25
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The role of biomaterial constituents of Jasminum sambac (L.) Aiton leaves in copper nanoparticles synthesis and evaluates their activities as anti-breast cancer and antibacterial agents

&
Received 21 Feb 2023, Accepted 04 May 2024, Published online: 06 Jun 2024

References

  • Bapat, R. A.; Joshi, C. P.; Bapat, P.; Chaubal, T. V.; Pandurangappa, R.; Jnanendrappa, N.; Gorain, B.; Khurana, S.; Kesharwani, P. The Use of Nanoparticles as Biomaterials in Dentistry. Drug Discov. Today 2019, 24, 85–98. DOI: 10.1016/j.drudis.2018.08.012.
  • Govindappa, M., Farheen, H., Chandrappa, C. P., Rai, R. V., Raghavendra, V. B. Mycosynthesis of Silver Nanoparticles Using Extract of Endophytic Fungi, Penicillium Species of Glycosmis Mauritiana, and Its Antioxidant, Antimicrobial, Anti-Inflammatory and Tyrokinase Inhibitory Activity. Adv. Nat. Sci: Nanosci. Nanotechnol. 2016, 7(3), 035014. DOI: 10.1088/2043-6262/7/3/035014.
  • Cuevas, R.; Durán, N.; Diez, M.; Tortella, G.; Rubilar, O. Extracellular Biosynthesis of Copper and Copper Oxide Nanoparticles by Stereum Hirsutum, a Native White-Rot Fungus from chilean Forests. J. Nanomater. 2015, 2015, 1–7. DOI: 10.1155/2015/789089.
  • Balasooriya, E. R.; Jayasinghe, C. D.; Jayawardena, U. A.; Ruwanthika, R. W. D.; Mendis de Silva, R.; Udagama, P. V. Honey Mediated Green Synthesis of Nanoparticles: New Era of Safe Nanotechnology. J. Nanomater. 2017, 2017, 1–10. DOI: 10.1155/2017/5919836.
  • Wang, Y.; Maksimuk, S.; Shen, R.; Yang, H. Synthesis of Iron Oxide Nanoparticles Using a Freshly-Made or Recycled Imidazolium-Based Ionic Liquid. Green Chem. 2007, 9, 1051–1056. DOI: 10.1039/b618933d.
  • Alsammarraie, F. K.; Wang, W.; Zhou, P.; Mustapha, A.; Lin, M. Green Synthesis of Silver Nanoparticles Using Turmeric Extracts and Investigation of Their Antibacterial Activities. Colloids Surf. B Biointerfaces 2018, 171, 398–405. DOI: 10.1016/j.colsurfb.2018.07.059.
  • Ying, S.; Guan, Z.; Ofoegbu, P. C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green Synthesis of Nanoparticles: Current Developments and Limitations. Environmental Technology & Innovation 2022, 26, 102336. DOI: 10.1016/j.eti.2022.102336.
  • Horwat, D.; Zakharov, D. I.; Endrino, J. L.; Soldera, F.; Anders, A.; Migot, S.; Karoum, R.; Vernoux, P.; Pierson, J. F. Chemistry, Phase Formation, and Catalytic Activity of Thin Palladium-Containing Oxide Films Synthesized by Plasma-Assisted Physical Vapor Deposition. Surf. Coat. Technol. 2011, 205, S171–S177. DOI: 10.1016/j.surfcoat.2010.12.021.
  • Hoag, G. E.; Collins, J. B.; Holcomb, J. L.; Hoag, J. R.; Nadagouda, M. N.; Varma, R. S. Degradation of Bromothymol Blue by ‘Greener’ Nano-Scale Zero-Valent Iron Synthesized Using Tea Polyphenols. J. Mater. Chem. 2009, 19, 8671–8677. DOI: 10.1039/b909148c.
  • Ahmed, S.; Ikram, S. Silver Nanoparticles: One Pot Green Synthesis Using Terminalia Arjuna Extract for Biological Application. J. Nanomed. Nanotechnol. 2015, 6, DOI: 10.4172/2157-7439.1000309.
  • Kumar, P.; Shameem, U.; Kollu, P.; Kalyani, R.; Pammi, S. Green Synthesis of Copper Oxide Nanoparticles Using Aloe Vera Leaf Extract and Its Antibacterial Activity Against Fish Bacterial Pathogens. BioNanoSci. 2015, 5, 135–139. DOI: 10.4172/2157-7439.1000309.
  • Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in Copper Complexes as Anticancer Agents. Chem. Rev. 2014, 114, 815–862. DOI: 10.1021/cr400135x.
