63
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Potential efficacy of bimetallic nanoparticles synthesized from extracellular cell-free extract of Penicillium citrinum against Culex quinquefasciatus mosquito larvae, and their photocatalytic activity

, , , &
Received 14 Feb 2023, Accepted 02 May 2024, Published online: 31 May 2024

References

  • Soliman, A. M.; Abdel-Latif, W.; Shehata, I. H.; Fouda, A.; Abdo, A. M.; Ahmed, Y. M. Green Approach to Overcome the Resistance Pattern of Candida Spp. Using Biosynthesized Silver Nanoparticles Fabricated by Penicillium chrysogenum F9. Biol. Trace Elem. Res. 2021, 199, 800–811. DOI: 10.1007/s12011-020-02188-7.
  • Jayabalan, J.; Mani, G.; Krishnan, N.; Pernabas, J.; Devadoss, J. M.; Jang, H. T. Green Biogenic Synthesis of Zinc Oxide Nanoparticles Using Pseudomonas putida Culture and Its in Vitro Antibacterial and Anti-Biofilm Activity. Biocatal. Agric. Biotechnol. 2019, 21, 101327. DOI: 10.1016/j.bcab.2019.101327.
  • Shaheen, T. I.; Fouda, A.; Salem S. S. Integration of Cotton Fabrics with Biosynthesized CuO Nanoparticles for Bactericidal Activity in the Terms of Their Cytotoxicity Assessment. Ind. Eng. Chem. Res. 2021, 60, 1553–1563. DOI: 10.1021/acs.iecr.0c04880.
  • Hameed, A. S. H.; Karthikeyan C.; Ahamed, A. P.; Thajuddin, N.; Alharbi, N. S.; Alharbi, S. A.; Ravi, G. In Vitro Antibacterial Activity of ZnO and Nd Doped Zno Nanarticles against ESBL Producing Escherichia coli and Klebsiella pneumoniae. Sci. Rep. 2016, 6, 24312. DOI: 10.1038/srep24312.
  • Abdo, A.; M. Fouda, A. Eid, A. M. Fahmy, N. M.; El-Sayed, A. M. Khalil, A. M. Alzahrani, O. M. Ahmed, A. F. Soliman Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) by Pseudomonas aeruginosa and Their Activity against Pathogenic Microbes and Common House Mosquito, Culex pipiens. Materials 2021, 14, 6983. DOI: 10.3390/ma14226983.
  • Aman, G.; Narendra Kumar, J. Advances in Green Synthesis of Nanoparticles. Artif Cells. Nanomed. Biotechnol. 2019, 47, 844–851. DOI: 10.1080/21691401.2019.1577878.
  • Ameen, F.; Dawoud, T.; AlNadhari, S. Ecofriendly and Low-Cost Synthesis of Zno Nanoparticles from Acremonium Potronii for the Photocatalytic Degradation of Azo Dyes. Environ. Res. 2021, 202, 111700. DOI: 10.1016/j.envres.2021.111700.
  • Arunthirumeni, M.; Veerammal, V.; Shivakumar, M. S. Biocontrol Efficacy of Mycosynthesized Selenium Nanoparticle Using Trichoderma sp. on Insect Pest Spodoptera litura. J. Clust. Sci. 2022, 33, 1645–1653. DOI: 10.1007/s10876-021-02095-4.
  • Patel, M.; Surti, M.; Siddiqui, A. J.; Adnan, M. Fungi and Metal Nanoparticles. In Handbook of Greener Synthesis of Nanomaterials and Compounds. Elsevier, 2021, pp. 861–890. DOI: 10.1016/B978-0-12-821938-6.00027-X.
  • Lee, H.; Halverson, S.; Ezinwa, N. Mosquito-Borne Diseases. Prim. Care. 2018, 45, 393–407. DOI: 10.1016/j.pop.2018.05.001.
  • World Health Organization. 2022. Lymphatic Filariasis. www.who.int/mediacentre/factsheets/fs102/en/.
  • Awad, M. A.; Eid, A. M.; Elsheikh, T. M.; Al-Faifi, Z. E.; Saad, N.; Sultan, M. H.; Selim, S.; Al-Khalaf, A. H.; Fouda; A.; Mycosynthesis. Characterization, and Mosquitocidal Activity of Silver Nanoparticles Fabricated by Aspergillus niger Strain. J. Fungi 2022, 8, 396. DOI: 10.3390/jof8040396.
