63
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biosynthesis of alternan-stabilized selenium nanoparticles: A study on characterization and applications for antibacterial and antifungal purposes

, , ORCID Icon, , , , , & show all
Received 09 Sep 2022, Accepted 05 May 2024, Published online: 21 May 2024

References

  • Garrido-Maestu, A.; Ma, Z.; Paik, S.-Y.-R.; Chen, N.; Ko, S.; Tong, Z.; Jeong, K. C. Engineering of Chitosan-Derived Nanoparticles to Enhance Antimicrobial Activity against Foodborne Pathogen Escherichia coli O157: H7. Carbohydr. Polym. 2018, 197, 623–630. DOI: 10.1016/j.carbpol.2018.06.046.
  • Hashem, A. H.; Selim, T. A.; Alruhaili, M. H.; Selim, S.; Alkhalifah, D. H. M.; Al Jaouni, S. K.; Salem, S. S. Unveiling Antimicrobial and Insecticidal Activities of Biosynthesized Selenium Nanoparticles Using Prickly Pear Peel Waste. J. Funct. Biomater. 2022, 13, 112. DOI: 10.3390/jfb13030112.
  • Salem, S. S. Baker’s Yeast-Mediated Silver Nanoparticles: Characterisation and Antimicrobial Biogenic Tool for Suppressing Pathogenic Microbes. BioNanoSci. 2022, 12, 1220–1229. DOI: 10.1007/s12668-022-01026-5.
  • Salem, S. S.; Fouda, A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace Elem. Res 2021, 199, 344.
  • Salem, S. S.; Hammad, E. N.; Mohamed, A. A.; El-Dougdoug, W. A Comprehensive Review of Nanomaterials: Types, Synthesis, Characterization, and Applications. Biointerface Res. Appl. Chem. 2022, 13, 41.
  • Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic Potential of Materials at the Nanolevel. Science. 2006, 311, 622–627. DOI: 10.1126/science.1114397.
  • Abd Elkodous, M.; El-Husseiny, H. M.; El-Sayyad, G. S.; Hashem, A. H.; Doghish, A. S.; Elfadil, D.; Radwan, Y.; El-Zeiny, H. M.; Bedair, H.; Ikhdair, O. A.; et al. Recent Advances in Waste-Recycled Nanomaterials for Biomedical Applications: Waste-to-Wealth. Nanotechnol. Rev. 2021, 10, 1662–1739. DOI: 10.1515/ntrev-2021-0099.
  • Doghish, A. S.; Hashem, A. H.; Shehabeldine, A. M.; Sallam, A.-A. M.; El-Sayyad, G. S.; Salem, S. S. Nanocomposite Based on Gold Nanoparticles and Carboxymethyl Cellulose: Synthesis, Characterization, Antimicrobial, and Anticancer Activities. J. Drug Deliv. Sci. Technol. 2022, 77, 103874.
  • Hasanin, M.; Elbahnasawy, M. A.; Shehabeldine, A. M.; Hashem, A. H. Ecofriendly Preparation of Silver Nanoparticles-Based Nanocomposite Stabilized by Polysaccharides with Antibacterial, Antifungal and Antiviral Activities. Biometals 2021, 34, 1313–1328. DOI: 10.1007/s10534-021-00344-7.
  • Hasanin, M.; Hashem, A. H.; Lashin, I.; Hassan, S. A. In Vitro Improvement and Rooting of Banana Plantlets Using Antifungal Nanocomposite Based on Myco-Synthesized Copper Oxide Nanoparticles and Starch. Biomass Conv. Bioref. 2021, 13, 8865–8875. DOI: 10.1007/s13399-021-01784-4.
  • Hashem, A. H.; Salem, S. S. Green and Ecofriendly Biosynthesis of Selenium Nanoparticles Using Urtica Dioica (Stinging Nettle) Leaf Extract: Antimicrobial and Anticancer Activity Biotechnol. J 2022, 17, 2100432.
  • Lashin, I.; Hasanin, M.; Hassan, S. A.; Hashem, A. H. Green Biosynthesis of Zinc and Selenium Oxide Nanoparticles Using Callus Extract of Ziziphus Spina-Christi: Characterization, Antimicrobial, and Antioxidant Activity. Biomass. Conv. Bioref. 2021, 13, 10133–10146. DOI: 10.1007/s13399-021-01873-4.
