38
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The use of saccharides as a carbon source in the method of boron carbide synthesis from polymeric precursors—A review

&
Received 20 Jun 2022, Accepted 05 May 2024, Published online: 21 May 2024

References

  • Çiçek, B.; Karaahmet, O. Bor Karbür ve Düşük Sıcaklık Bor Karbür Sentezleme Yöntemleri; Nobel Akademik Yayıncılık: Ankara, 2018.
  • Thevenot, F. Boron Carbide–A Comprehensive Review. J. Eur. Ceram. Soc. 1990, 6, 205–225. DOI: 10.1016/0955-2219(90)90048-K.
  • Turatti, A. M.; Pereira, A. S. Wear Resistant Boron Carbide Compacts Produced by Pressureless Sintering. Ceram. Int. 2017, 43, 7970–7977. DOI: 10.1016/j.ceramint.2017.03.064.
  • Suri, A. K.; Subramanian, C.; Sonber, J. K.; Murthy, T. S. R. C. Synthesis and Consolidation of Boron Carbide: A Review. Int. Mater. Rev. 2010, 55, 4–40. DOI: 10.1179/095066009X12506721665211.
  • Lee, H.; Speyer, R. F. Hardness and Fracture Toughness of Pressureless-Sintered Boron Carbide (B4C). J. Am. Ceram. Soc. 2002, 85, 1291–1293. DOI: 10.1111/j.1151-2916.2002.tb00260.x.
  • Moshtaghioun, B. M.; Gomez-Garcia, D.; Dominguez-Rodriguez, A.; Todd, R. I. Abrasive Wear Rate of Boron Carbide Ceramics: Influence of Microstructural and Mechanical Aspects on Their Tribological Response. J. Eur. Ceram. Soc. 2016, 36, 3925–3928. DOI: 10.1016/j.jeurceramsoc.2016.06.029.
  • Zorzi, J. E.; Perottoni, C. A.; Jornada, J. A. H. Hardness and Wear Resistance of B4C Ceramics Prepared with Several Additives. Mater. Lett. 2005, 59, 2932–2935. DOI: 10.1016/j.matlet.2005.04.047.
  • Grady, D. E. Shock Properties of High–Strength Ceramics, Comput. Mech95; Springer: Berlin, 1995.
  • Riedel, R. Handbook of Ceramic Hard Materials; WILEY-VCH: Weinhein, 2000.
  • Domnich, V.; Reynaud, S.; Haber, R. A.; Chhowalla, M. Boron Carbide: Structure, Properties, and Stability under Stress. J. Am. Ceram. Soc. 2011, 94, 3605–3628. DOI: 10.1111/j.1551-2916.2011.04865.x.
  • Hayun, S. Reaction-Bonded Boron Carbide for Lightweight Armor: The Interrelationship between Processing, Microstructure, and Mechanical Properties. Am. Ceram. Soc. Bull. 2017, 96, 20–26.
  • Caruso, A. N.; Dowben, P. A.; Balkir, S.; Schemm, N.; Osberg, K.; Fairchild, R. W.; Flores, O. B.; Balaz, S.; Harken, A. D.; Robertson, B. W.; Brand, J. B. The All Boron Carbide Diode Neutron Detector: Comparison with Theory. Mater. Sci. Eng. B 2006, 135, 129–133. DOI: 10.1016/j.mseb.2006.08.049.
  • Victor, G.; Pipon, Y.; Bérerd, N.; Toulhoat, N.; Moncoffre, N.; Djourelov, N.; Miro, S.; Baillet, J.; Pradeilles, N.; Rapaud, O.; et al. Structural Modifications Induced by Ion Irradiation and Temperature in Boron Carbide B4C. Nucl. Instrum. Methods B 2015, 365, 30–34. DOI: 10.1016/j.nimb.2015.07.082.
  • Gosset, D. Structural Materials for Generation IV Nuclear Reactors, Absorber Materials For Generation IV Reactors; Woodhead Publishing: Duxford, 2017.
  • Tan, Y.; Luo, H.; Zhang, H.; Peng, S. Graphene Nanoplatelet Reinforced Boron Carbide Composites with High Electrical and Thermal Conductivity. J. Eur. Ceram. Soc. 2016, 36, 2679–2687. DOI: 10.1016/j.jeurceramsoc.2016.04.036.
  • Emin, D.; Aselage, T. L. A Proposed Boron-Carbide-Based Solid-State Neutron Detector. J. Appl. Phys. 2005, 97, 013529. DOI: 10.1063/1.1823579.
  • Tishkevich, D. I.; Zubar, T. I.; Zhaludkevich, A. L.; Razanau, I. U.; Vershinina, T. N.; Bondaruk, A. A.; Zheleznova, E. K.; Dong, M.; Hanfi, M. Y.; Sayyed, M. I.; et al. Isostatic Hot Pressed W-Cu Composites with Nanosized Grain Boundaries: Microstructure, Structure, and Radiation Shielding Efficiency Against Gamma-Rays. Nanomaterials 2022, 12, 1642. DOI: 10.3390/nano12101642.
