66
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Magnetic carbon nanotubes mesoporous silica nanocomposite functionalized with copper: Synthesis, characterization, and application for the efficient catalytic preparation of dihydrano-choromenes

&
Received 16 Dec 2022, Accepted 04 Jul 2023, Published online: 01 Sep 2023

References

  • Wang, C.; Wang, Z.; Li, M.; Li, M. H. Well-Aligned Polyaniline Nano-Fibril Array Membrane and Its Field Emission Property. Chem. Phys. Lett. 2001, 341, 431–434. DOI: 10.1016/S0009-2614(01)00509-7.
  • Zou, C.; Hu, J.; Su, Y.; Shao, F.; Tao, Z.; Huo, T.; Zhou, Z.; Hu, N.; Yang, Z.; Kong, E. S.-W.; Zhang, Y. Three-Dimensional Fe3O4@ Reduced Graphene Oxide Heterojunctions for High-Performance Room-Temperature NO2 Sensors. Front. Mater. 2019, 6, 195. DOI: 10.3389/fmats.2019.00195.
  • Kefayati, H.; Kohankar, A. M.; Ramzanzadeh, N.; Shariati, S.; Bazargard, S. Synthesis of Spiro [Benzochromeno [2, 3-d] Pyrimidin-Indolines] Using Fe3O4@ MCM-41-SO3H@[HMIm][HSO4] as a magnetically separable nanocatalyst. J. Mol. Liq. 2015, 209, 617–624. DOI: 10.1016/j.molliq.2015.06.007.
  • Cui, L.; Lin, H.; Yang, C.; Han, X.; Zhang, T.; Qu, F. Synthesis of Multifunctional Fe3O4@ mSiO2@ Au Core–Shell Nanocomposites for pH‐Responsive Drug Delivery. Eur. J. Inorg. Chem. 2014, 2014, 6156–6164. DOI: 10.1002/ejic.201402671.
  • Shaker, M.; Elhamifar, D. Core–Shell Structured Magnetic Mesoporous Silica Supported Schiff-Base/Pd: An Efficacious and Reusable Nanocatalyst. New J. Chem. 2020, 44, 3445–3454. DOI: 10.1039/C9NJ06250E.
  • Vahidian, M.; Elhamifar, D.; Shaker, M. Core–Shell Structured Magnetic Mesoporous Silica-Titania: A Novel, Powerful and Recoverable Nanocatalyst. Polyhedron. 2020, 178, 114326. DOI: 10.1016/j.poly.2019.114326.
  • Veysipour, S.; Nasr-Esfahani, M.; Rafiee, Z.; Eftekhari Far, B. Fe3O4@SiO2@IL-PVP Magnetic Nanoparticles: Effective Synthesis of Spirooxindoles. Iranian J. Catalysis. 2021, 11, 125–136.
  • Vaysipour, S.; Rafiee, Z.; Nasr-Esfahani, M. Synthesis and Characterization of Copper (II)-Poly (Acrylic Acid)/M-MCM-41 Nanocomposite as a Novel Mesoporous Solid Acid Catalyst for the One-Pot Synthesis of Polyhydroquinoline Derivatives. Polyhedron. 2020, 176, 114294. DOI: 10.1016/j.poly.2019.114294.
  • Shaker, M.; Elhamifar, D. Magnetic Ti-Containing Phenylene-Based Mesoporous Organosilica: A Powerful Nanocatalyst with High Recoverability. Colloids Surf. 2021, 608, 125603. DOI: 10.1016/j.colsurfa.2020.125603.
  • Rezaee Nezhad, E.; Karimian, S.; Sajjadifar, S. Imidazole Functionalized Magnetic Fe3O4 Nanoparticles a Highly Efficient and Reusable Brønsted Acid Catalyst for the Regioselective Thiocyanation of Aromatic and Heteroaromatic Compounds at Room Temperature in Water: Ethanol. Islamic Republic Iran. 2015, 26, 233–240.
  • Zhang, L.; Shah, A.; Michel, F. C. Jr, Synthesis of 5‐Hydroxymethylfurfural from Fructose and Inulin Catalyzed by Magnetically‐Recoverable Fe3O4@ SiO2@ TiO2–HPW Nanoparticles. J. Chem. Technol. Biotechnol. 2019, 94, 3393–3402. DOI: 10.1002/jctb.6153.