  • Salem, S. S.; Badawy, M. S. E.; Al-Askar, A. A.; Arishi, A. A.; Elkady, F. M.; Hashem, A. H. Green Biosynthesis of Selenium Nanoparticles Using Orange Peel Waste: Characterization, Antibacterial and Antibiofilm Activities against Multidrug-Resistant Bacteria. Life 2022, 12, 893. DOI: 10.3390/life12060893.
  • Salem, S. S.; Hashem, A. H.; Sallam, A.-A. M.; Doghish, A. S.; Al-Askar, A. A.; Arishi, A. A.; Shehabeldine, A. M. Synthesis of Silver Nanocomposite Based on Carboxymethyl Cellulose: Antibacterial, Antifungal and Anticancer Activities. Polymers. (Basel) 2022, 14, 3352. DOI: 10.3390/polym14163352.
  • Elsayed, H.; Hasanin, M.; Rehan, M. Enhancement of Multifunctional Properties of Leather Surface Decorated with Silver Nanoparticles (Ag NPs). J. Mol. Struct. 2021, 1234, 130130. DOI: 10.1016/j.molstruc.2021.130130.
  • Hasanin, M. S.; Emam, M.; Soliman, M. M.; Latif, R. R. A.; Salem, M. M.; El Raey, M. A.; Eisa, W. H. Green Silver Nanoparticles Based on Lavandula Coronopifolia Aerial Parts Extract against Mycotic Mastitis in Cattle. Biocatal. Agric. Biotechnol. 2022, 42, 102350. DOI: 10.1016/j.bcab.2022.102350.
  • Emam, M.; Soliman, M. M.; Eisa, W. H.; Hasanin, M. Solid and Liquid Green Ag Nanoparticles Based on Banana Peel Extract as an Eco‐Friendly Remedy for Ringworm in Pets Surf. Interface Anal. 2022, 54, 607.
  • Sahoo, S.; Parveen, S.; Panda, J. The Present and Future of Nanotechnology in Human Health Care. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 20–31. DOI: 10.1016/j.nano.2006.11.008.
  • Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of Nanoparticles. Small 2008, 4, 26–49. DOI: 10.1002/smll.200700595.
  • Wright, J.; Lam, K.; Hansen, D.; Burrell, R. Efficacy of Topical Silver against Fungal Burn Wound Pathogens. Am. J. Infect. Control. 1999, 27, 344–350. DOI: 10.1016/s0196-6553(99)70055-6.
  • Chen, X.; Yan, J.-K.; Wu, J.-Y. Characterization and Antibacterial Activity of Silver Nanoparticles Prepared with a Fungal Exopolysaccharide in Water. Food Hydrocoll. 2016, 53, 69–74. DOI: 10.1016/j.foodhyd.2014.12.032.
  • Fernández-Martínez, A.; Charlet, L. Selenium Environmental Cycling and Bioavailability: A Structural Chemist Point of View. Rev. Environ. Sci. Biotechnol. 2009, 8, 81–110. DOI: 10.1007/s11157-009-9145-3.
  • Li, Y.; Li, X.; Wong, Y.-S.; Chen, T.; Zhang, H.; Liu, C.; Zheng, W. The Reversal of Cisplatin-Induced Nephrotoxicity by Selenium Nanoparticles Functionalized with 11-Mercapto-1-Undecanol by Inhibition of ROS-Mediated Apoptosis. Biomaterials 2011, 32, 9068–9076. DOI: 10.1016/j.biomaterials.2011.08.001.
  • Vyas, J.; Rana, S. Antioxidant Activity and Biogenic Synthesis of Selenium Nanoparticles Using the Leaf Extract of Aloe Vera Int. J. Curr. Pharm. Res. 2017, 9, 147.
  • Zhang, J.; Wang, X.; Xu, T. Elemental Selenium at Nano Size (Nano-Se) as a Potential Chemopreventive Agent with Reduced Risk of Selenium Toxicity: Comparison with se-Methylselenocysteine in Mice. Toxicol. Sci. 2008, 101, 22–31. DOI: 10.1093/toxsci/kfm221.