  • Zdorovets, M. V.; Kozlovskiy, A. L.; Borgekov, D. B.; Shlimas, D. I. Influence of Irradiation with Heavy Kr15+ Ions on the Structural, Optical and Strength Properties of BeO Ceramic. J. Mater. Sci. Mater. Electron. 2021, 32, 15375–15385. DOI: 10.1007/s10854-021-06087-y.
  • Mirzayev, M. N.; Donkov, A. A.; Popov, E. A.; Demir, E.; Jabarov, S. H.; Chkhartishvili, L.; Adeojo, S. A.; Doroshkevich, A. S.; Sidorin, A. A.; Asadov, A. G.; et al. Modeling and X-Ray Analysis of Defect Nanoclusters Formation in B4C under Ion Irradiation. Nanomaterials 2022, 12, 2644. DOI: 10.3390/nano12152644.
  • Trukhanov, S. V.; Trukhanov, A. V.; Kostishyn, V. G.; Panina, L. V.; Turchenko, V. A.; Kazakevich, I. S.; Trukhanov, A. V.; Trukhanova, E. L.; Natarov, V. O.; Balagurov, A. M. Thermal Evolution of Exchange Interactions in Lightly Doped Bariumhexaferrites. J. Magn. Magn. Mater. 2017, 426, 554–562. DOI: 10.1016/j.jmmm.2016.10.151.
  • Zdorovets, M. V.; Kozlovskiy, A. L.; Shlimas, D. I.; Borgekov, D. B. Phase Transformations in FeCo–Fe2CoO4/Co3O4-Spinel Nanostructures as a Result of Thermal Annealing and Their Practical Application. J. Mater. Sci. Mater. Electron. 2021, 32, 16694–16705. DOI: 10.1007/s10854-021-06226-5.
  • Li, Y. Q.; Qiu, T. Oxidation Behaviour of Boron Carbide Powder. Mater. Sci. Eng. A 2007, 444, 184–191. DOI: 10.1016/j.msea.2006.08.068.
  • Nazarchuk, T. N.; Mekhanoshina, L. N. The Oxidation of Boron Carbide. Powder Metall. Met. Ceram. 1964, 3, 123–126. DOI: 10.1007/BF00774482.
  • Gogotsi, G. A.; Groushevsky, Y. L.; Dashevskaya, O. B.; Gogotsi, Y. G.; Lavrenko, V. A. Complex Investigation of Hot-Pressed Boron Carbide. J. Less-Common. Met. 1986, 117, 225–230. DOI: 10.1016/0022-5088(86)90037-8.
  • Nastasi, M.; Peterson, G.; Su, Q.; Wang, Y.; Ianno, N. J.; Benker, N.; Echeverria, E.; Yost, A. J.; Kelber, J. A.; Dong, B.; Dowben, P. A. Electrical and Structural Characterization of Neutron Irradiated Amorphous Boron Carbide/Silicon p–n Heterojunctions. Nucl. Instrum. Meth. B 2018, 422, 48–54. DOI: 10.1016/j.nimb.2018.07.006.
  • Mori, T.; Nishimura, T.; Yamaura, K.; Takayama-Muromachi, E. High Temperature Thermoelectric Properties of A Homologous Series of n-Type Boron Icosahedra Compounds: A Possible Counterpart to p-Type Boron Carbide. J. Appl. Phys. 2007, 101, 093714. DOI: 10.1063/1.2730571.
  • Yakovenko, O. S.; Matzui, L. Y.; Vovchenko, L. L.; Oliynyk, V. V.; Trukhanov, A. V.; Trukhanov, S. V.; Borovoy, M. O.; Tesel’ko, P. O.; Launets, V. L.; Syvolozhskyi, O. A.; Astapovich, K. A. Effect of Magnetic Fillers and Their Orientation on the Electrodynamic Properties of BaFe12−xGaxO19 (x = 0.1–1.2)-Epoxy Composites with Carbon Nanotubes within GHz Range. Appl. Nanosci. 2020, 10, 4747–4752. DOI: 10.1007/s13204-020-01477-w.
  • Yakovenko, O. S.; Matzui, L. Y.; Vovchenko, L. L.; Oliynyk, V. V.; Zagorodnii, V. V.; Trukhanov, S. V.; Trukhanov, A. V. Electromagnetic Properties of Carbon Nanotubes/BaFe12−xGaxO19/Epoxy Composites with Random and Oriented Filler Distribution. Nanomaterials 2021, 11, 2873–2812. DOI: 10.3390/nano11112873.