  • Huang, P.; Zeng, X.; Du, F.; Zhang, L.; Peng, X. Palladium Nanoparticles Anchored on Thiol Functionalized Xylose Hydrochar Microspheres: An Efficient Heterogeneous Catalyst for Suzuki Cross-Coupling Reactions. Catal. Lett. 2020, 150, 1011–1019. DOI: 10.1007/s10562-019-02984-4.
  • Kong, L.; Lu, X.; Zhang, W. Facile Synthesis of Multifunctional Multiwalled Carbon Nanotubes/Fe3O4 Nanoparticles/Polyaniline Composite Nanotubes. J. Solid State Chem. 2008, 181, 628–636. DOI: 10.1016/j.jssc.2008.01.006.
  • Kim, B.; Sigmund, W. Functionalized Multiwall Carbon Nanotube/Gold Nanoparticle Composites. Langmuir. 2004, 20, 8239–8242. DOI: 10.1021/la049424n.
  • Li, C.; Tang, Y.; Yao, K.; Zhou, F.; Ma, Q.; Lin, H.; Tao, M.; Liang, J. Decoration of Multiwall Nanotubes with Cadmium Sulfide Nanoparticles. Carbon. 2006, 44, 2021–2026. DOI: 10.1016/j.carbon.2006.01.033.
  • Qu, L.; Dai, L.; Osawa, E. Shape/Size-Controlled Syntheses of Metal Nanoparticles for Site-Selective Modification of Carbon Nanotubes. J. Am. Chem. Soc. 2006, 128, 5523–5532. DOI: 10.1021/ja060296u.
  • Shan, Y.; Gao, L. Formation and Characterization of Multi-Walled Carbon Nanotubes/Co3O4 Nanocomposites for Supercapacitors. Mater. Chem. Phys. 2007, 103, 206–210. DOI: 10.1016/j.matchemphys.2007.02.038.
  • Jiang, K.; Eitan, A.; Schadler, L. S.; Ajayan, P. M.; Siegel, R. W.; Grobert, N.; Mayne, M.; Reyes-Reyes, M.; Terrones, H.; Terrones, M. Selective Attachment of Gold Nanoparticles to Nitrogen-Doped Carbon Nanotubes. Nano Lett. 2003, 3, 275–277. DOI: 10.1021/nl025914t.
  • Hu, X.; Wang, T.; Qu, T.; Dong, S. In Situ Synthesis and Characterization of Multiwalled Carbon Nanotube/Au Nanoparticle Composite Materials. J. Phys. Chem. B. 2006, 110, 853–857. DOI: 10.1021/jp055834o.
  • Hu, X.; Wang, T.; Wang, L.; Guo, S.; Dong, S. A General Route to Prepare One-and Three-Dimensional Carbon Nanotube/Metal Nanoparticle Composite Nanostructures. Langmuir. 2007, 23, 6352–6357. DOI: 10.1021/la063246b.
  • Ma, D.; Su, Y.; Tian, T.; Yin, H.; Huo, T.; Shao, F.; Yang, Z.; Hu, N.; Zhang, Y. Highly Sensitive Room-Temperature NO2 Gas Sensors Based on Three-Dimensional Multiwalled Carbon Nanotube Networks on SiO2 Nanospheres. ACS Sustain. Chem. Eng. 2020, 8, 13915–13923. DOI: 10.1021/acssuschemeng.0c02707.
  • Saini, P.; Choudhary, V.; Singh, B.; Mathur, R.; Dhawan, S. Enhanced Microwave Absorption Behavior of polyaniline-CNT/Polystyrene Blend in 12.4–18.0 GHz Range. Synth. Met. 2011, 161, 1522–1526. DOI: 10.1016/j.synthmet.2011.04.033.
  • Rahmawati, R, Melati, A, Taufiq, A, Diantoro, M, Yuliarto, B, Suyatman, S, Nugraha, N, Kurniadi, D, Sunaryono. Preparation of MWCNT-Fe3O4 Nanocomposites from Iron Sand Using Sonochemical Route. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 202, 012013. DOI: 10.1088/1757-899X/202/1/012013.
  • Singh, R. M.; Srivastava, Z.; Sood, A. K.; Gupta, S.; Singh, R. K. R.; Matharu, Z.; Srivastava, A. K.; Seema Sood, R. Nanostructured Platform for the Detection of Neisseria Gonorrhoeae Using Electrochemical Impedance Spectroscopy and Differential Pulse Voltammetry. Microchim Acta. 2012, 177, 201–210. DOI: 10.1007/s00604-012-0765-x.