  • Xiao, Y.; Huang, Q.; Zheng, Z.; Guan, H.; Liu, S. Construction of a Cordyceps Sinensis Exopolysaccharide-Conjugated Selenium Nanoparticles and Enhancement of Their Antioxidant Activities. Int. J. Biol. Macromol. 2017, 99, 483–491. DOI: 10.1016/j.ijbiomac.2017.03.016.
  • Ahmed, K. B. A.; Kalla, D.; Uppuluri, K. B.; Anbazhagan, V. Green Synthesis of Silver and Gold Nanoparticles Employing Levan, a Biopolymer from Acetobacter Xylinum NCIM 2526, as a Reducing Agent and Capping Agent. Carbohydr. Polym. 2014, 112, 539–545. DOI: 10.1016/j.carbpol.2014.06.033.
  • Maity, D.; Kanti Bain, M.; Bhowmick, B.; Sarkar, J.; Saha, S.; Acharya, K.; Chakraborty, M.; Chattopadhyay, D. In Situ Synthesis, Characterization, and Antimicrobial Activity of Silver Nanoparticles Using Water Soluble Polymer J. Appl. Polym. Sci. 2011, 122, 2189.
  • Rivas, L.; Sanchez-Cortes, S.; García-Ramos, J. V.; Morcillo, G. Growth of Silver Colloidal Particles Obtained by Citrate Reduction to Increase the Raman Enhancement Factor. Langmuir 2001, 17, 574–577. DOI: 10.1021/la001038s.
  • Wang, T.; Zhang, D.; Xu, W.; Yang, J.; Han, R.; Zhu, D. Preparation, Characterization, and Photophysical Properties of Alkanethiols with Pyrene Units − Capped Gold Nanoparticles: Unusual Fluorescence Enhancement for the Aged Solutions of These Gold Nanoparticles. Langmuir 2002, 18, 1840–1848. DOI: 10.1021/la0112817.
  • Li, J.; Shen, B.; Nie, S.; Duan, Z.; Chen, K. A Combination of Selenium and Polysaccharides: Promising Therapeutic Potential. Carbohydr. Polym. 2019, 206, 163–173. DOI: 10.1016/j.carbpol.2018.10.088.
  • Cai, W.; Hu, T.; Bakry, A. M.; Zheng, Z.; Xiao, Y.; Huang, Q. Effect of Ultrasound on Size, Morphology, Stability and Antioxidant Activity of Selenium Nanoparticles Dispersed by a Hyperbranched Polysaccharide from Lignosus Rhinocerotis. Ultrason. Sonochem. 2018, 42, 823–831. DOI: 10.1016/j.ultsonch.2017.12.022.
  • Jiang, W.; Fu, Y.; Yang, F.; Yang, Y.; Liu, T.; Zheng, W.; Zeng, L.; Chen, T. Gracilaria Lemaneiformis Polysaccharide as Integrin-Targeting Surface Decorator of Selenium Nanoparticles to Achieve Enhanced Anticancer Efficacy. ACS Appl. Mater. Interf. 2014, 6, 13738–13748. DOI: 10.1021/am5031962.
  • Yang, F.; Tang, Q.; Zhong, X.; Bai, Y.; Chen, T.; Zhang, Y.; Li, Y.; Zheng, W. Surface Decoration by Spirulina Polysaccharide Enhances the Cellular Uptake and Anticancer Efficacy of Selenium Nanoparticles. Int. J. Nanomed. 2012, 7, 835–844. DOI: 10.2147/IJN.S28278.
  • Jia, X.; Liu, Q.; Zou, S.; Xu, X.; Zhang, L. Construction of Selenium Nanoparticles/β-Glucan Composites for Enhancement of the Antitumor Activity. Carbohydr. Polym. 2015, 117, 434–442. DOI: 10.1016/j.carbpol.2014.09.088.
  • Hamza, F.; Vaidya, A.; Apte, M.; Kumar, A. R.; Zinjarde, S. Selenium Nanoparticle-Enriched Biomass of Yarrowia lipolytica Enhances Growth and Survival of Artemia Salina. Enzyme Microb. Technol. 2017, 106, 48–54. DOI: 10.1016/j.enzmictec.2017.07.002.
  • Wang, L.; Wang, G.; Zhang, J.; Zhang, G.; Jia, L.; Liu, X.; Deng, P.; Fan, K. Extraction Optimization and Antioxidant Activity of Intracellular Selenium Polysaccharide by Cordyceps Sinensis SU-02. Carbohydr. Polym. 2011, 86, 1745–1750. DOI: 10.1016/j.carbpol.2011.07.007.