  • Sasaki, S.; Takeda, M.; Yokoyama, K.; Miura, T.; Suzuki, T.; Suematsu, H.; Jiang, W.; Yatsui, K. Thermoelectric Properties of Boron-Carbide Thin Film and Thin Film Based Thermoelectric Device Fabricated by Intense-Pulsed Ion Beam Evaporation. Sci. Technol. Adv. Mater. 2005, 6, 181–184. DOI: 10.1016/j.stam.2004.11.010.
  • Yu, L.; Lu, S. K.; Jiang, Y. L.; Xiao, B.; Tang, X.; Ru, H. Q. First-Principles Calculation of Structural and Electronic Properties of Ti-Doped B13C2. Procedia Eng. 2011, 12, 229–235. DOI: 10.1016/j.proeng.2011.05.036.
  • Almessiere, M. A.; Trukhanov, A. V.; Slimani, Y.; You, K. Y.; Trukhanov, S. V.; Trukhanova, E. L.; Esa, F.; Sadaqat, A.; Chaudhary, K.; Zdorovets, M.; Baykal, A. Correlation Between Composition and Electrodynamics Properties in Nanocomposites Based on Hard/Soft Ferrimagnetics with Strong Exchange Coupling. Nanomaterials 2019, 9, 202. DOI: 10.3390/nano9020202.
  • Kozlovskiy, A. L.; Zdorovets, M. V. Effect of Doping of Ce4+/3+ on Optical, Strength and Shielding Properties of (0.5−x)TeO2-0.25MoO-0.25Bi2O3-xCeO2 Glasses. Mater. Chem. Phys. 2021, 263, 124444. DOI: 10.1016/j.matchemphys.2021.124444.
  • Balcı, Ö.; Buldu, M.; Ammar, A. U.; Kiraz, K.; Somer, M.; Erdem, E. Defect-Induced B4C Electrodes for High Energy Density Supercapacitor Devices. Sci. Rep. 2021, 11, 11627. DOI: 10.1038/s41598-021-90878-0.
  • Trukhanov, S. V.; Troyanchuk, I. O.; Fita, I. M.; Szymczak, H.; Bärner, K. Comparative Study of the Magnetic and Electrical Properties of Pr1−xBaxMnO3−δ Manganites Depending on the Preparation Conditions. J. Magn. Magn. Mater. 2001, 237, 276–282. DOI: 10.1016/S0304-8853(01)00477-2.
  • Kozlovskiy, A.; Egizbek, K.; Zdorovets, M. V.; Ibragimova, M.; Shumskaya, A.; Rogachev, A. A.; Ignatovich, Z. V.; Kadyrzhanov, K. Evaluation of the Efficiency of Detection and Capture of Manganese in Aqueous Solutions of FeCeOx Nanocomposites Doped with Nb2O5. Sensors 2020, 20, 4851. DOI: 10.3390/s20174851.
  • Trukhanov, S. V.; Trukhanov, A. V.; Stepin, S. G.; Szymczak, H.; Botez, C. E. Effect of the Size Factor on the Magnetic Properties of Manganite La0.50Ba0.50MnO3. Phys. Solid State 2008, 50, 886–893. DOI: 10.1134/S1063783408050144.
  • Kozlovskiy, A. L.; Zdorovets, M. V. Study of Hydrogenation Processes in Radiation-Resistant Nitride Ceramics. J. Mater. Sci. Mater. Electron. 2020, 31, 11227–11237. DOI: 10.1007/s10854-020-03671-6.
  • Emin, D. Unusual Properties of Icosahedral Boron-Rich Solids. J. Solid State Chem. 2006, 179, 2791–2798. DOI: 10.1016/j.jssc.2006.01.014.
  • Okamoto, H. B-C (Boron-Carbon). JPE 1992, 13, 436–436. DOI: 10.1007/BF02674994.
  • Bouchacourt, M.; Thevenot, F. The Properties and Structure of the Boron Carbide Phase. J. Less-Common. Met. 1981, 82, 227–235. DOI: 10.1016/0022-5088(81)90223-X.
  • He, J. L.; Shen, Z. Q.; Wu, E.; Liu, Z. Y.; He, L. L.; Yu, D. L.; Guo, L. C.; Wu, Q. H.; Luo, X. G.; Hu, Q. K.; et al. Carbon-Rich Boron Carbide in the Eutectic Product Synthesized by Resistance Heating of B2CN in Graphite. J. Alloy Compd. 2007, 437, 238–246. DOI: 10.1016/j.jallcom.2006.07.097.
  • Niihara, K.; Nakahira, A.; Hirai, T. The Effect of Stoichiometry on Mechanical Properties of Boron Carbide. J. Am. Ceram. Soc. 1984, 67, C13–C14. DOI: 10.1111/j.1151-2916.1984.tb19158.x.
  • Alizadeh, A.; Taheri-Nassaj, E.; Ehsani, N... Synthesis of Boron Carbide Powder by A Carbothermic Reduction Method. J. Eur. Ceram. Soc. 2004, 24, 3227–3234. DOI: 10.1016/j.jeurceramsoc.2003.11.012.
