46
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Interfacially self-assembled Fe2O3 nanoparticles decorated kaolinite for high performance anti-bacterial and anti-cancerous agents

ORCID Icon, , , &
Received 04 Jul 2022, Accepted 05 May 2024, Published online: 25 May 2024

References

  • Cai, Q.; Gao, Y.; Gao, T.; Lan, S.; Simalou, O.; Zhou, X.; Zhang, Y.; Harnoode, C.; Gao, G.; Dong, A. Insight into Biological Effects of Zinc Oxide Nanoflowers on Bacteria: Why Morphology Matters. ACS Appl. Mater. Interfaces. 2016, 8, 10109–10120. DOI: 10.1021/acsami.5b11573.
  • Applerot, G.; Lellouche, J.; Lipovsky, A.; Nitzan, Y.; Lubart, R.; Gedanken, A.; Banin, E. Understanding the Antibacterial Mechanism of CuO Nanoparticles: Revealing the Route of Induced Oxidative Stress. Small 2012, 8, 3326–3337. DOI: 10.1002/smll.201200772.
  • Sun, L.; Qin, Y.; Cao, Q.; Hu, B.; Huang, Z.; Ye, L.; Tang, X. Novel Photocatalytic Antibacterial Activity of TiO2 Microspheres Exposing 100% Reactive {111} Facets. Chem. Commun. (Camb) 2011, 47, 12628–12630. DOI: 10.1039/c1cc15350a.
  • Campoccia, D.; Montanaro, L.; Arciola, C. R. A Review of the Biomaterials Technologies for Infection-Resistant Surfaces. Biomaterials 2013, 34, 8533–8554. DOI: 10.1016/j.biomaterials.2013.07.089.
  • Wang, L.; Hu, C.; Shao, L.; Int, J. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomedicine 2017, 12, 1227–1249.
  • Nandhini, S. N.; Sisubalan, N.; Vijayan, A.; Karthikeyan, C.; Gnanaraj, M.; Gideon, D. A. M.; Jebastin, T.; Varaprasad, K.; Sadiku, R. Recent Advances in Green Synthesized Nanoparticles for Bactericidal and Wound Healing Applications. Heliyon 2023, 9, e13128. DOI: 10.1016/j.heliyon.2023.e13128.
  • Durmus, N. G.; Taylor, E. N.; Kummer, K. M.; Webster, T. J. Enhanced Efficacy of Superparamagnetic Iron Oxide Nanoparticles against Antibiotic‐Resistant Biofilms in the Presence of Metabolites. Adv. Mater. 2013, 25, 5706–5713. DOI: 10.1002/adma.201302627.
  • Deng, C. H.; Gong, J.; Zeng, G.; Niu, C.; Niu, Q.; Zhang, W.; Liu, H. Inactivation Performance and Mechanism of Escherichia coli in Aqueous System Exposed to Iron Oxide Loaded Graphene Nanocomposites. J. Hazard. Mater. 2014, 276, 66–76. DOI: 10.1016/j.jhazmat.2014.05.011.
  • Yang, C.; Wu, J.; Hou, Y. Fe3O4 Nanostructures: Synthesis, Growth Mechanism, Properties and Applications. Chem. Commun. (Camb) 2011, 47, 5130–5141. DOI: 10.1039/c0cc05862a.
  • Behera, S. S.; Patra, J. K.; Pramanik, K.; Panda, N.; Thatoi, H. Characterization and Evaluation of Antibacterial Activities of Chemically Synthesized Iron Oxide Nanoparticles. World J. Nano Sci. Eng. 2012, 02, 196–200.
  • Raghupathi, K. R.; Koodali, R. T.; Manna, A. C. Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles. Langmuir 2011, 27, 4020–4028. DOI: 10.1021/la104825u.
  • Sharma, D.; Ashaduzzaman, M.; Golabi, M.; Shriwastav, A.; Bisetty, K.; Tiwari, A. Studies on Bacterial Proteins Corona Interaction with Saponin Imprinted ZnO Nanohoneycombs and Their Toxic Responses. ACS Appl. Mater. Interfaces. 2015, 7, 23848–23856. DOI: 10.1021/acsami.5b06617.
  • Simon-Deckers, A.; Loo, S.; Mayne-L'Hermite, M.; Herlin-Boime, N.; Menguy, N.; Reynaud, C.; Gouget, B.; Carriere, M. Size-, Composition- and Shape-Dependent Toxicological Impact of Metal Oxide Nanoparticles and Carbon Nanotubes toward Bacteria. Environ. Sci. Technol. 2009, 43, 8423–8429. DOI: 10.1021/es9016975.
