D.; Chanu, T. I.; Mukherjee, J.; Chatterjee, S. Tea-Phytochemicals Functionalized Ag Modified ZnO Nanocomposites for Visible Light Driven Photocatalytic Removal of Organic Water Pollutants. Mater. Res. Express 2019, 6, 085095. DOI: 10.1088/2053-1591/ab234e.
  • Patel, V. K.; Bhattacharya, S. High-Performance Nanothermite Composites Based on Aloe-vera-Directed CuO Nanorods. ACS Appl. Mater. Interfaces 2013, 5, 13364–13374. DOI: 10.1021/am404308s.
  • Berra, D.; Salah Eddine, L.; Boubaker, B.; Mohammed Ridha, O.; Berrani, D.; Achour, R. Green Synthesis of Copper Oxide Nanoparticles by Pheonix dactylifera L Leaves Extract. Dig. J. Nanomater. Biostruct. 2018, 13, 1231–1238.
  • Iravani, S. Green Synthesis of Metal Nanoparticles Using Plants. Green Chem. 2011, 13, 2638–2650. DOI: 10.1039/c1gc15386b.
  • Nasrollahzadeh, M.; Maham, M.; Mohammad Sajadi, S. Green Synthesis of CuO Nanoparticles by Aqueous Extract of Gundelia tournefortii and Evaluation of Their Catalytic Activity for the Synthesis of N-Monosubstituted Ureas and Reduction of 4-Nitrophenol. J. Colloid Interface Sci. 2015, 455, 245–253. DOI: 10.1016/j.jcis.2015.05.045.
  • Nethravathi, P. C., Pavan Kumar, M. A., Suresh, D., Lingaraju, K., Rajanaika, H., Nagabhushana, H., Sharma, S. C., Udayabhanu. Tinospora cordifolia Mediated Facile Green Synthesis of Cupric Oxide Nanoparticles and Their Photocatalytic, Antioxidant and Antibacterial Properties. Mater. Sci. Semicond. Process. 2015, 33, 81–88. DOI: 10.1016/j.mssp.2015.01.034.
  • Das, D.; Nath, B. C.; Phukon, P.; Dolui, S. K. Synthesis and Evaluation of Antioxidant and Antibacterial Behavior of CuO Nanoparticles. Colloids Surf. B Biointerfaces 2013, 101, 430–433. DOI: 10.1016/j.colsurfb.2012.07.002.
  • Yedurkar, S.; Maurya, C.; Mahanwar, P. Biosynthesis of Zinc Oxide Nanoparticles Using Ixora coccinea Leaf Extract-A Green Approach. OJSTA 2016, 05, 1–14. DOI: 10.4236/ojsta.2016.51001.
  • Xia, L.; Lenaghan, S. C.; Zhang, M.; Zhang, Z.; Li, Q. Naturally Occurring Nanoparticles from English Ivy: An Alternative to Metal-Based Nanoparticles for UV Protection. J. Nanobiotechnology 2010, 8, 12. DOI: 10.1186/1477-3155-8-12.
  • Song, J.; Kim, B. S. Rapid Biological Synthesis of Silver Nanoparticles Using Plant Leaf Extracts. Bioprocess Biosyst. Eng. 2009, 32, 79–84. DOI: 10.1007/s00449-008-0224-6.
  • Rehana, D.; Mahendiran, D.; Kumar, R. S.; Rahiman, A. K. Evaluation of Antioxidant and Anticancer Activity of Copper Oxide Nanoparticles Synthesized Using Medicinally Important Plant Extracts. Biomed. Pharmacother. 2017, 89, 1067–1077. DOI: 10.1016/j.biopha.2017.02.101.
  • Sharma, J. K.; Akhtar, M. S.; Ameen, S.; Srivastava, P.; Singh, G. Green Synthesis of CuO Nanoparticles with Leaf Extract of Calotropis gigantea and Its Dye-Sensitized Solar Cells Applications. J. Alloys Compd. 2015, 632, 321–325. DOI: 10.1016/j.jallcom.2015.01.172.
  • Sankar, R.; Manikandan, P.; Malarvizhi, V.; Fathima, T.; Shivashangari, K. S.; Ravikumar, V. Green Synthesis of Colloidal Copper Oxide Nanoparticles Using Carica papaya and Its Application in Photocatalytic Dye Degradation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 121, 746–750. DOI: 10.1016/j.saa.2013.12.020.
  • Gunalan, S.; Sivaraj, R.; Venckatesh, R. Aloe barbadensis Miller Mediated Green Synthesis of Mono-Disperse Copper Oxide Nanoparticles: Optical Properties. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 97, 1140–1144. DOI: 10.1016/j.saa.2012.07.096.
  • Naika, H. R.; Lingaraju, K.; Manjunath, K.; Kumar, D.; Nagaraju, G.; Suresh, D.; Nagabhushana, H. Green Synthesis of CuO Nanoparticles Using Gloriosa superba L. extract and Their Antibacterial Activity. J. Taibah Univ. Sci. 2015, 9, 7–12. DOI: 10.1016/j.jtusci.2014.04.006.
  • Awwad, A.; Albiss, B.; Salem, N. Antibacterial Activity of Synthesised Copper Oxide Nanoparticles Using Malva sylvestris Leaf Extract. SMU Med. J. 2015, 2, 91–101.
  • Mohan, S.; Singh, Y.; Verma, D. K.; Hasan, S. H. Synthesis of CuO Nanoparticles through Green Route Using Citrus Limon Juice and Its Application as Nanosorbent for Cr (VI) Remediation: Process Optimization with RSM and ANN-GA Based Model. Process Saf. Environ. Prot. 2015, 96, 156–166. DOI: 10.1016/j.psep.2015.05.005.