  • Yan, J.-K.; Qiu, W.-Y.; Wang, Y.-Y.; Wang, W.-H.; Yang, Y.; Zhang, H.-N. Fabrication and Stabilization of Biocompatible Selenium Nanoparticles by Carboxylic Curdlans with Various Molecular Properties. Carbohydr. Polym. 2018, 179, 19–27. DOI: 10.1016/j.carbpol.2017.09.063.
  • Bondarenko, O. M.; Ivask, A.; Kahru, A.; Vija, H.; Titma, T.; Visnapuu, M.; Joost, U.; Pudova, K.; Adamberg, S.; Visnapuu, T.; Alamäe, T. Bacterial Polysaccharide Levan as Stabilizing, Non-Toxic and Functional Coating Material for Microelement-Nanoparticles. Carbohydr. Polym. 2016, 136, 710–720. DOI: 10.1016/j.carbpol.2015.09.093.
  • Dertli, E.; Colquhoun, I. J.; Côté, G. L.; Le Gall, G.; Narbad, A. Structural Analysis of the α-D-Glucan Produced by the Sourdough Isolate Lactobacillus brevis E25. Food Chem. 2018, 242, 45–52. DOI: 10.1016/j.foodchem.2017.09.017.
  • İspirli, H.; Onur Yüzer, M.; Skory, C.; Colquhoun, I. J.; Sağdıç, O.; Dertli, E. Characterization of a Glucansucrase from Lactobacillus reuteri E81 and Production of Malto-Oligosaccharides. Biocatal. Biotransform. 2019, 37(6), 421430.
  • İspirli, H.; Sagdic, O.; Yılmaz, M. T.; Dertli, E. Physicochemical Characterisation of an α-Glucan from Lactobacillus reuteri E81 as a Potential Exopolysaccharide Suitable for Food Applications. Process Biochem. 2019, 79, 91–96. DOI: 10.1016/j.procbio.2018.12.015.
  • Werning, M. L.; Notararigo, S.; Nácher, M.; Fernández de Palencia, P.; Aznar, R.; López, P. Biosynthesis, Purification and Biotechnological Use of Exopolysaccharides Produced by Lactic Acid Bacteria. Food Add. 2012, 83–114.
  • Maity, P.; Nandi, A. K.; Manna, D. K.; Pattanayak, M.; Sen, I. K.; Bhanja, S. K.; Samanta, S.; Panda, B. C.; Paloi, S.; Acharya, K.; Islam, S. S. Structural Characterization and Antioxidant Activity of a Glucan from Meripilus Giganteus. Carbohydr. Polym. 2017, 157, 1237–1245. DOI: 10.1016/j.carbpol.2016.11.006.
  • Abu-Elghait, M.; Hasanin, M.; Hashem, A. H.; Salem, S. S. Ecofriendly Novel Synthesis of Tertiary Composite Based on Cellulose and Myco-Synthesized Selenium Nanoparticles: Characterization, Antibiofilm and Biocompatibility. Int. J. Biol. Macromol. 2021, 175, 294–303. DOI: 10.1016/j.ijbiomac.2021.02.040.
  • Salem, S. S.; Fouda, M. M.; Fouda, A.; Awad, M. A.; Al-Olayan, E. M.; Allam, A. A.; Shaheen, T. I. Antibacterial, Cytotoxicity and Larvicidal Activity of Green Synthesized Selenium Nanoparticles Using Penicillium Corylophilum. J. Cluster Sci. 2021, 32, 351.
  • Salem, S. S. Bio-Fabrication of Selenium Nanoparticles Using Baker’s Yeast Extract and Its Antimicrobial Efficacy on Food Borne Pathogens. Appl. Biochem. Biotechnol. 2022, 194, 1898–1910. DOI: 10.1007/s12010-022-03809-8.
  • D.; Chen.; C-c.; Li, Z-p Shi: Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity. China Biotechnol. 2020, 40, 18.
  • Li, C.; Ding, J.; Chen, D.; Shi, Z.; Wang, L. Bioconversion of Cheese Whey into a Hetero-Exopolysaccharide via a One-Step Bioprocess and Its Applications. Biochem. Eng. J. 2020, 161, 107701. DOI: 10.1016/j.bej.2020.107701.
