32
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Green synthesized silver nanoparticles in two stages: Box Behnken Design to machine learning

ORCID Icon & ORCID Icon
Received 13 Jul 2023, Accepted 05 May 2024, Published online: 23 May 2024

References

  • Dahoumane, S. A.; Mechouet, M.; Alvarez, F. J.; Agathos, S. N.; Jeffryes, C. Microalgae: An Outstanding Tool in Nanotechnology. Bionatura 2016, 1, 196–201. DOI: 10.21931/RB/2016.01.04.7.
  • Nikaeen, G.; Yousefinejad, S.; Rahmdel, S.; Samari, F.; Mahdavinia, S. Central Composite Design for Optimizing the Biosynthesis of Silver Nanoparticles Using Plantago Major Extract and Investigating Antibacterial, Antifungal and Antioxidant Activity. Sci. Rep. 2020, 10, 9642. DOI: 10.1038/s41598-020-66357-3.
  • Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S. K.; Poinern, G. E. J. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials 2015, 8, 7278–7308. DOI: 10.3390/ma8115377.
  • Singh, J.; Dutta, T.; Kim, K. H.; Rawat, M.; Samddar, P.; Kumar, P. “Green” Synthesis of Metals and Their Oxide Nanoparticles: Applications for Environmental Remediation. J. Nanobiotechnol. 2018, 16, 84. DOI: 10.1186/s12951-018-0408-4.
  • Purohit, J.; Chattopadhyay, A.; Singh, N. K. Green Synthesis of Microbial Nanoparticle: Approaches to Application. In Nanotechnology in Life Science, 2019; pp 35–60. DOI: 10.1007/978-3-030-16534-5_3.
  • McNamara, K.; Tofail, S. A. M. Nanoparticles in Biomedical Applications. Adv. Phys. X 2017, 2, 54–88. DOI: 10.1080/23746149.2016.1254570.
  • Khan, H. A.; Sakharkar, M. K.; Nayak, A.; Kishore, U.; Khan, A. Nanoparticles for Biomedical Applications: An Overview; Elsevier Ltd., 2018. DOI: 10.1016/B978-0-08-100716-7.00014-3.
  • Pantidos, N. Biological Synthesis of Metallic Nanoparticles by Bacteria, Fungi and Plants. J. Nanomed. Nanotechnol. 2014, 5, 1–10. DOI: 10.4172/2157-7439.1000233.
  • Narayanan, K. B.; Sakthivel, N. Biological Synthesis of Metal Nanoparticles by Microbes. Adv. Colloid Interface Sci. 2010, 156, 1–13. DOI: 10.1016/j.cis.2010.02.001.
  • Mansoor, A.; Khurshid, Z.; Mansoor, E.; Khan, M. T.; Ratnayake, J.; Jamal, A. Correction to: Effect of Currently Available Nanoparticle Synthesis Routes on Their Biocompatibility with Fibroblast Cell Lines. Molecules (vol 27, 6972, 2022). Molecules 2022, 27, 6972. DOI: 10.3390/molecules28104173.
  • Singh, P.; Kim, Y. J.; Zhang, D.; Yang, D. C. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol. 2016, 34, 588–599. DOI: 10.1016/j.tibtech.2016.02.006.
  • Nasrollahzadeh, M.; Atarod, M.; Sajjadi, M.; Sajadi, S. M.; Issaabadi, Z. Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and Applications, 1st ed.; Elsevier Ltd., 2019; Vol. 28. DOI: 10.1016/B978-0-12-813586-0.00006-7.
  • Nayak, S.; Sajankila, S. P.; Goveas, L. C.; Rao, V. C.; Mutalik, S.; Shreya, B. A. Two Fold Increase in Synthesis of Gold Nanoparticles Assisted by Proteins and Phenolic Compounds in Pongamia Seed Cake Extract: Response Surface Methodology Approach. SN Appl. Sci. 2020, 2, 1–12. DOI: 10.1007/s42452-020-2348-5.
  • Ba-Abbad, M. M.; Chai, P. V.; Benamour, A.; Ewis, D.; Mohammad, A. W.; Mahmoudi, E. Optimizing and Control of Effective Synthesize Parameters for Fe3O4 Nanoparticles Using Response Surface Methodology. Chem. Pap. 2022, 76, 6359–6370. DOI: 10.1007/s11696-022-02320-y.
  • Caliskan, G.; Mutaf, T.; Agba, H. C.; Elibol, M. Green Synthesis and Characterization of Titanium Nanoparticles Using Microalga, Phaeodactylum Tricornutum. Geomicrobiol. J. 2022, 39, 83–96. DOI: 10.1080/01490451.2021.2008549.
