43
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Green synthesis of NiFe2O4 nanoparticles and evaluation of their photocatalytic activities

ORCID Icon &
Received 28 Mar 2023, Accepted 04 May 2024, Published online: 21 May 2024

References

  • Nadaf, N. Y.; Kanase, S. S. Biosynthesis of Gold Nanoparticles by Bacillus marisflavi and its Potential in Catalytic Dye Degradation. Arab. J. Chem. 2016, 12, 4806–4814. DOI: 10.1016/j.arabjc.2016.09.020.
  • Bhavyasree, P. G.; Xavier, T. S. Adsorption Studies of Methylene Blue, Coomassie Brilliant Blue, and Congo Red Dyes onto CuO/C Nanocomposites Synthesized Via Vitex Negundo Linn Leaf Extract. Curr. Res. Green Sustain. Chem. 2021, 4, 100161. DOI: 10.1016/j.crgsc.2021.100161.
  • David, L.; Moldovan, B. Green Synthesis of Biogenic Silver Nanoparticles for Efficient Catalytic Removal of Harmful Organic Dyes. Nanomaterials (Basel) 2020, 10, 202. DOI: 10.3390/nano10020202.
  • Farhan Hanafi, M.; Sapawe, N. A Review on the Water Problem Associate With Organic Pollutants Derived From Phenol, Methyl Orange, And Remazol Brilliant Blue Dyes. Mater. Today Proc. 2020, 31, A141–A150. DOI: 10.1016/j.matpr.2021.01.258.
  • Nezafat, Z.; Mohazzab, B. F.; Jaleh, B.; Nasrollahzadeh, M.; Baran, T.; Shokouhimehr, M. A Promising Nanocatalyst: Upgraded Kraft Lignin by Titania and Palladium Nanoparticles for Organic Dyes Reduction. Inorg. Chem. Commun. 2021, 130, 108746. DOI: 10.1016/j.inoche.2021.108746.
  • Musadiq Anis, S.; Habibullah Hashemi, S.; Nasri, A.; Sajjadi, M.; Eslamipanah, M.; Jaleh, B. Decorated ZrO2 by Au Nanoparticles as a Potential Nanocatalyst for the Reduction of Organic Dyes in Water. Inorg. Chem. Commun. 2022, 141, 109489. DOI: 10.1016/j.inoche.2022.109489.
  • Jaleh, B.; Mousavi, S. S.; Sajjadi, M.; Eslamipanah, M.; Maryaki, M. J.; Orooji, Y.; Varma, R. S. Synthesis of Bentonite/Ag Nanocomposite by Laser Ablation in Air and İts Application in Remediation. Chemosphere 2023, 315, 137668. DOI: 10.1016/j.chemosphere.2022.137668.
  • Moghadam, N. C. Z.; Jasim, S. A.; Ameen, F.; Alotaibi, D. H.; Nobre, M. A.; Sellami, H.; Khatami, M. Nickel Oxide Nanoparticles Synthesis Using Plant Extract And Evaluation Of Their Antibacterial Effects On Streptococcus Mutans. Bioprocess Biosyst. Eng. 2022, 45, 1201–1210. DOI: 10.1007/s00449-022-02736-6.
  • Ameen, F. Optimization of the Synthesis of Fungus-Mediated Bi-Metallic Ag-Cu Nanoparticles. Appl. Sci. 2022, 12, 1384. DOI: 10.3390/app12031384.
  • Ameen, F.; Dawoud, T.; AlNadhari, S. Ecofriendly and Low-Cost Synthesis of ZnO Nanoparticles from Acremonium Potronii for the Photocatalytic Degradation of Azo Dyes. Environ. Res. 2021, 202, 111700. DOI: 10.3390/app12031384.
  • Ameen, F.; Al-Homaidan, A. A.; Al-Sabri, A.; Almansob, A.; AlNAdhari, S. Anti-Oxidant, Anti-Fungal and Cytotoxic Effects of Silver Nanoparticles Synthesized Using Marine Fungus Cladosporium Halotolerans. Appl. Nanosci. 2021, 13, 623–631. DOI: 10.1007/s13204-021-01874-9.
  • Sonbol, H.; Ameen, F.; AlYahya, S.; Almansob, A.; Alwakeel, S. Padina Boryana Mediated Green Synthesis of Crystalline Palladium Nanoparticles as Potential Nanodrug Against Multidrug Resistant Bacteria and Cancer Cells. Sci. Rep. 2021, 11, 5444. DOI: 10.1038/s41598-021-84794-6.