  • Yücel, N.; İspirli, H.; Mercan, E.; Erdoğan, Ü.; Dertli, E. Synthesis of Alternan-Stabilized Zinc Nanoparticles: Morphological, Thermal, Antioxidant and Antimicrobial Characterization. Prep. Biochem. Biotechnol. 2021, 51(4), 331–339.
  • Yilmaz, M. T.; İspirli, H.; Taylan, O.; Dertli, E. Synthesis and Characterisation of Alternan-Stabilised Silver Nanoparticles and Determination of Their Antibacterial and Antifungal Activities against Foodborne Pathogens and Fungi. LWT. 2020, 128, 109497. DOI: 10.1016/j.lwt.2020.109497.
  • Apak, R.; Güçlü, K.; Özyürek, M.; Çelik, S. E. Mechanism of Antioxidant Capacity Assays and the CUPRAC (Cupric Ion Reducing Antioxidant Capacity) Assay. Microchim. Acta 2008, 160, 413–419. DOI: 10.1007/s00604-007-0777-0.
  • A. E.; Trofin, L. C.; Trincă, E.; Ungureanu, A.; M.; Ariton. CUPRAC Voltammetric Determination of Antioxidant Capacity in Tea Samples by Using Screen-Printed Microelectrodes. J. Anal. Methods Chem. 2019, 2019, 8012758–8012710. (). DOI: 10.1155/2019/8012758.
  • Bekdeşer, B.; Özyürek, M.; Güçlü, K.; Apak, R. Novel Spectroscopic Sensor for the Hydroxyl Radical Scavenging Activity Measurement of Biological Samples. Talanta 2012, 99, 689–696. DOI: 10.1016/j.talanta.2012.07.004.
  • Bankura, K.; Maity, D.; Mollick, M. M.; Mondal, D.; Bhowmick, B.; Bain, M.; Chakraborty, A.; Sarkar, J.; Acharya, K.; Chattopadhyay, D. Synthesis, Characterization and Antimicrobial Activity of Dextran Stabilized Silver Nanoparticles in Aqueous Medium. Carbohydr. Polym. 2012, 89, 1159–1165. DOI: 10.1016/j.carbpol.2012.03.089.
  • Cakić, M.; Glišić, S.; Nikolić, G.; Nikolić, G. M.; Cakić, K.; Cvetinov, M. Synthesis, Characterization and Antimicrobial Activity of Dextran Sulphate Stabilized Silver Nanoparticles. J. Mol. Struct. 2016, 1110, 156–161. DOI: 10.1016/j.molstruc.2016.01.040.
  • Menon, S.; K.s, S. D.; Agarwal, H.; Shanmugam, V. K. Efficacy of Biogenic Selenium Nanoparticles from an Extract of Ginger towards Evaluation on anti-Microbial and anti-Oxidant Activities. Colloid Interface Sci. Commun. 2019, 29, 1–8. DOI: 10.1016/j.colcom.2018.12.004.
  • An, C.; Tang, K.; Liu, X.; Qian, Y. Large‐Scale Synthesis of High Quality Trigonal Selenium Nanowires. Eur. J. Inorg. Chem. 2003, 2003, 3250–3255. DOI: 10.1002/ejic.200300142.
  • Chen, W.; Li, Y.; Yang, S.; Yue, L.; Jiang, Q.; Xia, W. Synthesis and Antioxidant Properties of Chitosan and Carboxymethyl Chitosan-Stabilized Selenium Nanoparticles. Carbohydr. Polym. 2015, 132, 574–581. DOI: 10.1016/j.carbpol.2015.06.064.
  • Shakibaie, M.; Shahverdi, A. R.; Faramarzi, M. A.; Hassanzadeh, G. R.; Rahimi, H. R.; Sabzevari, O. Acute and Subacute Toxicity of Novel Biogenic Selenium Nanoparticles in Mice. Pharm. Biol. 2013, 51, 58–63. DOI: 10.3109/13880209.2012.710241.
  • Hashem, A. H.; Khalil, A. M. A.; Reyad, A. M.; Salem, S. S. Biomedical Applications of Mycosynthesized Selenium Nanoparticles Using Penicillium Expansum ATTC 36200. Biol. Trace Elem. Res. 2021, 1–11.