  • Salari, M. Optimization by Box-Behnken Design and Synthesis of Magnetite Nanoparticles for Removal of the Antibiotic from an Aqueous Phase. Adsorpt. Sci. Technol. 2022, 2022, 1–13. DOI: 10.1155/2022/1267460.
  • Nayak, S.; Manjunatha, K. B.; Goveas, L. C.; Rao, C. V.; Sajankila, S. P. Investigation of Nonlinear Optical Properties of AgNPs Synthesized Using Cyclea Peltata Leaf Extract Post OVAT Optimization. BioNanoScience 2021, 11, 884–892. DOI: 10.1007/s12668-021-00875-w.
  • Abhishek, S. R.; Sneha, N.; Karthik, P. B. H. An Emerging Treatment Technology: Exploring Deep Learning and Computer Vision Approach in Revealing Biosynthesized Nanoparticle Size for Optimization Studies. In Contaminants of Emerging Concerns and Reigning Removal Technologies, NMAM Institute of Technology, CRC Press; 2022, pp 403–428. DOI: 10.1201/9781003247869-20.
  • Keskin Gündoğdu, T.; Deniz, İ.; Çalışkan, G.; Şahin, E. S.; Azbar, N. Experimental Design Methods for Bioengineering Applications. Crit. Rev. Biotechnol. 2016, 36, 368–388. DOI: 10.3109/07388551.2014.973014.
  • Majumder, A.; Singh, A.; Goyal, A. Application of Response Surface Methodology for Glucan Production from Leuconostoc Dextranicum and Its Structural Characterization. Carbohydr. Polym. 2009, 75, 150–156. DOI: 10.1016/j.carbpol.2008.07.014.
  • Witek-Krowiak, A.; Chojnacka, K.; Podstawczyk, D.; Dawiec, A.; Bubała, K. Application of Response Surface Methodology and Artificial Neural Network Methods in Modelling and Optimization of Biosorption Process. Bioresour. Technol. 2014, 160, 150–160. DOI: 10.1016/j.biortech.2014.01.021.
  • Mekki-Berrada, F.; Ren, Z.; Huang, T.; Wong, W. K.; Zheng, F.; Xie, J.; Tian, I. P. S.; Jayavelu, S.; Mahfoud, Z.; Bash, D.; et al. Two-Step Machine Learning Enables Optimized Nanoparticle Synthesis. NPJ Comput. Mater. 2021, 7, 1–10. DOI: 10.1038/s41524-021-00520-w.
  • Jordan, M. I.; Mitchell, T. M. Machine Learning: Trends, Perspectives, and Prospects. Science 2015, 349, 255–260. DOI: 10.1126/science.aaa8415.
  • Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine Learning for Molecular and Materials Science. Nature 2018, 559, 547–555. DOI: 10.1038/s41586-018-0337-2.
  • Ghosal, S.; Blystone, D.; Singh, A. K.; Ganapathysubramanian, B.; Singh, A.; Sarkar, S. An Explainable Deep Machine Vision Framework for Plant Stress Phenotyping. Proc. Natl. Acad. Sci. USA 2018, 115, 4613–4618. DOI: 10.1073/pnas.1716999115.
  • Schuhmacher, A.; Gatto, A.; Hinder, M.; Kuss, M.; Gassmann, O. The Upside of Being a Digital Pharma Player. Drug Discov. Today 2020, 25, 1569–1574. DOI: 10.1016/j.drudis.2020.06.002.
  • He, Y.; Ye, Z.; Liu, X.; Wei, Z.; Qiu, F.; Li, H. F.; Zheng, Y.; Ouyang, D. Can Machine Learning Predict Drug Nanocrystals? J. Control Release 2020, 322, 274–285. DOI: 10.1016/j.jconrel.2020.03.043.
  • Zhao, Q.; Ye, Z.; Su, Y.; Ouyang, D. Predicting Complexation Performance between Cyclodextrins and Guest Molecules by Integrated Machine Learning and Molecular Modeling Techniques. Acta Pharm. Sin. B 2019, 9, 1241–1252. DOI: 10.1016/j.apsb.2019.04.004.
  • Gao, H.; Wang, W.; Dong, J.; Ye, Z.; Ouyang, D. An Integrated Computational Methodology with Data-Driven Machine Learning, Molecular Modeling and PBPK Modeling to Accelerate Solid Dispersion Formulation Design. Eur. J. Pharm. Biopharm. 2021, 158, 336–346. DOI: 10.1016/j.ejpb.2020.12.001.