  • Li, Y.; Zhang, W.; Niu, J.; Chen, Y. Mechanism of Photogenerated Reactive Oxygen Species and Correlation with the Antibacterial Properties of Engineered Metal-Oxide Nanoparticles. ACS Nano. 2012, 6, 5164–5173. DOI: 10.1021/nn300934k.
  • Lv, M.; Su, S.; He, Y.; Huang, Q.; Hu, W.; Li, D.; Fan, C.; Lee, S.-T. Long-Term Antimicrobial Effect of Silicon Nanowires Decorated with Silver Nanoparticles. Adv. Mater. 2010, 22, 5463–5467.
  • Zhou, Y.; Jiang, X.; Jia, T.; Su, Y.; Fei, P.; Lu, Y.; Rui, P.; Yao, H. A Silicon-Based Antibacterial Material Featuring Robust and High Antibacterial Activity. J. Phy. Chem. B 2014, 2, 691–697.
  • Gao, N.; Chen, Y.; Jiang, J. Ag@Fe2O3-GO Nanocomposites Prepared by a Phase Transfer Method with Long-Term Antibacterial Property. ACS Appl. Mater. Interfaces. 2013, 5, 11307–11314. DOI: 10.1021/am403538j.
  • Lin, J.; Lin, W.; Li, S.; Lin, C.; Hsu, S. Evaluation of the Antibacterial Activity and Biocompatibility for Silver Nanoparticles Immobilized on Nano Silicate Platelets,. ACS Appl. Mater. Interfaces. 2013, 5, 433–443. DOI: 10.1021/am302534k.
  • Li, X.; Yang, Q.; Ouyang, J.; Yang, H.; and Chang, S. Chitosan Modified Halloysite Nanotubes as Emerging Porous Microspheres for Drug Carrier, Appl. Clay Sci. 2016, 126, 306–312. DOI: 10.1016/j.clay.2016.03.035.
  • Peng, K.; Fu, L.; Yang, H.; Ouyang, J. Perovskite LaFeO3/Montmorillonite Nanocomposites: Synthesis, Interface Characteristics and Enhanced Photocatalytic Activity. Sci. Rep. 2016, 6, 19723. DOI: 10.1038/srep19723.
  • Peng, K.; Fu, L.; Ouyang, J.; Yang, H. Emerging Parallel Dual 2D Composites: Natural Clay Mineral Hybridizing MoS2 and Interfacial Structure,. Adv. Funct. Mater. 2016, 26, 2666–2675.
  • Zhang, Y.; Tang, A.; Yang, H.; Ouyang, J. Applications and Interfaces of Halloysite Nanocomposites. Appl. Clay Sci. 2016, 119, 8–17. DOI: 10.1016/j.clay.2015.06.034.
  • Huo, C.; Yang, H. Synthesis and Characterization of ZnO/Palygorskite. Appl. Clay Sci. 2010, 50, 362–366. DOI: 10.1016/j.clay.2010.08.028.
  • Hu, P.; Yang, H. Insight into the Physicochemical Aspects of Kaolins with Different Morphologies. Appl. Clay Sci. 2013, 74, 58–65. DOI: 10.1016/j.clay.2012.10.003.
  • Zhang, Y.; Long, M.; Huang, P.; Yang, H.; Chang, S.; Hu, Y.; Tang, A.; Mao, L. Emerging Integrated Nanoclay-Facilitated Drug Delivery System for Papillary Thyroid Cancer Therapy. Sci. Rep. 2016, 6, 33335. DOI: 10.1038/srep33335.
  • Kibanova, D.; Trejo, M.; Destaillats, H.; Cervinisilva, J. Synthesis of Hectorite–TiO2 and Kaolinite–TiO2 Nanocomposites with Photocatalytic Activity for the Degradation of Model Air Pollutants. Appl. Clay Sci. 2009, 42, 563–568. DOI: 10.1016/j.clay.2008.03.009.
  • Kočí, K.; Matějka, V.; Kovář, P.; Lacný, Z.; Obalová, L. Comparison of the Pure TiO2 and Kaolinite/TiO2 Composite as Catalyst for CO2–Photocatalytic Reduction. Catal. Today 2011, 161, 105–109. DOI: 10.1016/j.cattod.2010.08.026.