  • Elakraa, A. A.; Salem, S. S.; El-Sayyad, G. S.; Attia, M. S. Cefotaxime Incorporated Bimetallic Silver-Selenium Nanoparticles: Promising Antimicrobial Synergism, Antibiofilm Activity, and Bacterial Membrane Leakage Reaction Mechanism. RSC Adv. 2022, 12, 26603–26619. DOI: 10.1039/d2ra04717a.
  • Wei, D.; Chen, T.; Yan, M.; Zhao, W.; Li, F.; Cheng, W.; Yuan, L. Synthesis, Characterization, Antioxidant Activity and Neuroprotective Effects of Selenium Polysaccharide from Radix Hedysari. Carbohydr. Polym. 2015, 125, 161–168. DOI: 10.1016/j.carbpol.2015.02.029.
  • Kacurakova, M.; Capek, P.; Sasinkova, V.; Wellner, N.; Ebringerova, A. FT-IR Study of Plant Cell Wall Model Compounds: Pectic Polysaccharides and Hemicelluloses. Carbohyd. Polym. 2000, 43, 195–203. DOI: 10.1016/S0144-8617(00)00151-X.
  • Li, S.; Shen, Y.; Xie, A.; Yu, X.; Zhang, X.; Yang, L.; Li, C. Rapid, Room-Temperature Synthesis of Amorphous Selenium/Protein Composites Using Capsicum Annuum L Extract. Nanotechnology 2007, 18, 405101. DOI: 10.1088/0957-4484/18/40/405101.
  • Wang, Y.; Li, C.; Liu, P.; Ahmed, Z.; Xiao, P.; Bai, X. Physical Characterization of Exopolysaccharide Produced by Lactobacillus plantarum KF5 Isolated from Tibet Kefir. Carbohydr. Polym. 2010, 82, 895–903. DOI: 10.1016/j.carbpol.2010.06.013.
  • Awwad, A. M.; Salem, N. M.; Abdeen, A. O. Green Synthesis of Silver Nanoparticles Using Carob Leaf Extract and Its Antibacterial Activity. Int. J. Ind. Chem. 2013, 4, 29. DOI: 10.1186/2228-5547-4-29.
  • Pan, D.; Mei, X. Antioxidant Activity of an Exopolysaccharide Purified from Lactococcus lactis Subsp. lactis 12. Carbohydr. Polym. 2010, 80, 908–914. DOI: 10.1016/j.carbpol.2010.01.005.
  • Wu, H.; Zhu, H.; Li, X.; Liu, Z.; Zheng, W.; Chen, T.; Yu, B.; Wong, K.-H. Induction of Apoptosis and Cell Cycle Arrest in A549 Human Lung Adenocarcinoma Cells by Surface-Capping Selenium Nanoparticles: An Effect Enhanced by Polysaccharide–Protein Complexes from Polyporus Rhinocerus. J. Agric. Food Chem. 2013, 61, 9859–9866. DOI: 10.1021/jf403564s.
  • Zhang, C.; Zhai, X.; Zhao, G.; Ren, F.; Leng, X. Synthesis, Characterization, and Controlled Release of Selenium Nanoparticles Stabilized by Chitosan of Different Molecular Weights. Carbohydr. Polym. 2015, 134, 158–166. DOI: 10.1016/j.carbpol.2015.07.065.
  • Wangpaiboon, K.; Pitakchatwong, C.; Panpetch, P.; Charoenwongpaiboon, T.; Field, R. A.; Pichyangkura, R. Modified Properties of Alternan Polymers Arising from Deletion of SH3-like Motifs in Leuconostoc citreum ABK-1 Alternansucrase. Carbohydr. Polym. 2019, 220, 103–109. DOI: 10.1016/j.carbpol.2019.05.002.
  • Senthilkumaran, C.; Agilan, S.; Velauthapillai, D.; Muthukumarasamy, N.; Thambidurai, M.; Senthil, T.; Balasundaraprabhu, R. Synthesis and Characterization of Selenium Nanowires. ISRN Nanotechnol. 2007, 18, 405101.
  • Wang, J.; Zhao, X.; Tian, Z.; Yang, Y.; Yang, Z. Characterization of an Exopolysaccharide Produced by Lactobacillus plantarum YW11 Isolated from Tibet Kefir. Carbohydr. Polym. 2015, 125, 16–25. DOI: 10.1016/j.carbpol.2015.03.003.