  • Krstic, V. D. Method of Making Transition Metal Carbide and Boride Powders. U.S. Patent 5,338,523A, August 16, 1994.
  • Kobayashi, T.; Yoshida, K.; Yano, T. Effects of Heat-Treatment Temperature and Starting Composition on Morphology of Boron Carbide Particles Synthesized by Carbothermal Reduction. Ceram. Int. 2013, 39, 597–603. DOI: 10.1016/j.ceramint.2012.06.070.
  • Yanase, I.; Ogawara, R.; Kobayashi, H. Synthesis of Boron Carbide Powder from Polyvinyl Borate Precursor. Mater. Lett. 2009, 63, 91–93. DOI: 10.1016/j.matlet.2008.09.012.
  • Rafi-Ud-Din; Zahid, G. H.; Asghar, Z.; Maqbool, M.; Ahmad, E.; Azhar, T.; Subhani, T.; Shahzad, M. Ethylene Glycol Assisted Low-Temperature Synthesis of Boron Carbide Powder from Borate Citrate Precursors. J. Asian Ceram. Soc. 2014, 2, 268–274. DOI: 10.1016/j.jascer.2014.05.011.
  • Chen, X. W.; Dong, S. M.; Kan, Y. M.; Zhou, H. J.; Hu, J. B.; Ding, Y. S. Effect of Glycerine Addition on the Synthesis of Boron Carbide from Condensed Boric Acid–Polyvinyl Alcohol Precursor. RSC Adv. 2016, 6, 9338–9343. DOI: 10.1039/C5RA23303H.
  • Maqbool, M.; Rafi-Ud-Din; Zahid, G. H.; Ahmad, E.; Asghar, Z.; Subhani, T.; Shahzad, M.; Kaleem, I. Effect of Saccharides as Carbon Source on the Synthesis and Morphology of B4C Fine Particles from Carbothermal Synthesis Precursors. Mater. Express 2015, 5, 390–400. DOI: 10.1166/mex.2015.1257.
  • Sneddon, L. G.; Pender, M. J. Method for Making Boron Carbide Containing Ceramics. U.S. Patent 6,478,994B1, November 12, 2002.
  • Tishkevich, D. I.; Korolkov, I. V.; Kozlovskiy, A. L.; Anisovich, M.; Vinnik, D. A.; Ermekova, A. E.; Vorobjova, A. I.; Shumskaya, E. E.; Zubar, T. I.; Trukhanov, S. V.; et al. Immobilization of Boron-Rich Compound on Fe3O4 Nanoparticles: Stability and Cytotoxicity. J. Alloys Compd. 2019, 797, 573–581. DOI: 10.1016/j.jallcom.2019.05.075.
  • Kakiage, M.; Tahara, N.; Tominaga, Y.; Yanagidani, S.; Yanase, I.; Kobayashi, H. Effect of Molecular Structure of Polyols with Different Molecular Characteristics on Synthesis of Boron Carbide Powder. Key Eng. Mat. 2013, 534, 61–65. DOI: 10.4028/www.scientific.net/KEM.534.61.
  • Kakiage, M.; Tominaga, Y.; Yanase, I.; Kobayashi, H. Synthesis of Boron Carbide Powder in Relation to Composition and Structural Homogeneity of Precursor Using Condensed Boric Acid–Polyol Product. Powder Technol. 2012, 221, 257–263. DOI: 10.1016/j.powtec.2012.01.010.
  • Bigdeloo, J. A.; Hadian, A. M. Synthesis of High Purity Micron Size Boron Carbide Powder from B2O3/C Precursor. Int. J. Rec. Trends Eng. 2009, 1, 176–180.
  • Ergun, C.; Yılmaz, Ş. Boron Carbide Production Method. WO Patent 2009070131A2–TR2008/000106, June 4, 2009.
  • Kakiage, M.; Tahara, N.; Yanase, I.; Kobayashi, H. Low-Temperature Synthesis of Boron Carbide Powder from Condensed Boric Acid–Glycerin Product. Mater. Lett. 2011, 65, 1839–1841. DOI: 10.1016/j.matlet.2011.03.046.
  • Avcıata, O.; Ergun, C.; Erden, I.; Üstündağ, C.; Yılmaz, S.; Cihangir, S. Synthesis of B4C from Sugar Based Precursor: Global Roadmap for Ceramics–2nd International Congress on Ceramics, Verona, Italy, June 29–July 4, 2008.
  • Malhotra, S. P. K.; Alghuthaymi, M. A. Chapter 6 – Biomolecule-Assisted Biogenic Synthesis of Metallic Nanoparticles. In Nanobiotechnology for Plant Protection, Agri-Waste and Microbes for Production of Sustainable Nanomaterials; Abd-Elsalam, K. A., Periakaruppan, R., Rajeshkumar, S., Eds.; Elsevier: Amsterdam, 2022, pp 139–163. DOI: 10.1016/B978-0-12-823575-1.00011-1.