  • Ameen, F.; Srinivasan, P.; Selvankumar, T.; Kamala-Kannan, S.; Al Nadhari, S.; Almansob, A.; Dawoud, T.; Govarthanan, M. Phytosynthesis of Silver Nanoparticles Using Mangifera İndica Flower Extract As Bioreductant and Their Broad-Spectrum Antibacterial Activity. Bioorg. Chem. 2019, 88, 102970. DOI: 10.1016/j.bioorg.2019.102970.
  • Mustapha, T.; Ithnin, N. R.; Othman, H.; Abu Hasan, Z.; Misni, N. Bio-Fabrication of Silver Nanoparticles Using Citrus Aurantifolia Fruit Peel Extract (CAFPE) and the Role of Plant Extract in the Synthesis. Plants (Basel) 2023, 12, 1648. DOI: 10.3390/plants12081648.
  • Sulistyarti, H.; Utama, M. M.; Fadhila, A. M.; Cahyaningrum, A.; Murti, R. J.; Febriyanti, A. Green Synthesis of Silver Nanoparticles Using Coffea Canephora Fruit Skin Extract and its Application for Mercury Detection in Face Cream Samples. Anal. Sci. 2023, 39, 335–346. DOI: 10.1007/s44211-022-00237-w.
  • Endah, E. S.; Saraswaty, V.; Ratnaningrum, D.; Kosasih, W.; Ardiansyah, A.; Risdian, C.; Nugroho, P.; Aji, E. S.; Setiyanto, H. Phyto-Assisted Synthesis of Zinc Oxide Nanoparticles Using Mango (Mangifera indica) Fruit Peel Extract and Their Antibacterial Activity. IOP Conf. Ser.: Earth Environ. Sci. 2023, 1201, 012081. DOI: 10.1088/1755-1315/1201/1/012081.
  • Goh, H. T.; Cheok, C. Y.; Yeap, S. P. Green Synthesis of Silver Nanoparticles Using Banana Peel Extract and Application on Banana Preservation. Food Front. 2023, 4, 283–288. DOI: 10.1002/fft2.206.
  • Xu, C.; Nasrollahzadeh, M.; Selva, M.; Issaabadi, Z.; Luque, R. Waste-to-Wealth: Biowaste Valorization into Valuable Bio(Nano)Materials. Chem. Soc. Rev. 2019, 48, 4791–4822. DOI: 10.1039/C8CS00543E.
  • Ashrafi, G.; Nasrollahzadeh, M.; Jaleh, B.; Sajjadi, M.; Ghafuri, H. Biowaste- and Nature-Derived (Nano)Materials: Biosynthesis, Stability and Environmental Applications. Adv. Colloid Interface Sci. 2022, 301, 102599. DOI: 10.1016/j.cis.2022.102599.
  • Mythili, R.; Selvankumar, T.; Srinivasan, P.; Sengottaiyan, A.; Sabastinraj, J.; Ameen, F.; Al-Sabri, A.; Kamala-Kannan, S.; Govarthanan, M.; Kim, H. Biogenic Synthesis, Characterization And Antibacterial Activity of Gold Nanoparticles Synthesised from Vegetable Waste. J. Mol. Liq. 2018, 262, 318–321. DOI: 10.1016/j.molliq.2018.04.087.
  • Bhuyan, B.; Paul, B.; Paul, A.; Dhar, S. S. Paederia Foetida Linn. Promoted Synthesis of CoFe2O4 and NiFe2O4 Nanostructures and Their Photocatalytic Efficiency. IET Nanobiotechnol. 2018, 12, 235–240. DOI: 10.1049/iet-nbt.2017.0131.
  • Kakhki, R. M.; Khorrampoor, A.; Rabbani, M.; Ahsani, F. Visible Light Photocatalytic Degradation of Textile Waste Water by Co-Doped NiFe2O4 Nanocomposite. J. Mater. Sci: Mater. Electron. 2017, 28, 4095–4101. DOI: 10.1007/s10854-016-6028-6.
  • Nasiriboroumand, M.; Montazer, M.; Barani, H. Preparation and Characterization of Biocompatible Silver Nanoparticles Using Pomegranate Peel Extract. J. Photochem. Photobiol. B 2018, 179, 98–104. DOI: 10.1016/j.jphotobiol.2018.01.006.
  • Ahmad, N.; Sharma, S.; Rai, R. Rapid Green Synthesis of Silver And Gold Nanoparticles Using Peels of Punica Granatum. Adv. Mat. Lett. 2012, 3, 376–380. DOI: 10.5185/amlett.2012.6357.