  • Harne, S.; Sharma, A.; Dhaygude, M.; Joglekar, S.; Kodam, K.; Hudlikar, M. Novel Route for Rapid Biosynthesis of Copper Nanoparticles Using Aqueous Extract of Calotropis Procera L. latex and Their Cytotoxicity on Tumor Cells. Colloids Surf. B Biointerfaces 2012, 95, 284–288. DOI: 10.1016/j.colsurfb.2012.03.005.
  • Liu, Y.; Miyoshi, H.; Nakamura, M. Nanomedicine for Drug Delivery and Imaging: A Promising Avenue for Cancer Therapy and Diagnosis Using Targeted Functional Nanoparticles. Int. J. Cancer 2007, 120, 2527–2537. DOI: 10.1002/ijc.22709.
  • Porcel, E.; Liehn, S.; Remita, H.; Usami, N.; Kobayashi, K.; Furusawa, Y.; Le Sech, C.; Lacombe, S. Platinum Nanoparticles: A Promising Material for Future Cancer Therapy? Nanotechnology 2010, 21, 85103. DOI: 10.1088/0957-4484/21/8/085103.
  • Bhavyasree, P.; Xavier, T. A Critical Green Biosynthesis of Novel CuO/C Porous Nanocomposite via the Aqueous Leaf Extract of Ficus Religiosa and Their Antimicrobial, Antioxidant, and Adsorption Properties. Chem. Eng. J. Adv. 2021, 8, 100152. DOI: 10.1016/j.ceja.2021.100152.
  • Singh, P.; Garg, A.; Pandit, S.; Mokkapati, V.; Mijakovic, I. Antimicrobial Effects of Biogenic Nanoparticles. Nanomaterials (Basel) 2018, 8, 1009. DOI: 10.3390/nano8121009.
  • Varghese, B.; Kurian, M.; Krishna, S.; Athira, T. Biochemical Synthesis of Copper Nanoparticles Using Zingiber Officinalis and Curcuma Longa: Characterization and Antibacterial Activity Study. Mater. Today: Proc. 2020, 25, 302–306. DOI: 10.1016/j.matpr.2020.01.476.
  • Akhavan, O.; Ghaderi, E. Cu and CuO Nanoparticles Immobilized by Silica Thin Films as Antibacterial Materials and Photocatalysts. Surf. Coat. Technol. 2010, 205, 219–223. DOI: 10.1016/j.surfcoat.2010.06.036.
  • Giannousi, K.; Pantazaki, A.; Dendrinou-Samara, C. Copper-Based Nanoparticles as Antimicrobials. In Nanostructures for Antimicrobial Therapy, Ficai, A., Grumezescu, A. M., Eds.; Elsevier: Netherlands, 2017; pp. 515–529.
  • Beveridge, T.; Murray, R. Sites of Metal Deposition in the Cell Wall of Bacillus subtilis. J. Bacteriol. 1980, 141, 876–887. DOI: 10.1128/jb.141.2.876-887.
  • Liang, X.; Sun, M.; Li, L.; Qiao, R.; Chen, K.; Xiao, Q.; Xu, F. Preparation and Antibacterial Activities of Polyaniline/Cu 0.05 Zn 0.95 O Nanocomposites. Dalton Trans. 2012, 41, 2804–2811. DOI: 10.1039/C2DT11823H.
  • Bidan, A. K.; Al-Ali, Z. S. A. Biomedical Evaluation of Biosynthesized Silver Nanoparticles by Jasminum sambac (L.) Aiton Against Breast Cancer Cell Line, and Both Bacterial Strains Colonies. Int. J. Nanosci. 2022, 21, 2250042. DOI: 10.1142/S0219581X2.[Mismatch] 25004 29
  • Bidan, A. K.; Al-Ali, Z. S. Oleic and Palmitic Acids with Bioderivatives Essential Oils Synthesized of Spherical Gold Nanoparticles and Its Anti-Human Breast Carcinoma MCF-7 in Vitro Examination. BioNanoSci. 2023, 13, 2293–2306. DOI: 10.1007/s12668-023-01172-4.
  • Wiersema, J.; Taxonomy, G. US National Plant Germplasm System. Checklist dataset. 2019.
  • Manukumar, H.; Umesha, S.; Kumar, H. N. Promising Biocidal Activity of Thymol Loaded Chitosan Silver Nanoparticles (TC@ AgNPs) as anti-Infective Agents against Perilous Pathogens. Int. J. Biol. Macromol. 2017, 102, 1257–1265. DOI: 10.1016/j.ijbiomac.2017.05.030.
  • Vistica, D. T.; Skehan, P.; Scudiero, D.; Monks, A.; Pittman, A.; Boyd, M. R. Tetrazolium-Based Assays for Cellular Viability: A Critical Examination of Selected Parameters Affecting Formazan Production. Cancer Res. 1991, 51, 2515–2520.