  • Katusele, M.; Lagur, S.; Endersby-Harshman, N.; Demok, S.; Goi, J.; Vincent, N.; Sakur, M.; Dau, A.; Kilepak, L.; Gideon, S.; et al. Insecticide Resistance Status of Aedes aegypti and Aedes albopictus Mosquitoes in Papua New Guinea. Parasit. Vectors 2019, 15, 426. DOI: 10.1186/s13071-022-05493-3.
  • Muthusamy, R.; Shivakumar, M. S. Effect of Lambda Cyhalothrin and Temephos on Detoxification Enzyme Systems in Culex quinquefasciatus (Diptera: Culicidae). J. Environ. Biol. 2015, 36, 235.
  • Smith, L. B.; Kasai, S.; Scott, J. G. Pyrethroid Resistance in Aedes aegypti and Aedes albopictus: Important Mosquito Vectors of Human Diseases. Pestic. Biochem. Physiol. 2016, 133, 1–12. DOI: 10.1016/j.pestbp.2016.03.005.
  • Chamnanya, S.; Yanola, J.; Nachaiwieng, W.; Lumjuan, N.; Walton, C.; Somboon, P. Novel Real-Time PCR Assay Detects Widespread Distribution of Knock down Resistance (Kdr) Mutations Associated with Pyrethroid Resistance in the Mosquito, Culex quinquefasciatus, in Thailand. Pestic. Biochem. Physiol. 2022, 186, 105172. DOI: 10.1016/j.pestbp.2022.105172.
  • Omotayo, A. I.; Dogara, M. M.; Sufi, D.; Shuaibu, T.; Balogun, J.; Dawaki, S.; Muktar, B.; Adeniyi, K.; Garba, N.; Namadi, I.; et al. High Pyrethroid-Resistance Intensity in Culex quinquefasciatus (Say)(Diptera: Culicidae) Populations from Jigawa, North-West, Nigeria. PLoS Negl. Trop. Dis. 2022, 16, e0010525. DOI: 10.1371/journal.pntd.0010525.
  • Algethami, F. K.; Katouah, H. A.; Al-Omar, M. A.; Almehizia, A. A.; Amr, A. E.; Naglah, A. M., Al-Shakliah, N. S., Fetoh, M. E., Youssef, H. M. Facile Synthesis of Magnesium Oxide Nanoparticles for Studying Their Photocatalytic Activities against Orange G Dye and Biological Activities against Some Bacterial and Fungal Strains. J. Inorg. Organomet. Polym. 2021, 31, 2150–2160. DOI: 10.1007/s10904-021-01920-7.
  • Saravanan, A.; Kumar, P. S.; Vo, D.-V. N.; Yaashikaa, P. R.; Karishma, S.; Jeevanantham, S.; Gayathri, B.; Bharathi, V. D. Photocatalysis for Removal of Environmental Pollutants and Fuel Production: A Review. Environ. Chem. Lett. 2021, 19, 441–463. DOI: 10.1007/s10311-020-01077-8.
  • Saravanan, A.; Kumar, P. S.; Jeevanantham, S.; Anubha, M.; Jayashree, S. Degradation of Toxic Agrochemicals and Pharmaceutical Pollutants: Effective and Alternative Approaches toward Photocatalysis. Environ. Pollut. 2022, 298, 118844. DOI: 10.1016/j.envpol.2022.118844.
  • El-Sayed, A.; Kamel, M. Advanced Applications of Nanotechnology in Veterinary Medicine. Environ. Sci. Pollut. Res. Int. 2020, 27, 19073–19086. DOI: 10.1007/s11356-018-3913-y.
  • Athanassiou, C. G.; Kavallieratos, N. G.; Benelli, G.; Losic, D.; Usha Rani, P.; Desneux, N. Nanoparticles for Pest Control: Current Status and Future Perspectives. J. Pest Sci. 2018, 91, 1–15. DOI: 10.1007/s10340-017-0898-0.