  • Britto-Hurtado, R.; Cortez-Valadez, M. Chapter 4 – Green Synthesis Approaches for Metallic and Carbon Nanostructures. In Green Functionalized Nanomaterials for Environmental Applications; Shanker, U., Hussain, C. M., Rani, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp 83–127. DOI: 10.1016/B978-0-12-823137-1.00002-6.
  • Miu, B. A.; Dinischiotu, A. New Green Approaches in Nanoparticles Synthesis: An Overview. Molecules 2022, 27, 6472. DOI: 10.3390/molecules27196472.
  • Safian, M. T.; Haron, U. S.; Mohamad Ibrahim, M. N. A Review on Bio-Based Graphene Derived from Biomass Wastes. BioResearch 2020, 15, 9756–9785. DOI: 10.15376/biores.15.4.Safian.
  • Aswathi, V. P.; Meera, S.; Maria, C. G. A.; Nidhin, M. Green Synthesis of Nanoparticles From Biodegradable Waste Extracts and Their Applications: A Critical Review. Nanotechnol. Environ. Eng. 2022, 8, 377–397. DOI: 10.1007/s41204-022-00276-8.
  • Zhu, X.; Pathakoti, K.; Hwang, H.-M. Chapter 10 – Green Synthesis of Titanium Dioxide and Zinc Oxide Nanoparticles and Their Usage for Antimicrobial Applications and Environmental Remediation. In Green Synthesis, Characterization and Applications of Nanoparticles, Shukla, A. K., Iravani, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019, pp 223–263. DOI: 10.1016/B978-0-08-102579-6.00010-1.
  • Kumari, S. C.; Dhand, V.; Naga Padma, P. Chapter 11 – Green Synthesis of Metallic Nanoparticles: A Review. In Nanomaterials; Praveen Kumar, R., Bharathiraja, B., Eds.; Academic Press: London, 2021; pp 259–281. DOI: 10.1016/B978-0-12-822401-4.00022-2.
  • Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail Review on Chemical, Physical and Green Synthesis, Classification, Characterizations and Applications of Nanoparticles. Green Chem. Lett. Rev. 2020, 13, 223–245. DOI: 10.1080/17518253.2020.1802517.
  • Kharissova, O. V.; Kharisov, B. I.; Oliva González, C. M.; Méndez, Y. P.; López, I. Greener Synthesis of Chemical Compounds and Materials. R. Soc. Open Sci. 2019, 6, 191378. DOI: 10.1098/rsos.191378.
  • Kozlovskiy, A. L.; Alina, A.; Zdorovets, M. V. Study of the Effect of Ion Irradiation on Increasing the Photocatalyticactivity of WO3 Microparticles. J. Mater. Sci. Mater. Electron. 2021, 32, 3863–3877. DOI: 10.1007/s10854-020-05130-8.
  • Ying, S.; Thapa, M.; Choudhury, S. R. Chapter Two – Green Synthesized Nanoparticles: Physicochemical Properties and Mode of Antimicrobial Activities. In Comprehensive Analytical Chemistry; Verma, S. K., Das, A. K., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Vol. 94, pp 49–79. DOI: 10.1016/bs.coac.2020.12.006.
  • Treepet, S.; Chokradjaroen, C.; Kim, K.; Saito, N.; Watthanaphanit, A. Saccharide-Originated Fluorescent Carbon Dots Synthesized by In-Liquid Plasma with Controlled Orderliness of Carbon Core through Precursor Alteration for Selective and Rapid Metal İon Detection. Mater. Today Chem. 2022, 26, 101139. DOI: 10.1016/j.mtchem.2022.101139.
  • Singh, J.; Dutta, T.; Kim, K. H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ Synthesis of Metals and Their Oxide Nanoparticles: Applications for Environmental Remediation. J. Nanobiotechnol. 2018, 16, 84. DOI: 10.1186/s12951-018-0408-4.
  • Konno, H.; Sudoh, A.; Aoki, Y.; Habazaki, H. Synthesis of C/B4C Composites from Sugar-Boric Acid Mixed Solutions. Mol. Cryst. Liq. Cryst. 2002, 386, 15–20. DOI: 10.1080/713738826.
  • Sudoh, A.; Konno, H.; Habazaki, H.; Kiyono, H. Synthesis of Boron Carbide Microcrystals from Saccharides and Boric Acid. Tanso 2007, 45, 1373–1373. DOI: 10.1016/j.carbon.2007.02.005.
  • Smudski, P. A. Metal Carbide and Boride Production. U.S. Patent 3,379,647, April 23, 1968.
  • Harris, G. L.; Parsons, D. S. Method of Producing Boron Carbide from Water-Alcohol Solution of Carbon Source. U.S. Patent 3,885,022, May 20, 1975.