  • Gholinejad, M. C.; Najera, C. F.; Hamed, F.; Seyedhamzeh, M.; Bahrami, M.; Kompany-Zareh, M. Green Synthesis of Carbon Quantum Dots from Vanillin for Modification of Magnetite Nanoparticles and Formation of Palladium Nanoparticles: Efficient Catalyst for Suzuki Reaction. Tetrahedron. 2017, 73, 5585–5592. DOI: 10.1016/j.tet.2016.11.014.
  • Veisi, H.; Gholami, J.; Ueda, H.; Mohammadi, P.; Noroozi, M. Magnetically Palladium Catalyst Stabilized by Diaminoglyoxime-Functionalized Magnetic Fe3O4 Nanoparticles as Active and Reusable Catalyst for Suzuki Coupling Reactions. Mol. Catal. A: Chem. 2015, 396, 216–223. DOI: 10.1016/j.molcata.2014.10.012.
  • Maes, D.; Riveiro, M. E.; Shayo, C.; Davio, C.; Debenedetti, C.; De Kimpe, N. Total Synthesis of Naturally Occurring 5, 6, 7-and 5, 7, 8-Trioxygenated Coumarins. Tetrahedron. 2008, 64, 4438–4443. DOI: 10.1016/j.tet.2008.02.059.
  • Demyttenaere, J.; Vervisch, S.; Debenedetti, S.; Coussio, J.; Maes, D.; De Kimpe, N. Synthesis of Virgatol and Virgatenol, Two Naturally Occurring Coumarins from Pterocaulon Virgatum (L.) DC, and 7-(2, 3-Epoxy-3-Methylbutoxy)-6-Methoxycoumarin, Isolated from Conyza Obscura DC. Synthesis. 2004, 11, 1844–1848.
  • Gammon, D.; Hunter, W.; Wilson, S. A. An Efficient Synthesis of 7-Hydroxy-2, 6-Dimethylchromeno [3, 4-d] Oxazol-4-One—a Protected Fragment of Novenamine. Tetrahedron. 2005, 61, 10683–10688. DOI: 10.1016/j.tet.2005.08.083.
  • Athanasellis, G.; Melagraki, G.; Chatzidakis, H.; Afantitis, A.; Detsi, A.; Igglessi-Markopoulou, O.; Markopoulos, J. Novel Short-Step Synthesis of Functionalized γ-Phenyl-β-Hydroxybutenoates and Their Cyclization to 4-Hydroxycoumarins via the N-Hydroxybenzotriazole Methodology. Synthesis. 2004, 2004, 1775–1782. DOI: 10.1055/s-2004-829132.
  • Schlosser, M. Parametrization of Substituents: Effects of Fluorine and Other Heteroatoms on OH, NH, and CH Acidities. Angew. Chem. Int. Ed. 1998, 37, 1496–1513. DOI: 10.1002/(SICI)1521-3773(19980619)37:11<1496::AID-ANIE1496>3.0.CO;2-U.
  • Thirupathi, P.; Kim, S. S. Fe (ClO4) 3·× H2O-Catalyzed Direct C–C Bond Forming Reactions between Secondary Benzylic Alcohols with Different Types of Nucleophiles. Tetrahedron. 2010, 66, 2995–3003. DOI: 10.1016/j.tet.2010.02.063.
  • Upadhyay, P. K.; Kumar, P. A. novel Synthesis of Coumarins Employing Triphenyl (α-Carboxymethylene) Phosphorane Imidazolide as a C-2 Synthon. Tetrahedron Lett. 2009, 50, 236–238. DOI: 10.1016/j.tetlet.2008.10.133.
  • Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Synthesis and Pharmacological Activity of 2-Oxo-(2H) 1-Benzopyran-3-Carboxamide Derivatives. Eur. J. Med. Chem. 1993, 28, 517–520. DOI: 10.1016/0223-5234(93)90020-F.
  • Niknam, K.; Piran, A. Silica-Grafted Ionic Liquids as Recyclable Catalysts for the Synthesis of 3, 4-Dihydropyrano [c] Chromenes and Pyra-No [2, 3-c] Pyrazoles. GSC. 2013, 03, 1–8. DOI: 10.4236/gsc.2013.32A001.
  • Aghahosseini, H.; Ramazani, A.; Ślepokura, K.; Lis, T.; Joo, S. W. Synthesis and X-Ray Single Crystal Structure Analysis of a New 2-Chlorobenzyl Ammonium Salt of Phosphonic Acid. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 638–642. DOI: 10.1080/10426507.2017.1284837.