  • Morad, M. Y.; El-Sayed, H.; Elhenawy, A. A.; Korany, S. M.; Aloufi, A. S.; Ibrahim, A. M. Myco-Synthesized Molluscicidal and Larvicidal Selenium Nanoparticles: A New Strategy to Control Biomphalaria alexandrina Snails and Larvae of Schistosoma mansoni with an in Silico Study on Induced Oxidative Stress. J. Fungi 2022, 8, 262. DOI: 10.3390/jof8030262.
  • Arunthirumeni, M.; Vinitha, G.; Shivakumar, M. S. Antifeedant and Larvicidal Activity of Bioactive Compounds Isolated from Entomopathogenic Fungi Penicillium sp. for the Control of Agricultural and Medically Important Insect Pest (Spodoptera litura and Culex quinquefasciatus). Parasitol. Int. 2023, 92, 102688. DOI: 10.1016/j.parint.2022.102688.
  • Banu, A. N.; Balasubramanian, C. Optimization and Synthesis of Silver Nanoparticles Using Isaria fumosorosea against Human Vector Mosquitoes. Parasitol. Res. 2014, 113, 3843–3851. DOI: 10.1007/s00436-014-4052-0.
  • Kalaimurugan, D.; Sivasankar, P.; Lavanya, K.; Shivakumar, M. S.; Venkatesan, S. Antibacterial and Larvicidal Activity of Fusarium proliferatum (YNS2) Whole Cell Biomass Mediated Copper Nanoparticles. J. Clust. Sci. 2019, 30, 1071–1080. DOI: 10.1007/s10876-019-01568-x.
  • Kumaravel, J.; Lalitha, K.; Arunthirumeni, M.; Shivakumar, M. S. Mycosynthesis of Bimetallic Zinc Oxide and Titanium Dioxide Nanoparticles for Control of Spodoptera frugiperda. Pestic. Biochem. Physiol. 2021, 178, 104910. DOI: 10.1016/j.pestbp.2021.104910.
  • Salem, S. S.; Fouda, M. M.; Fouda, A.; Awad, M. A.; Al-Olayan, E. M.; Allam, A. A.; Shaheen, T. I. Antibacterial, Cytotoxicity and Larvicidal Activity of Green Synthesized Selenium Nanoparticles Using Penicillium corylophilum. J. Clust. Sci. 2020, 32, 351–361. DOI: 10.1007/s10876-020-01794-8.
  • Soni, N.; Prakash, S. Synthesis of Gold Nanoparticles by the Fungus Aspergillus Niger and Its Efficacy against Mosquito Larvae. RIP. 2012, 2, 1–7. DOI: 10.2147/RIP.S29033.
  • Vivekanandhan, P.; Deepa, S.; Kweka, E. J.; Shivakumar, M. S. Toxicity of Fusarium oxysporum-VKFO-01 Derived Silver Nanoparticles as Potential Inseciticide against Three Mosquito Vector Species (Diptera: Culicidae). J. Clust. Sci. 2018, 29, 1139–1149. DOI: 10.1007/s10876-018-1423-1.
  • Balumahendhiran, K.; Vivekanandhan, P.; Shivakumar, M. S. Mosquito Control Potential of Secondary Metabolites Isolated from Aspergillus flavus and Aspergillus fumigatus. Biocatal. Agric. Biotechnol. 2019, 21, 101334. DOI: 10.1016/j.bcab.2019.101334.
  • Sette, L. D.; Passarini, M. R. Z.; Delarmelina, C.; Salati, F.; Duarte, M. C. T. Molecular Characterization and Antimicrobial Activity of Endophytic Fungi from Coffee Plants. World J. Microbiol. Biotechnol. 2006, 22, 1185–1195. DOI: 10.1007/s11274-006-9160-2.
  • Logeswaran, C.; Vivekanandhan, P.; Shivakumar, M. S. Chemical Constituents of Thermal Stress Induced Ganoderma Applantum (per.) Secondary Metabolites on Larvae of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus and Histopathological Effects in Mosquito Larvae. Biocatal. Agric. Biotechnol. 2019, 20, 101253. DOI: 10.1016/j.bcab.2019.101253.