  • Singh, N. P.; McCoy, M. T.; Tice, R. R.; Schneider, E. L. A Simple Technique for Quantitation of Low Levels of DNA Damage in Individual Cells. Exp. Cell Res. 1988, 175, 184–191. DOI: 10.1016/0014-4827(88)90265-0.
  • Ghuglot, R.; Titus, W.; Agnihotri, A. S.; Krishnakumar, V.; Krishnamoorthy, G.; Marimuthu, N. Stable Copper Nanoparticles as Potential Antibacterial Agent against Aquaculture Pathogens and Human Fibroblast Cell Viability. Biocatal. Agric. Biotechnol. 2021, 32, 101932. DOI: 10.1016/j.bcab.2021.101932.
  • Ankamwar, B.; Damle, C.; Ahmad, A.; Sastry, M. Biosynthesis of Gold and Silver Nanoparticles Using Emblica Officinalis Fruit Extract, Their Phase Transfer and Transmetallation in an Organic Solution. J. Nanosci. Nanotechnol. 2005, 5, 1665–1671. DOI: 10.1166/jnn.2005.184.
  • Abou El-Nour, K. M.; Eftaiha, A.; Al-Warthan, A.; Ammar, R. A. Synthesis and Applications of Silver Nanoparticles. Arab. J. Chem. 2010, 3, 135–140. DOI: 10.1016/j.arabjc.2010.04.008.
  • Ali, N.; Bilal, M.; Khan, A.; Ali, F.; Khan, H.; Khan, H. A.; et al. Fabrication Strategies for Functionalized Nanomaterials. In Nanomaterials: Synthesis, Characterization, Hazards and Safety; Elsevier, 2021; pp 55–95. DOI: 10.1016/B978-0-12-823823-3.00010-0.
  • Si, S.; Mandal, T. K. Tryptophan‐Based Peptides to Synthesize Gold and Silver Nanoparticles: A Mechanistic and Kinetic Study. Chemistry 2007, 13, 3160–3168. DOI: 10.1002/chem.200601492.
  • Naseer, A.; Ali, A.; Ali, S.; Mahmood, A.; Kusuma, H. S.; Nazir, A.; Yaseen, M.; Khan, M. I.; Ghaffar, A.; Abbas, M.; et al. Biogenic and Eco-Benign Synthesis of Platinum Nanoparticles (Pt NPs) Using Plants Aqueous Extracts and Biological Derivatives: Environmental, Biological and Catalytic Applications. J. Mater. Res. Technol. 2020, 9, 9093–9107. DOI: 10.1016/j.jmrt.2020.06.013.
  • Nagar, N.; Devra, V. Green Synthesis and Characterization of Copper Nanoparticles Using Azadirachta indica Leaves. Mater. Chem. Phys. 2018, 213, 44–51. DOI: 10.1016/j.matchemphys.2018.04.007.
  • Borthakur, P.; Boruah, P. K.; Das, M. R.; Szunerits, S.; Boukherroub, R. Cu (0) Nanoparticle-Decorated Functionalized Reduced Graphene Oxide Sheets as Artificial Peroxidase Enzymes: Application for Colorimetric Detection of Cr (VI) Ions. New J. Chem. 2019, 43, 1404–1414. DOI: 10.1039/C8NJ05363D.
  • Holder, C. F.; Schaak, R. E. Tutorial on Powder X-Ray Diffraction for Characterizing Nanoscale Materials. ACS Nano 2019, 13, 7359–7365. DOI: 10.1021/acsnano.9b05157.
  • Bhavyasree, P.; Xavier, T. Green Synthesised Copper and Copper Oxide Based Nanomaterials Using Plant Extracts and Their Application in Antimicrobial Activity. Curr. Res. Green Sustain. Chem. 2022, 5, 100249. DOI: 10.1016/j.crgsc.2021.100249.
  • Ismail, M.; Khan, M.; Khan, S.; B; Khan, M. A.; Akhtar, K.; Asiri, A. M. Green Synthesis of Plant Supported CuAg and CuNi Bimetallic Nanoparticles in the Reduction of Nitrophenols and Organic Dyes for Water Treatment. J. Mol. Liq. 2018, 260, 78–91. DOI: 10.1016/j.molliq.2018.03.058.
  • Rajamohan, R.; Raorane, C. J.; Kim, S.-C.; Lee, Y. R. One Pot Synthesis of Copper Oxide Nanoparticles for Efficient Antibacterial Activity. Materials (Basel) 2022, 16, 217. DOI: 10.3390/ma16010217.
  • Pomastowski, P.; Sprynskyy, M.; Žuvela, P.; Rafińska, K.; Milanowski, M.; Liu, J. J.; Yi, M.; Buszewski, B. Silver-Lactoferrin Nanocomplexes as a Potent Antimicrobial Agent. J. Am. Chem. Soc. 2016, 138, 7899–7909. DOI: 10.1021/jacs.6b02699.