  • Zhang, F.; Zhang, J.; Fu, Z.; Wang, W.; Wang, Y.; Wang, H. Method for Fast Preparing Boron Carbide Ceramic Powder. China Patent CN102731110 A, October 17, 2012.
  • Pilladi, T. R.; Ananthasivan, K.; Anthonysamy, S.; Ganesan, V. Synthesis of Nanocrystalline Boron Carbide from Boric Acid–Sucrose Gel Precursor. J. Mater. Sci. 2012, 47, 1710–1718. DOI: 10.1007/s10853-011-5950-5.
  • Pilladi, T. R.; Ananthansivan, K.; Anthonysamy, S. Synthesis of Boron Carbide from Boric Oxide-Sucrose Gel Precursor. Powder Technol. 2013, 246, 247–251. DOI: 10.1016/j.powtec.2013.04.055.
  • Zakharova, K.; Mednikova, A.; Rumyantsev, V.; Genusova, T. Synthesis of Boron Carbide from Boric Acid and Carbon-Containing Precursors, Nanomaterials: Applications & Properties (NAP-2013), 2nd International Conference, Alushta, Crimea, September 17–22, 2012.
  • Watts, J. L.; Talbot, P. C.; Alarco, J. A.; Mackinnon, I. D. R. Morphology Control in High Yield Boron Carbide. Ceram. Int. 2017, 43, 2650–2657. DOI: 10.1016/j.ceramint.2016.11.076.
  • Foroughi, P.; Cheng, Z. From Micron-Sized Particles to Nanoparticles and Nanobelts: Structural Non-Uniformity in the Synthesis of Boron Carbide by Carbothermal Reduction Reaction. In Advances in Ceramic Armor XI; LaSalvia, J. C., Eds.; John Wiley & Sons Inc: Hoboken, NJ, 2015; pp 51–62.
  • Foroughi, P.; Cheng, Z. Understanding the Morphological Variation in the Formation of B4C via Carbothermal Reduction Reaction. Ceram. Int. 2016, 42, 15189–15198. DOI: 10.1016/j.ceramint.2016.06.126.
  • Vijay, S. K.; Krishnaprabhu, R.; Chandramouli, V.; Anthonysamy, S. Synthesis of Nanocrystalline Boron Carbide by Sucrose Precursor Method–Optimization of Process Conditions. Ceram. Int. 2018, 44, 4676–4684. DOI: 10.1016/j.ceramint.2017.12.047.
  • Özçelik, B. K.; Ergün, C. Boronated Carbon and Boron Carbide Synthesize via Aerosol Method. Mater. Sci. Technol. 2014, 14, 1569–1574.
  • Ozcelik, B.; Ergun, C. Synthesis of Boron Carbide Nanoparticles via Spray Pyrolysis. J. Mater. Res. 2016, 31, 2789–2803. DOI: 10.1557/jmr.2016.264.
  • Ergun, C.; Özçelik, B. K. Effect of Ni on the Synthesize Boron Carbide via Aerosol Method, TMS 2015, Orlando, USA, March 15–19, 2015.
  • Ma, M.; Li, P.; Li, B.; Wu, Y.; Gao, Y.; Hu, W.; Gao, G.; Zhao, Z.; Yu, D.; He, J. One-Step Synthetic Route and Sintering for Carbon-Coated B4C Nanoparticles. J. Alloys Compd. 2019, 782, 263–269. DOI: 10.1016/j.jallcom.2018.12.104.
  • Tucker, M.; Liou, S.-C.; Zondode, M.; Dampare, J.; Joseph, H. C.; Ndaw, M. S.; Hou, J.; Pramanik, S.; Du, X.; Wu, W.; et al. Boron Carbide Amorphous Solid with Tunable Band Gap. J. Alloys Compd. 2021, 861, 157951. DOI: 10.1016/j.jallcom.2020.157951.
  • Li, P.; Ma, M.; Wu, Y.; Zhang, X.; Chang, Y.; Zhuge, Z.; Sun, L.; Hu, W.; Yu, D.; Xu, B.; et al. Preparation of Dense B4C Ceramics by Spark Plasma Sintering of High-Purity Nanoparticles. J. Eur. Ceram. Soc. 2021, 41, 3929–3936. DOI: 10.1016/j.jeurceramsoc.2021.02.036.
  • El-Sheikh, S. M.; Ahmed, Y. M. Z.; Ewais, E. M. M.; Abd El Baset Abd Allah, A.; Anwar, S. Nanocrystalline Boron Carbide Powder Synthesized via Carbothermal Reduction Reaction. In Advances in Ceramic Armor XI; LaSalvia, J. C., Ed.; John Wiley & Sons Inc: Hoboken, NJ, 2015; pp 63–74.