  • Mondal, R. K.; Riyajuddin, S.; Ghosh, A.; Ghosh, S.; Ghosh, K.; Islam, S. M. Magnetic Molecularly Imprinted Polymers Based on Carbon Nanotubes for Extraction of Carbamates. J. Organomet. Chem. 2019, 880, 322–332. DOI: 10.1016/j.jorganchem.2018.11.026.
  • Saberi, R.; Nasr-Esfahani, M. Magnetic Carbon Nanotubes Mesoporous Silica Nanocomposite Functionalized with Palladium: Synthesis, Characterization, and Application as an Efficient Catalyst for Suzuki–Miyaura Reactions. J. Cluster Sci. 2023, 172, 1–9.
  • Neysi, M.; Elhamifar, D. Pd-Containing Magnetic Periodic Mesoporous Organosilica Nanocomposite as an Efficient and Highly Recoverable Catalyst. Sci. Rep. 2022, 12, 7970. DOI: 10.1038/s41598-022-11918-x.
  • Arvand, M.; Hassannezhad, M. Magnetic Core-Shell Fe3O4@SiO2/MWCNT Nanocomposite Modified Paste Electrode for Amplified Electrochemical Sensing Ofuric Acid. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 36, 160–167. DOI: 10.1016/j.msec.2013.12.014.
  • Eftekhari Far, B.; Nasr-Esfahani, M. Synthesis, Characterization and Application of Fe3O4@ SiO2@ CPTMO@ DEA‐SO3H Nanoparticles Supported on Bentonite Nanoclay as a Magnetic Catalyst for the Synthesis of 1, 4‐Dihydropyrano [2, 3‐c] Pyrazoles. Appl. Organomet. Chem. 2022, 34, e5406.
  • Sharghi, H.; Razavi, S. F.; Aberi, M.; Sabzalizadeh, F.; Karbalaei-Heidari, H. R. Nanostructured Coumarin-Based Cobalt Complex as an Efficient, Heterogeneous and Recyclable Catalyst for the Three-Component Synthesis of Benzo [b] Pyran and 3, 4-Dihydropyrano [c] Chromene Derivatives. J. Iran Chem. SOC. 2021, 18, 1641–1655. DOI: 10.1007/s13738-020-02136-1.
  • Abdolmohammadi, S.; Balalaie, S. Novel and Efficient Catalysts for the One-Pot Synthesis of 3, 4-Dihydropyrano [c] Chromene Derivatives in Aqueous Media. Tetrahedron Lett. 2007, 48, 3299–3303. DOI: 10.1016/j.tetlet.2007.02.135.
  • Mehrabi, H.; Abusaidi, H. Synthesis of Biscoumarin and 3, 4-Dihydropyrano [c] Chromene Derivatives Catalysed by Sodium Dodecyl Sulfate (SDS) in Neat Water. JICS. 2010, 7, 890–894. DOI: 10.1007/BF03246084.
  • Khurana, J. M.; Nand, B.; Saluja, P. DBU: A Highly Efficient Catalyst for One-Pot Synthesis of Substituted 3, 4-Dihydropyrano [3, 2-c] Chromenes, Dihydropyrano [4, 3-b] Pyranes, 2-Amino-4H-Benzo [h] Chromenes and 2-Amino-4H Benzo[g]Chromenes in Aqueous Medium. Tetrahedron. 2010, 66, 5637–5641. DOI: 10.1016/j.tet.2010.05.082.
  • Maleki, B. Green Synthesis of bis-Coumarin and Dihydropyrano [3, 2-c] Chromene Derivatives Catalyzed by o-Benzenedisulfonimide. Org. Prep. Proced. Int. 2016, 48, 303–318. DOI: 10.1080/00304948.2016.1165061.
  • Wang, Y.; Ye, H.; Zuo, G.; Luo, J. Synthesis of a Novel Poly (Ethylene Glycol) Grafted N, N-Dimethylaminopyridine Functionalized Dicationic Ionic Liquid and Its Application in One-Pot Synthesis of 3, 4-Dihydropyrano [3, 2-c] Chromene Derivatives in Water. J. Mol. Liq. 2015, 212, 418–422. DOI: 10.1016/j.molliq.2015.09.030.
  • Norouzi, M.; Elhamifar, D. Ionic Liquid-Modified Magnetic Mesoporous Silica Supported Tungstate: A Powerful and Magnetically Recoverable Nanocatalyst. Compos. Part B. 2019, 176, 107308. DOI: 10.1016/j.compositesb.2019.107308.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.