  • Lee, W.-C.; Lee, B.-T.; Lee, S.; Hwang, Y. S.; Jo, E.; Eom, I.-C.; Lee, S.-W.; Kim, S.-O. Optimisation, Evaluation and Application of Asymmetrical Flow Field-Flow Fractionation with Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS) to Characterise Silver Nanoparticles in Environmental Media. Microchem. J. 2016, 129, 219–230. DOI: 10.1016/j.microc.2016.06.030.
  • Bhattacharjee, S. DLS and Zeta Potential–What they are and What they are not? J. Control. Release 2016, 235, 337–351. DOI: 10.1016/j.jconrel.2016.06.017.
  • Alsharif, S. M.; Salem, S. S.; Abdel-Rahman, M. A.; Fouda, A.; Eid, A. M.; El-Din Hassan, S.; Awad, M. A.; Mohamed, A. A. Multifunctional Properties of Spherical Silver Nanoparticles Fabricated by Different Microbial Taxa. Heliyon 2020, 6, e03943. DOI: 10.1016/j.heliyon.2020.e03943.
  • Tomaszewska, E.; Soliwoda, K.; Kadziola, K.; Tkacz-Szczesna, B.; Celichowski, G.; Cichomski, M.; Szmaja, W.; Grobelny, J. Detection Limits of DLS and UV-Vis Spectroscopy in Characterization of Polydisperse Nanoparticles Colloids. J. Nanomater. 2013, 2013, 1–10. DOI: 10.1155/2013/313081.
  • Singh, T.; Jyoti, K.; Patnaik, A.; Singh, A.; Chauhan, R.; Chandel, S. Biosynthesis, Characterization and Antibacterial Activity of Silver Nanoparticles Using an Endophytic Fungal Supernatant of Raphanus sativus. J. Genet. Eng. Biotechnol. 2017, 15, 31–39. DOI: 10.1016/j.jgeb.2017.04.005.
  • Mourdikoudis, S.; Pallares, R. M.; Thanh, N. T. Characterization Techniques for Nanoparticles: Comparison and Complementarity upon Studying Nanoparticle Properties. Nanoscale 2018, 10, 12871–12934. DOI: 10.1039/C8NR02278J.
  • Römer, I.; White, T. A.; Baalousha, M.; Chipman, K.; Viant, M. R.; Lead, J. R. Aggregation and Dispersion of Silver Nanoparticles in Exposure Media for Aquatic Toxicity Tests. J. Chromatogr. A 2011, 1218, 4226–4233. DOI: 10.1016/j.chroma.2011.03.034.
  • Shiravand, S.; Azarbani, F. Phytosynthesis, Characterization, Antibacterial and Cytotoxic Effects of Copper Nanoparticles. Green Chem. Lett. Rev. 2017, 10, 241–249. DOI: 10.1080/17518253.2017.1360401.
  • Roberts, I. S. The Biochemistry and Genetics of Capsular Polysaccharide Production in Bacteria. Annu. Rev. Microbiol. 1996, 50, 285–315. DOI: 10.1146/annurev.micro.50.1.285.
  • Thapa, M.; Choudhury, S. R. Green Synthesized Nanoparticles: Physicochemical Properties and Mode of Antimicrobial Activities. Comprehensive Analytical Chemistry 2021, 94, 49–79. DOI: 10.1016/bs.coac.2020.12.006.
  • Rajagopal, G.; Nivetha, A.; Sundar, M.; Panneerselvam, T.; Murugesan, S.; Parasuraman, P.; Kumar, S.; Ilango, S.; Kunjiappan, S. Mixed Phytochemicals Mediated Synthesis of Copper Nanoparticles for Anticancer and Larvicidal Applications. Heliyon 2021, 7, e07360. DOI: 10.1016/j.heliyon.2021.e07360.
  • Shobha, G.; Shashidhara, K.; Naik, C. Cuprous Oxide Nanoparticles Induced Antioxidant Response and Genotoxicity in Lycopersicum esculentum. BioNanoSci. 2020, 10, 1128–1137. DOI: 10.1007/s12668-020-00796-0.
  • Giridasappa, A.; Rangappa, D.; Shanubhoganahalli Maheswarappa, G.; Marilingaiah, N. R.; Kagepura Thammaiah, C.; Shareef, I. M.; Kanchugarakoppal Subbegowda, R.; Doddakunche Shivaramu, P. Phytofabrication of Cupric Oxide Nanoparticles Using Simarouba Glauca and Celastrus Paniculatus Extracts and Their Enhanced Apoptotic Inducing and Anticancer Effects. Appl. Nanosci. 2021, 11, 1393–1409. DOI: 10.1007/s13204-021-)01753-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.