  • Mekawi, E. M.; Sharoba, A. M.; Ramadan, M. F. Reduction of Acrylamide Formation In Potato Chips During Deep-Frying In Sunflower Oil Using Pomegranate Peel Nanoparticles Extract. Food Measure. 2019, 13, 3298–3306. DOI: 10.1007/s11694-019-00252-y.
  • Al-Rawahi, A. S.; Edwards, G.; Al-Sibani, M.; Al-Thani, G.; Al-Harrasi, A. S.; Rahman, M. S. Phenolic Constituents of Pomegranate Peels (Punica granatum L.) Cultivated in Oman. EJMP. 2014, 4, 315–331. DOI: 10.9734/EJMP/2014/6417.
  • Hui, Y.; Yan-Yu, R.; Tao, W.; Chuang, W. Preparation and Antibacterial Activities of Ag/Ag+/Ag3+ Nanoparticle Composites Made by Pomegranate (Punica Granatum) Rind Extract. Results Phys. 2016, 6, 299–304. DOI: 10.1016/j.rinp.2016.05.012.
  • Karunakaran, G.; Jagathambal, M.; Van Minh, N.; Kolesnikov, E.; Kuznetsov, D. Green Synthesis of NiFe2O4 Spinel-Structured Nanoparticles Using Hydrangea Paniculata Flower Extract with Excellent Magnetic Property. Miner. Met. Mater. Soc. 2018, 70, 1337–1343. DOI: 10.1007/s11837-018-2871-7.
  • Moradi, S.; Fardood, S. T.; Ramazani, A. Green Synthesis and Characterization of Magnetic NiFe2O4@ZnO Nanocomposite and its Application for Photocatalytic Degradation of Organic Dyes. J. Mater. Sci: Mater. Electron. 2018, 29, 14151–14160. DOI: 10.1007/s10854-018-9548-4.
  • Laokul, P.; Amornkitbamrung, V.; Seraphin, S.; Maensiri, S. Characterization and Magnetic Properties of Nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 Powders Prepared by the Aloe Vera Extract Solution. Curr. Appl. Phys. 2011, 11, 101–108. DOI: 10.1016/j.cap.2010.06.027.
  • Fuku, X.; Diallo, A.; Maaza, M. Nanoscaled Electrocatalytic Optically Modulated ZnO Nanoparticles Through Green Process of Punica Granatum L. and Their Antibacterial Activities. Int. J. Electrochem. 2016, 2016, 1–10. DOI: 10.1155/2016/4682967.
  • Sarkar, S.; Kotteeswaran, V. Green Synthesis of Silver Nanoparticles from Aqueous Leaf Extract of Pomegranate (Punica Granatum) and Their Anticancer Activity on Human Cervical Cancer Cells. Adv. Nat. Sci: Nanosci. Nanotechnol. 2018, 9, 025014. DOI: 10.1088/2043-6254/aac590.
  • Prasad, C.; Karlapudi, S.; Venkateswarlu, P.; Bahadur, I.; Kumar, S. Green Arbitrated Synthesis of Fe3O4 Magnetic Nanoparticles with Nanorod Structure from Pomegranate Leaves and Congo Red Dye Degradation Studies for Water Treatment. J. Mol. Liq. 2017, 240, 322–328. DOI: 10.1016/j.molliq.2017.05.100.
  • Bibi, I.; Nazar, N.; Iqbal, M.; Kamal, S.; Nawaz, H.; Nouren, S.; Safa, Y.; Jilani, K.; Sultan, M.; Ata, S.; et al. Green and Eco-Friendly Synthesis of Cobalt-Oxide Nanoparticle: Characterization and Photo-Catalytic Activity. Adv. Powder Technol. 2017, 28, 2035–2043. DOI: 10.1016/j.apt.2017.05.008.
  • Ravikumar, K. V. G.; Sudakaran, S. V.; Ravichandran, K.; Pulimi, M.; Natarajan, C.; Mukherjee, A. Green Synthesis of NiFe Nano Particles Using Punica Granatum Peel Extract for Tetracycline Removal. J. Clean. Prod. 2019, 210, 767–776. DOI: 10.1016/j.jclepro.2018.11.108.
  • Serrano-Lotina, A.; Portela, R.; Baeza, P.; Alcolea-Rodriguez, V.; Villarroel, M.; Ávila, P. Zeta Potential as a Tool for Functional Materials Development. Catal. Today 2022, 423, 113862. DOI: 10.1016/j.cattod.2022.08.004.
  • Gong, C.; Li, Q.; Zhou, H.; Liu, R. Tiny Au Satellites Decorated Fe3O4@3-Aminophenol-Formaldehyde Core-Shell Nanoparticles: Easy Synthesis and Comparison İn Catalytic Reduction For Cationic and Anionic Dyes. Colloids. Surf. A Physicochem. Eng. Asp. 2018, 540, 67–72. DOI: 10.1016/j.colsurfa.2017.12.045.