  • Kanmani, P.; Satish Kumar, R.; Yuvaraj, N.; Paari, K. A.; Pattukumar, V.; Arul, V. Production and Purification of a Novel Exopolysaccharide from Lactic Acid Bacterium Streptococcus phocae PI80 and Its Functional Characteristics Activity in Vitro. Bioresour. Technol. 2011, 102, 4827–4833. DOI: 10.1016/j.biortech.2010.12.118.
  • Jung, S.; Song, K.; Kim, B.; Chun, U.; Rhee, S. Viscosity and Thermal Characterization of Levan. Food Eng. Prog. 1999, 3, 176.
  • Dwivedi, C.; Shah, C. P.; Singh, K.; Kumar, M.; Bajaj, P. N. An Organic Acid-Induced Synthesis and Characterization of Selenium Nanoparticles. J. Nanotechnol. 2011, 2011, 1–6. DOI: 10.1155/2011/651971.
  • Chen, Z.; Shen, Y.; Xie, A.; Zhu, J.; Wu, Z.; Huang, F. L-Cysteine-Assisted Controlled Synthesis of Selenium Nanospheres and Nanorods. Cryst. Growth Des. 2009, 9, 1327–1333. DOI: 10.1021/cg800398b.
  • Ak, T.; Gulcin, I. Antioxidant and Radical Scavenging Properties of Curcumin. Chem. Biol. Interact. 2008, 174, 27.
  • Leong, L.; Shui, G. An Investigation of Antioxidant Capacity of Fruits in Singapore Markets. Food Chem. 2002, 76, 69–75. DOI: 10.1016/S0308-8146(01)00251-5.
  • Elsayed, N.; Hasanin, M. S.; Abdelraof, M. Utilization of Olive Leaves Extract Coating Incorporated with Zinc/Selenium Oxide Nanocomposite to Improve the Postharvest Quality of Green Beans Pods. Bioact. Carbohydr. Dietary Fibre 2022, 28, 100333. DOI: 10.1016/j.bcdf.2022.100333.
  • Xia, M-s.; Zhang, H-m.; Hu, C-h Effect of Nano-Selenium on Meat Quality of Pigs. J. Zhejiang Univ. 2005, 3.
  • Peng, D.; Zhang, J.; Liu, Q.; Taylor, E. W. Size Effect of Elemental Selenium Nanoparticles (Nano-Se) at Supranutritional Levels on Selenium Accumulation and Glutathione S-Transferase Activity. J. Inorg. Biochem. 2007, 101, (10), 1457–1463
  • Zhai, X.; Zhang, C.; Zhao, G.; Stoll, S.; Ren, F.; Leng, X. Antioxidant Capacities of the Selenium Nanoparticles Stabilized by Chitosan. J. Nanobiotechnol. 2017, 15, 4. DOI: 10.1186/s12951-016-0243-4.
  • Ghalem, B. R. Antioxidant and Antimicrobial Activities of Exopolysaccharides from Yoghurt Starter. Am. J. Chem. Biochem. Eng. 2017, 3, 35.
  • Nandi, A. K.; Samanta, S.; Maity, S.; Sen, I. K.; Khatua, S.; Devi, K. S. P.; Acharya, K.; Maiti, T. K.; Islam, S. S. Antioxidant and Immunostimulant β-Glucan from Edible Mushroom Russula Albonigra (Krombh.) Fr. Carbohydr. Polym. 2014, 99, 774–782. DOI: 10.1016/j.carbpol.2013.09.016.
  • Pattanayak, M.; Samanta, S.; Maity, P.; Sen, I. K.; Nandi, A. K.; Manna, D. K.; Mitra, P.; Acharya, K.; Islam, S. S. Heteroglycan of an Edible Mushroom Termitomyces Clypeatus: Structure Elucidation and Antioxidant Properties. Carbohydr. Res. 2015, 413, 30–36. DOI: 10.1016/j.carres.2015.05.005.
  • Huang, X.; Chen, X.; Chen, Q.; Yu, Q.; Sun, D.; Liu, J. Investigation of Functional Selenium Nanoparticles as Potent Antimicrobial Agents against Superbugs. Acta Biomater. 2016, 30, 397–407. DOI: 10.1016/j.actbio.2015.10.041.