  • Danagoudar, A.; Pratap, G. K.; Shantaram, M.; Ghosh, K.; Kanade, S. R.; Joshi, C. G. Characterization, Cytotoxic and Antioxidant Potential of Silver Nanoparticles Biosynthesised Using Endophytic Fungus (Penicillium citrinum CGJ-C1). Mater. Today Commun. 2020, 25, 101385. DOI: 10.1016/j.mtcomm.2020.101385.
  • Coutinho, T. C.; Ferreira, M. C.; Rosa, L. H.; de Oliveira, A. M.; Oliveira Júnior, E. N. d Penicillium citrinum and Penicillium mallochii: New Phytopathogens of Orange Fruit and Their Control Using Chitosan. Carbohydr. Polym. 2020, 234, 115918. DOI: 10.1016/j.carbpol.2020.115918.
  • Heperkan, D.; Dazkır, G. S.; Kansu, D. Z.; Karbancıoglu Güler, F.) Influence of Temperature on Citrinin Accumulation by Penicillium citrinum and Pecillium verrucosum in Black Table Olives. Toxin. Rev. 2009, 28, 180–186. DOI: 10.1080/15569540903084982.
  • Al-Hadded, J.; Alzaabi, F.; Pal, P.; Rambabu, K.; Banat, F. Green Synthesis of Bimetallic Copper–Silver Nanoparticles and Their Application in Catalytic and Antibacterial Activities. Clean Technol. Environ. Policy 2019, DOI: 10.1007/s10098-019-01765-2.
  • Phoohinkong, W.; Foophow, T.; Pecharapa, W. Synthesis and Characterization of Copper Zinc Oxide Nanoparticles Obtained via Metathesis Process. Adv. Nat. Sci: Nanosci. Nanotechnol. 2017, 8, 035003. DOI: 10.1088/2043-6254/aa7223.
  • Seetharaman, P. K.; Chandrasekaran, R.; Gnanasekar, S.; Chandrakasan, G.; Gupta, M.; Manikandan, D. B.; Sivaperumal, S. Antimicrobial and Larvicidal Activity of Eco-Friendly Silver Nanoparticles Synthesized from Endophytic Fungi Phomopsis liquidambaris. Biocatal. Agric. Biotechnol. 2018, 16, 22–30. DOI: 10.1016/j.bcab.2018.07.006.
  • Li, J. F.; Rupa, E. J.; Hurh, J.; Huo, Y.; Chen, L.; Han, Y.; Ahn, J. c.; Park, J. K.; Lee, H. A.; Mathiyalagan, R.; Yang, D.-C. Cordyceps militaris Fungus Mediated Zinc Oxide Nanoparticles for the Photocatalytic Degradation of Methylene Blue Dye. Optik 2019, 183, 691–697. DOI: 10.1016/j.ijleo.2019.02.081.
  • Suganya, S.; Senthil Kumar, P.; Saravanan, A. Construction of Active Bio‐Nanocomposite by Inseminated Metal Nanoparticles onto Activated Carbon: Probing to Antimicrobial Activity. IET Nanobiotechnol. 2017, 11, 746–753. DOI: 10.1049/iet-nbt.2016.0234.
  • Saravanan, A.; Kumar, P. S.; Jeevanantham, S.; Karishma, S.; Kiruthika, A. R. Photocatalytic Disinfection of Micro-Organisms: Mechanisms and Applications. Environ. Technol. Innov 2021, 24, 101909. DOI: 10.1016/j.eti.2021.101909.
  • Fouda, A.; Hassan, S. E.; Eid, A. M.; Abdel‐Rahman, M. A.; Hamza, M. F. Light Enhanced the Antimicrobial, Anticancer, and Catalytic Activities of Selenium Nanoparticles Fabricated by Endophytic Fungal Strain, Penicillium Crustosum EP-1. Sci. Rep. 2022, 12, 11834. DOI: 10.1038/s41598-022-15903-2.
  • Islam, S. N.; Naqvi, S. M. A.; Parveen, S.; Ahmad, A. Endophytic Fungus-Assisted Biosynthesis, Characterization and Solar Photocatalytic Activity Evaluation of Nitrogen-Doped Co3O4 Nanoparticles. Appl. Nanosci. 2021, 11, 1651–1659. DOI: 10.1007/s13204-021-01824-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.