  • Kateřina, D.; Pavlína, P.; Kateřina, M.; Jaroslav, L.; Jana, K. Study of the Antibacterial Activity of Composites Kaolinite/TiO2. Brno, Czech Republic 2012, 10, 23–25.
  • Lefei, J.; Fanghui, L.; Shuting, C.; Chunchun, W.; Huan, W.; Miaoan, S.; Caihong, H. Preparation, Characterization, Antimicrobial and Cytotoxicity Studies of Copper/Zinc Loaded Montmorillonite. J. Anim. Sci. Biotechnol. 2017, 8, 27. DOI: 10.1186/s40104-017-0156-6.
  • Ahammed, K. R.; Ashaduzzaman, M.; Paul, S. C.; Nath, M. R.; Bhowmik, S.; Saha, O.; Rahaman, M. M.; Bhowmik, S.; Aka, T. D. Microwave Assisted Synthesis of Zinc Oxide (ZnO) Nanoparticles in a Noble Approach: Utilization for Antibacterial and Photocatalytic Activity. SN Appl. Sci. 2020, 2, 955. DOI: 10.1007/s42452-020-2762-8.
  • Bhuiyan, M. S. H.; Miah, M. Y.; Paul, S. C.; Aka, T. D.; Saha, O.; Rahaman, M. M.; Sharif, M. J. I.; Habiba, O.; Ashaduzzaman, M. Green Synthesis of Iron Oxide Nanoparticle Using Carica papaya Leaf Extract: Application for Photocatalytic Degradation of Remazol Yellow RR Dye and Antibacterial Activity. Heliyon 2020, 6, e04603. DOI: 10.1016/j.heliyon.2020.e04603.
  • Sahil, S. T.; Promi, A. T.; Hossain, M. K.; Ahmad, N.; Muhit, M. A. A.; Shaikat Chandra Dey, S. C.; Ashaduzzaman, M. Cow Milk Lactose Inspired Fabrication of Zinc Oxide (ZnO) Nanorods for Bio-Applications. Inorg. Nano-Metal Chem. 2022, 52, 1–9. DOI: 10.1080/24701556.2022.2034006.
  • Islam, T.; Otun Saha, S. S.; Hridoy, M.; Hasan, M.; Marzan, S.; Rahman, M. M. Comparison between Reduced Susceptibility to Disinfectants and Multidrug Resistance among Hospital Isolates of Pseudomonas aeruginosa and Staphylococcus aureus in Bangladesh. Bagcilar Med. Bull. 2017, 2, 88–97.
  • Muazu, A.; Rahman, N. I. A.; Abdullahi, U. F.; Aliyu, S.; Ogidi, J. A.; Umar, A. F. Assessment of Chemical Disinfectants Efcacy against Escherichia coli Bioflm Developed on Glass and Wood at Refrigeration and Room Temperatures. J. Appl. Pharm. Sci. 2015, 5, 74–79. DOI: 10.7324/JAPS.2015.501212.
  • Mohammadi, E.; Aliofkhazraei, M.; Hasanpoor, M.; Chipara, M. Hierarchical and Complex ZnO Nanostructures by Microwaveassisted Synthesis: Morphologies, Growth Mechanism and Classifcation. Crit. Rev. Solid State Mater. Sci. 2018, 43, 475–541. DOI: 10.1080/10408436.2017.1397501.
  • Karthik, K.; Dhanuskodi, S.; Gobinath, C.; Prabukumar, S.; Sivaramakrishnan, S. Multifunctional Properties of Microwave Assisted CdO–NiO–ZnO Mixed Metal Oxide Nanocomposite: Enhanced Photocatalytic and Antibacterial Activities. J. Mater. Sci. Mater. Electron. 2018, 29, 5459–5471. DOI: 10.1007/s10854-017-8513-y.
  • Revathi, V.; Karthik, K. Microwave Assisted CdO–ZnO–MgO Nanocomposite and Its Photocatalytic and Antibacterial Studies. J. Mater. Sci. Mater. Electron. 2018, 29, 18519–18530. 10.1007/s10854-018-9968-1.
  • Liao, H. T.; Wu, C. S. Synthesis and Characterization of Polyethylene-Octene Elastomer/Clay Biodegradable Starch Nanocomposites. J. Appl. Polym. Sci. 2005, 97, 397.
  • Holešová, S.; Hundáková, M.; Pazdziora, E. Antibacterial Kaolinite Based Nanocomposites. Procedia Mater. Sci. 2016, 12, () 124–129. DOI: 10.1016/j.mspro.2016.03.022.