  • Nguyen, T. H.; Vardhanabhuti, B.; Lin, M.; Mustapha, A. Antibacterial Properties of Selenium Nanoparticles and Their Toxicity to Caco-2 Cells. Food Control 2017, 77, 17–24. DOI: 10.1016/j.foodcont.2017.01.018.
  • Hashem, A. H.; Abdelaziz, A. M.; Askar, A. A.; Fouda, H. M.; Khalil, A. M.; Abd-Elsalam, K. A.; Khaleil, M. M. Bacillus megaterium-Mediated Synthesis of Selenium Nanoparticles and Their Antifungal Activity against Rhizoctonia solani in Faba Bean Plants. JoF. 2021, 7, 195. DOI: 10.3390/jof7030195.
  • Vahdati, M.; Moghadam, T. T. Synthesis and Characterization of Selenium Nanoparticles-Lysozyme Nanohybrid System with Synergistic Antibacterial Properties. Sci. Rep. 2020, 10, 510. DOI: 10.1038/s41598-019-57333-7.
  • Beheshti, N.; Soflaei, S.; Shakibaie, M.; Yazdi, M. H.; Ghaffarifar, F.; Dalimi, A.; Shahverdi, A. R. Efficacy of Biogenic Selenium Nanoparticles against Leishmania major: In Vitro and in Vivo Studies. J. Trace Elem. Med. Biol. 2013, 27, 203–207. DOI: 10.1016/j.jtemb.2012.11.002.
  • Sarkar, B.; Bhattacharjee, S.; Daware, A.; Tribedi, P.; Krishnani, K.; Minhas, P. Selenium Nanoparticles for Stress-Resilient Fish and Livestock. Nanoscale Res. Lett. 2015, 10, 371. DOI: 10.1186/s11671-015-1073-2.
  • Nehal, F.; Sahnoun, M.; Smaoui, S.; Jaouadi, B.; Bejar, S.; Mohammed, S. Characterization, High Production and Antimicrobial Activity of Exopolysaccharides from Lactococcus lactis F-Mou. Microb. Pathog. 2019, 132, 10.
  • Abid, Y.; Casillo, A.; Gharsallah, H.; Joulak, I.; Lanzetta, R.; Corsaro, M. M.; Attia, H.; Azabou, S. Production and Structural Characterization of Exopolysaccharides from Newly Isolated Probiotic Lactic Acid Bacteria. Int. J. Biol. Macromol. 2018, 108, 719–728. DOI: 10.1016/j.ijbiomac.2017.10.155.
  • Zhang, J.; Cao, Y.; Wang, J.; Guo, X.; Zheng, Y.; Zhao, W.; Mei, X.; Guo, T.; Yang, Z. Physicochemical Characteristics and Bioactivities of the Exopolysaccharide and Its Sulphated Polymer from Streptococcus thermophilus GST-6. Carbohydr. Polym. 2016, 146, 368–375. DOI: 10.1016/j.carbpol.2016.03.063.
  • Reyes, A. W. B.; Arayan, L. T.; Simborio, H. L. T.; Hop, H. T.; Min, W.; Lee, H. J.; Kim, D. H.; Chang, H. H.; Kim, S. Dextran Sulfate Sodium Upregulates MAPK Signaling for the Uptake and Subsequent Intracellular Survival of Brucella abortus in Murine Macrophages. Microb. Pathog. 2016, 91, 68.
  • Pustylnikov, S.; Sagar, D.; Jain, P.; Khan, Z. K. Targeting the C-Type Lectins-Mediated Host-Pathogen Interactions with Dextran. J. Pharm. Pharm. Sci. 2014, 17, 371–392. DOI: 10.18433/j3n590.
  • Seko, Y.; Imura, N. Active Oxygen Generation as a Possible Mechanism of Selenium Toxicity. Biomed. Environ. Sci. 1997, 10, 333.
  • Wu, Z.-L.; Yin, X.-B.; Lin, Z.-Q.; Bañuelos, G. S.; Yuan, L.-X.; Liu, Y.; Li, M. Inhibitory Effect of Selenium against Penicillium Expansum and Its Possible Mechanisms of Action. Curr. Microbiol. 2014, 69, 192–201. DOI: 10.1007/s00284-014-0573-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.