  • Ahmed, Y. M. Z.; El-Sheikh, S. M.; Ewais, E. M. M.; Abd-Allah, A. A.; Sayed, S. A. Controlling the Morphology and Oxidation Resistance of Boron Carbide Synthesized via Carbothermic Reduction Reaction. J. Mater. Eng. Perform. 2017, 26, 1444–1454. DOI: 10.1007/s11665-017-2548-3.
  • Rafi-Ud-Din, Zahid, G. H.; Ahmad, E.; Maqbool, M.; Subhani, T.; Syed, W. A.; Hussain, S. Z. Effect of Cellulose-Derived Structural Homogeneity of Precursor on the Synthesis and Morphology of Boron Carbide. J. Inorg. Organomet. P. 2015, 25, 995–999. DOI: 10.1007/s10904-015-0181-x.
  • SarithaDevi, H. V.; Swapna, M. S.; Ambadas, G.; Sankararaman, S. Low-Temperature Green Synthesis of Boron Carbide Using Aloe Vera. Chinese Phys. B 2018, 27, 107702. DOI: 10.1088/1674-1056/27/10/107702.
  • Saritha Devi, H. V.; Swapna, M. S.; Ambadas, G.; Sankararaman, S. Hydrothermal Development and Characterization of The Wear-Resistant Boron Carbide from Pandanus: A Natural Carbon Precursor. Appl. Phys. A 2018, 124, 297. DOI: 10.1007/s00339-018-1733-z.
  • Sheng, Y.; Li, G.; Meng, H.; Han, Y.; Xu, Y.; Wu, J.; Xu, J.; Sun, Z.; Liu, Y.; Zhang, X. An Improved Carbothermal Process for the Synthesis of Fine-Grained Boron Carbide Microparticles and Their Photoelectrocatalytic Activity. Ceram. Int. 2018, 44, 1052–1058. DOI: 10.1016/j.ceramint.2017.10.047.
  • Rafaniello, W.; Moore, W. G. Producing Boron Carbide. U.S. Patent 4,804,525, February 14, 1989.
  • Xu, J.; Liu, X.; Wang, S.; Ma, Y.; Pei, C.; Duan, X. A Novel 3D Network Nanostructure Constructed by Single-Crystal Nanosheets of B4C. Ceram. Int. 2017, 43, 16787–16791. DOI: 10.1016/j.ceramint.2017.09.074.
  • Chang, I. T. H.; Falticeanu, C. L. Production of Boron Carbide Powder. U.S. Patent 20150299421A1, October 22, 2015.
  • Kozień, D.; Jeleń, P.; Stępień, J.; Olejniczak, Z.; Sitarz, M.; Pędzich, Z. Surface Properties and Morphology of Boron Carbide Nanopowders Obtained by Lyophilization of Saccharide Precursors. Materials 2021, 14, 3419. DOI: 10.3390/ma14123419.
  • Kenny, J.; McDonald, N.; Binner, J.; Chang, I. T. H.; Marinel, S. Low Temperature Synthesis and Spark Plasma Sintering of A Boron Carbide with A Low Residual Carbon Content. J. Eur. Ceram. Soc. 2022, 42, 383–391. DOI: 10.1016/j.jeurceramsoc.2021.10.012.
  • Kozień, D.; Jeleń, P.; Sitarz, M.; Bućko, M. M. Synthesis of Boron Carbide Powders from Mono- and Polysaccharides. Int. J. Refract. Met. Hard Mater. 2020, 86, 105099. DOI: 10.1016/j.ijrmhm.2019.105099.
  • Sinha, A.; Mahata, T.; Sharma, B. P. Carbothermal Route for Preparation of Boron Carbide Powder from Boric Acid–Citric Acid Gel Precursor. J. Nucl. Mater. 2002, 301, 165–169. DOI: 10.1016/S0022-3115(02)00704-3.
  • Pilladi, T. R.; Panneerselvam, G.; Anthonysamy, S.; Ganesan, V. Thermal Expansion of Nanocrystalline Boron Carbide. Ceram. Int. 2012, 38, 3723–3728. DOI: 10.1016/j.ceramint.2012.01.016.
  • Weimer, A. W. C. Nitride And Boride Materials Synthesis And Processing; Chapman & Hall: Bristol, 1997.
  • Lamoreaux, R. H.; Hildenbrand, D. L.; Brewer, L. High Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg. J. Phys. Chem. Ref. Dat. 1987, 16, 419–443. DOI: 10.1063/1.555799.
  • Chang, Y.; Sun, X.; Ma, M.; Mu, C.; Li, P.; Li, L.; Li, M.; Nie, A.; Xiang, J.; Zhao, Z.; et al. Application of Hard Ceramic Materials B4C in Energy Storage: Design B4C@C Core-Shell Nanoparticles as Electrodes for Flexible All-Solid-State Micro-Supercapacitors with Ultrahigh Cyclability. Nano Energy 2020, 75, 104947. DOI: 10.1016/j.nanoen.2020.104947.