  • Liu, S.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano. 2011, 5, 6971–6980. DOI: 10.1021/nn202451x.
  • Akhavan, O.; Ghaderi, E. Toxicity of Graphene and Graphene Oxide Nanowalls against Bacteria. ACS Nano. 2010, 4, 5731–5736. DOI: 10.1021/nn101390x.
  • Kang, S.; Herzberg, M.; Rodrigues, D. F.; Elimelech, M. Antibacterial Effects of Carbon Nanotubes: Size Does Matter. Langmuir 2008, 24, 6409–6413. DOI: 10.1021/la800951v.
  • Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic Potential of Materials at the Nano Level. Science 2006, 311, 622–627. DOI: 10.1126/science.1114397.
  • Park, E. J.; Choi, J.; Park, Y.; Park, K. Oxidative Stress Induced by Cerium Oxide Nanoparticles in Cultured BEAS-2B Cells. Toxicology 2008, 245, 90–100. DOI: 10.1016/j.tox.2007.12.022.
  • Foster, K. A.; Galeffi, F.; Gerich, F. J.; Turner, D. A.; Müller, M. Optical and Pharmacological Tools to Investigate the Role of Mitochondria during Oxidative Stress and Neurodegeneration. Prog. Neurobiol. 2006, 79, 136–171. DOI: 10.1016/j.pneurobio.2006.07.001.
  • Ott, M.; Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Mitochondria, Oxidative Stress and Cell Death. Apoptosis 2007, 12, 913–922. DOI: 10.1007/s10495-007-0756-2.
  • Valko, M.; Rhodes, C. J.; Moncol, J.; Izakovic, M.; Mazur, M. Free Radicals, Metals and Antioxidants in Oxidative Stress-Induced Cancer. Chem. Biol. Interact. 2006, 160, 1–40.
  • Jiang, X.; Foldbjerg, R.; Miclaus, T.; Wang, L.; Singh, R.; et al. Multi-Platform Genotoxicity Analysis of Silver Nanoparticles in the Model Cell Line CHO-K1. Toxicol. Lett. 2013, 222, 55–63.
  • Souza, T. A.; Franchi, L. P.; Rosa, L. R.; Da Veiga, M. A.; Takahashi, C. S. Cytotoxicity and Genotoxicity of Silver Nanoparticles of Different Sizes in CHO-K1 and CHO-XRS5 Cell Lines. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2016, 795, 70–83.
  • Barabadi, H.; Vahidi, H.; Kamali, K. D.; Rashedi, M.; Hosseini, O.; Saravanan, M. Emerging Theranostic Gold Nanomaterials to Combat Colorectal Cancer: A Systematic Review. J. Clust. Sci. 2020, 31, 651–658. DOI: 10.1007/s10876-019-01681-x.
  • Barabadi, H.; Vahidi, H.; Mahjoub, M. A.; Kosar, Z.; Kamali, K. D.; Ponmurugan, K.; Hosseini, O.; Rashedi, M.; Saravanan, M. Emerging Antineoplastic Gold Nanomaterials for Cervical Cancer Therapeutics: A Systematic Review. J. Clust. Sci. 2020, 31, 1173–1184. DOI: 10.1007/s10876-019-01733-2(0123456789().,-volV)(0123.
  • Barabadi, H.; Mojab, F.; Vahidi, H.; Marashi, B.; Talank, N.; Hosseini, O.; Saravanan, M. Green Synthesis, Characterization, Antibacterial and Biofilm Inhibitory Activity of Silver Nanoparticles Compared to Commercial Silver Nanoparticles. Inorg. Chem. Commun. 2021, 129, 108647. DOI: 10.1016/j.inoche.2021.108647.
  • Ishita Virmani, I.; Sasi, C.; Priyadarshini, E.; Kumar, R.; Sharma, S. K.; Singh, G. P.; Pachwarya, R. B.; Paulraj, R.; Barabadi, H.; Saravanan, M.; Meena, R. Comparative Anticancer Potential of Biologically and Chemically Synthesized Gold Nanoparticles. J. Clust. Sci. 2020, 31, 867–876. DOI: 10.1007/s10876-019-01695-5.
  • Kreyling, W. G.; Semmler-Behnke, M.; Möller, W. Health Implications of Nanoparticles. J. Nanopart. Res. 2006, 8, 543–562. DOI: 10.1007/s11051-005-9068-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.