  • Sivaraj, R.; Rahman, P. K.; Rajiv, P.; Salam, H. A.; Venckatesh, R. Biogenic Copper Oxide Nanoparticles Synthesis Using Tabernaemontana divaricate Leaf Extract and Its Antibacterial Activity against Urinary Tract Pathogen. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 133, 178–181. DOI: 10.1016/j.saa.2014.05.048.
  • Chand Mali, S.; Raj, S.; Trivedi, R. Biosynthesis of Copper Oxide Nanoparticles Using Enicostemma axillare Leaf Extract. Biochem. Biophys. Rep. 2019, 20, 100699. DOI: 10.1016/j.bbrep.2019.100699.
  • Verma, N.; Kumar, N. Synthesis and Biomedical Applications of Copper Oxide Nanoparticles: An Expanding Horizon. ACS Biomater. Sci. Eng. 2019, 5, 1170–1188. DOI: 10.1021/acsbiomaterials.8b01092.
  • Chen, J.; Mao, S.; Xu, Z.; Ding, W. Various Antibacterial Mechanisms of Biosynthesized Copper Oxide Nanoparticles against Soilborne Ralstonia solanacearum. RSC Adv. 2019, 9, 3788–3799. DOI: 10.1039/C8RA09186B. DOI: 10.1039/C8RA09186B.
  • Saravanakumar, K.; Shanmugam, S.; Varukattu, N. B.; MubarakAli, D.; Kathiresan, K.; Wang, M.-H. Biosynthesis and Characterization of Copper Oxide Nanoparticles from Indigenous Fungi and Its Effect of Photothermolysis on Human Lung Carcinoma. J. Photochem. Photobiol. B 2019, 190, 103–109. DOI: 10.1016/j.jphotobiol.2018.11.017.
  • Mariadoss, A. V. A.; Saravanakumar, K.; Sathiyaseelan, A.; Venkatachalam, K.; Wang, M.-H. Folic Acid Functionalized Starch Encapsulated Green Synthesized Copper Oxide Nanoparticles for Targeted Drug Delivery in Breast Cancer Therapy. Int. J. Biol. Macromol. 2020, 164, 2073–2084. DOI: 10.1016/j.ijbiomac.2020.08.036.
  • Malabadi, R.; Chalannavar, R.; Meti, N.; Mulgund, G.; Nataraja, K.; Vijaya Kumar, S. Synthesis of Antimicrobial Silver Nanoparticles by Callus Cultures and In Vitro Derived Plants of Catharanthus roseus. Res. Pharm. 2012, 2, 18–31.
  • Raman, R. P. Applicability, Feasibility and Efficacy of Phytotherapy in Aquatic Animal Health Management. AJPS 2017, 08, 257–287. DOI: 10.4236/ajps.2017.82019.
  • Leach, A. R.; Shoichet, B. K.; Peishoff, C. E. Prediction of Protein_Ligand Interactions. Docking and Scoring: Successes and Gaps. J. Med. Chem. 2006, 49, 5851–5855. DOI: 10.1021/jm060999m.
  • Holzwarth, U.; Gibson, N. The Scherrer Equation versus the ‘Debye-Scherrer Equation’. Nat. Nanotechnol. 2011, 6, 534. DOI: 10.1038/nnano.2011.
  • Palaniappan, N.; Cole, I.; Caballero-Briones, F.; Manickam, S.; Justin Thomas, K. R.; Santos, D. Experimental and DFT Studies on the Ultrasonic Energy-Assisted Extraction of the Phytochemicals of Catharanthus roseus as Green Corrosion Inhibitors for Mild Steel in NaCl Medium. RSC Adv. 2020, 10, 5399–5411. DOI: 10.1039/C9RA08971C.
  • Nagar, N.; Devra, V. Green Synthesis and Characterization of Copper Nanoparticles Using Azadirachta indica Leaves. Mater. Chem. Phys. 2018, 213, 44–51. DOI: 10.1016/j.matchemphys.2018.04.007.
  • Tabrez, S.; Khan, A. U.; Mirza, A. A.; Suhail, M.; Jabir, N. R.; Zughaibi, T. A.; Alam, M. Biosynthesis of Copper Oxide Nanoparticles and Its Therapeutic Efficacy against Colon Cancer. Nanotechnol. Rev. 2022, 11, 1322–1331. DOI: 10.1515/ntrev-2022-0081.
  • Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 2014, 114, 7610–7630. DOI: 10.1021/cr400544s.
  • Wang, L.; Xu, J.; Yan, Y.; Liu, H.; Karunakaran, T.; Li, F. Green Synthesis of Gold Nanoparticles from Scutellaria barbata and Its Anticancer Activity in Pancreatic Cancer Cell (PANC-1). Artif. Cells Nanomed. Biotechnol. 2019, 47, 1617–1627. DOI: 10.1080/21691401.2019.1594862.
  • Zhao, C.; Zhang, X.; Zheng, Y. Biosynthesis of Polyphenols Functionalized ZnO Nanoparticles: Characterization and Their Effect on Human Pancreatic Cancer Cell Line. J. Photochem. Photobiol. B 2018, 183, 142–146. DOI: 10.1016/j.jphotobiol.2018.04.031.
  • Zielinska, E.; Zauszkiewicz-Pawlak, A.; Wojcik, M.; Inkielewicz-Stepniak, I. Silver Nanoparticles of Different Sizes Induce a Mixed Type of Programmed Cell Death in Human Pancreatic Ductal Adenocarcinoma. Oncotarget 2018, 9, 4675–4697. DOI: 10.18632/oncotarget.22563.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.