  • Vijay, S. K.; Krishna Prabhu, R.; Chandramouli, V.; Anthonysamy, S.; Jain, A.; Ghosh, C.; Mythili, R.; Dasgupta, A. Sintering of Nanocrystalline Boron Carbide Synthesized by the B2O3-Sucrose Precursor Method. Ceram. Int. 48, 23878–23884. DOI: 10.1016/j.ceramint.2022.05.056.
  • Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. DOI: 10.1039/C0CS00108B.
  • Lovegrove, A.; Edwards, C. H.; Noni, I. D.; Patel, H.; El, S. N.; Grassby, T.; Zielke, C.; Ulmius, M.; Nilsson, L.; Butterworth, P. J.; et al. Role of Polysaccharides in Food, Digestion and Health. Crit. Rev. Food Sci. Nutr. 2017, 57, 237–253. DOI: 10.1080/10408398.2014.939263.
  • Kobayashi, H.; Komanoya, T.; Guha, S. K.; Hara, K.; Fukuoka, A. Conversion of Cellulose into Renewable Chemicals by Supported Metal Catalysis. Appl. Catal. A Gen. 2011, 409, 13–20. DOI: 10.1016/j.apcata.2011.10.014.
  • Kondo, T. Hydrogen Bonds in Cellulose and Cellulose Derivatives. In Polysaccharides: Structural Diversity and Functional Versatility; Dumitriu, S., Ed.; Marcel Dekker: New York, NY, 2005; pp 69–98.
  • Li, X.; Sun, C.; Zhou, B.; He, Y. Determination of Hemicellulose, Cellulose and Lignin in Moso Bamboo by Near Infrared Spectroscopy. Sci. Rep. 2015, 5, 17210. DOI: 10.1038/srep17210.
  • Du, J.; Li, Q.; Xia, Y.; Cheng, X.; Gan, Y.; Huang, H.; Zhang, W.; Tao, X. Synthesis of Boron Carbide Nanoflakes via a Bamboo-Based Carbon Thermal Reduction Method. J. Alloys Compd. 2013, 581, 128–132. DOI: 10.1016/j.jallcom.2013.07.051.
  • Tao, X.; Li, Y.; Du, J.; Xia, Y.; Yang, Y.; Huang, H.; Gan, Y.; Zhang, W.; Li, X. A Generic Bamboo-Based Carbothermal Method for Preparing Carbide (SiC, B4C, TiC, TaC, NbC, TixNb1−xC, and TaxNb1−xC) Nanowires. J. Mater. Chem. 2011, 21, 9095–9102. DOI: 10.1039/c1jm10730e.
  • Garnier, J. E.; Griffith, G. W. Methods of Producing Continuous Boron Carbide Fibers, Continuous Boron Carbide Fibers, Continuous Fibers Comprising Boron Carbide, and Articles Including Fibers Comprising at Least A Boron Carbide Coating. U.S. Patent 2013/0048903 A1, February 28, 2013.
  • Mohammadi, F.; Cass, R. B. Boron Carbide Ceramic Fibers. U.S. Patent 8,536,080B2, September 17, 2013.
  • Devi, H. V. S.; Swapna, M. S.; Raj, V.; Ambadas, G.; Sankararaman, S. Natural Cotton as Precursor for the Refractory Boron Carbide—A Hydrothermal Synthesis and Characterization. Mater. Res. Express 2018, 5, 015603. DOI: 10.1088/2053-1591/aaa367.
  • Kesavan, D.; Krishnamoorthy, K.; Sathyaseelan, A.; Ali, N. U. H. L.; Kim, S.-J. Boron-Oxy-Carbide Sheets: A Wide Voltage Symmetric Supercapacitor Electrode with High Temperature Tolerance. J. Chem. Eng. 2022, 446, 136983. DOI: 10.1016/j.cej.2022.136983.
  • Bahaji, A.; Li, J.; Sánchez-López, Á. M.; Baroja-Fernández, E.; Muñoz, F. J.; Ovecka, M.; Almagro, G.; Montero, M.; Ezquer, I.; Etxeberria, E.; Pozueta-Romero, J. Starch Biosynthesis, Its Regulation and Biotechnological Approaches to Improve Crop Yields. Biotechnol. Adv. 2014, 32, 87–106. DOI: 10.1016/j.biotechadv.2013.06.006.
  • Weimer, A. W.; Roach, R. P.; Haney, C. N.; Moore, W. G.; Rafaniello, W. Rapid Carbothermal Reduction of Boron Oxide in A Graphite Transport Reactor. AIChE J. 1991, 37, 759–768. DOI: 10.1002/aic.690370513.
  • Weimer, A. W.; Moore, W. G.; Roach, R. P.; Hitt, J. E.; Dixit, R. S.; Pratsinis, S. E. Kinetics of Carbothermal Reduction Synthesis of Boron Carbide. J. Am. Ceram. Soc. 1992, 75, 2509–2514. DOI: 10.1111/j.1151-2916.1992.tb05604.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.