  • Gao, H.; Jia, H.; Dong, J.; Yang, X.; Li, H.; Ouyang, D. Integrated in Silico Formulation Design of Self-Emulsifying Drug Delivery Systems. Acta Pharm. Sin. B 2021, 11, 3585–3594. DOI: 10.1016/j.apsb.2021.04.017.
  • Tao, H.; Wu, T.; Aldeghi, M.; Wu, T. C.; Aspuru-Guzik, A.; Kumacheva, E. Nanoparticle Synthesis Assisted by Machine Learning. Nat. Rev. Mater. 2021, 6, 701–716. DOI: 10.1038/s41578-021-00337-5.
  • Ban, Z.; Yuan, P.; Yu, F.; Peng, T.; Zhou, Q.; Hu, X. Machine Learning Predicts the Functional Composition of the Protein Corona and the Cellular Recognition of Nanoparticles. Proc. Natl. Acad. Sci. USA 2020, 117, 10492–10499. DOI: 10.1073/pnas.1919755117.
  • Shabanzadeh, P.; Norazaksenu; Shameli, K.; Ismail, F.; Mohagheghtabar, M. Application of Artificial Neural Network (ANN) for the Prediction of Size of Silver Nanoparticles Prepared by Green Method. Dig. J. Nanomater. Biostruct. 2013, 8, 541–549.
  • Shabanzadeh, P.; Senu, N.; Shameli, K.; Ismail, F.; Zamanian, A.; Mohagheghtabar, M. Prediction of Silver Nanoparticles’ Diameter in Montmorillonite/Chitosan Bionanocomposites by Using Artificial Neural Networks. Res. Chem. Intermed. 2015, 41, 3275–3287. DOI: 10.1007/s11164-013-1431-6.
  • Mottaghi, S.; Nazari, M.; Fattahi, S. M.; Nazari, M.; Babamohammadi, S. Droplet Size Prediction in a Microfluidic Flow Focusing Device Using an Adaptive Network Based Fuzzy Inference System. Biomed. Microdevices 2020, 22, 1–12. DOI: 10.1007/s10544-020-00513-4.
  • Damiati, S. A.; Rossi, D.; Joensson, H. N.; Damiati, S. Artificial Intelligence Application for Rapid Fabrication of Size-Tunable PLGA Microparticles in Microfluidics. Sci. Rep. 2020, 10, 19517. DOI: 10.1038/s41598-020-76477-5.
  • Lashkaripour, A.; Rodriguez, C.; Mehdipour, N.; Mardian, R.; McIntyre, D.; Ortiz, L.; Campbell, J.; Densmore, D. Machine Learning Enables Design Automation of Microfluidic Flow-Focusing Droplet Generation. Nat. Commun. 2021, 12, 1–14. DOI: 10.1038/s41467-020-20284-z.
  • Rizkin, B. A.; Shkolnik, A. S.; Ferraro, N. J.; Hartman, R. L. Combining Automated Microfluidic Experimentation with Machine Learning for Efficient Polymerization Design. Nat. Mach. Intell. 2020, 2, 200–209. DOI: 10.1038/s42256-020-0166-5.
  • Ocampo, I.; López, R. R.; Camacho-León, S.; Nerguizian, V.; Stiharu, I. Comparative Evaluation of Artificial Neural Networks and Data Analysis in Predicting Liposome Size in a Periodic Disturbance Micromixer. Micromachines (Basel) 2021, 12, 1164. DOI: 10.3390/mi12101164.
  • Zhang, Y.; Wu, Y. Introducing Machine Learning Models to Response Surface Methodologies. In Response Surface Methodology in Engineering Science; Intech, 2020; Vol. 11, (tourism); p 13.
  • Wang, W.; Feng, S.; Ye, Z.; Gao, H.; Lin, J.; Ouyang, D. Prediction of Lipid Nanoparticles for MRNA Vaccines by the Machine Learning Algorithm. Acta Pharm. Sin. B 2022, 12, 2950–2962. DOI: 10.1016/j.apsb.2021.11.021.
  • Ilhan-Ayisigi, E.; Ulucan, F.; Saygili, E.; Saglam-Metiner, P.; Gulce-Iz, S.; Yesil-Celiktas, O. Nano-Vesicular Formulation of Propolis and Cytotoxic Effects in a 3D Spheroid Model of Lung Cancer. J. Sci. Food Agric. 2020, 100, 3525–3535. DOI: 10.1002/jsfa.10400.
  • Chen, X.; Lv, H. Intelligent Control of Nanoparticle Synthesis on Microfluidic Chips with Machine Learning. NPG Asia Mater. 2022, 14, 1–20. DOI: 10.1038/s41427-022-00416-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.