  • Gorbe, M.; Bhat, R.; Aznar, E.; Sancenón, F.; Marcos, M. D.; Herraiz, F. J.; Prohens, J.; Venkataraman, A.; Martínez-Máñez, R. Rapid Biosynthesis of Silver Nanoparticles Using Pepino (Solanum muricatum) Leaf Extract and Their Cytotoxicity on HeLa Cells. Materials (Basel) 2016, 9, 325. DOI: 10.3390/ma9050325.
  • Makarov, V. V.; Love, A. J.; Sinitsyna, O. V.; Makarova, S. S.; Yaminsky, I. V.; Taliansky, M. E.; Kalinina, N. O. “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants. Acta Nat 2014, 6, 35–44.
  • Roy, A.; Bulut, O.; Some, S.; Mandal, A. K.; Yilmaz, M. D. Green Synthesis of Silver Nanoparticles: Biomolecule-Nanoparticle Organizations Targeting Antimicrobial Activity. RSC Adv. 2019, 9, 2673–2702. DOI: 10.1039/C8RA08982E.
  • Aromal, S. A.; Philip, D. Green Synthesis of Gold Nanoparticles Using Trigonella Foenum-Graecum and Its Size Dependent Catalytic Activity. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2012, 97, 1–5. DOI: 10.1016/j.saa.2012.05.083.
  • Indhira, D.; Krishnamoorthy, M.; Ameen, F.; Bhat, S. A.; Arumugam, K.; Ramalingam, S.; Priyan, S. R.; Kumar, G. S. Biomimetic Facile Synthesis of Zinc Oxide and Copper Oxide Nanoparticles from Elaeagnus ındica for Enhanced Photocatalytic Activity. Environ. Res. 2022, 212, 113323. DOI: 10.1016/j.envres.2022.113323.
  • Wang, Z.; Fang, C.; Megharaj, M. Characterization of İron-Polyphenol Nanoparticles Synthesized by Three Plant Extracts and Their Fenton Oxidation of Azo Dye. ACS Sustain. Chem. Eng. 2014, 2, 1022–1025. DOI: 10.1021/sc500021n.
  • Mitter, L. I.; Slodowicz, M. An Overview on Heterogeneous Fenton and photoFenton Reactions Using Zerovalent İron Materials. J. Adv. Oxid. Technol. 2017, 20, 20160164. DOI: 10.1515/jaots-2016-0164.
  • Joshi, S. J.; S. J, G.; Al-Mamari, S.; Al-Azkawi, A. Green Synthesis Of Silver Nanoparticles Using Pomegranate Peel Extracts and Its Application in Photocatalytic Degradation of Methylene Blue. Jundishapur J. Nat. Pharm. Prod. 2018, e67846. DOI: 10.5812/jjnpp.67846.
  • Kaviya, S.; Prasad, E. Eco-Friendly Synthesis of ZnO Nanopencils in Aqueous Medium: A Study of Photocatalytic Degradation of Methylene Blue Under Direct Sunlight. RSC Adv. 2016, 6, 33821–33827. DOI: 10.1039/C6RA04306B.
  • Tsvetkov, M. P.; Ivanova, I. R.; Valcheva, E. P.; Zaharieva, J.; Milanova, M. M. Photocatalytic Activity of NiFe2O4 and Zn0.5Ni0.5Fe2O4 Modified by Eu(III) and Tb(III) for Decomposition of Malachite Green. Open Chem. 2019, 17, 1124–1132. DOI: 10.1515/chem-2019-0116.
  • Hirthna Sendhilnathan, S.; Rajan, P. I.; Adinaveen, T. Synthesis and Characterization of NiFe2O4 Nanoparticles for the Enhancement of Direct Sunlight Photocatalytic Degradation of Methyl Orange. J. Supercond. Nov. Magn. 2018, 31, 3315–3322. DOI: 10.1007/s10948-018-4601-3.
  • Kombaiah, K.; Vijaya, J. J.; Kennedy, L. J.; Kaviyarasu, K. Catalytic Studies of NiFe2O4 Nanoparticles Prepared by Conventional and Microwave Combustion Method. Mater. Chem. Phys. 2019, 221, 11–28. DOI: 10.1016/j.matchemphys.2018.09.012.
  • Zandipak, R.; Sobhanardakani, S. Synthesis of NiFe2O4 Nanoparticles for Removal of Anionic Dyes from Aqueous Solution. Desalin. Water Treat. 2016, 57, 11348–11360. DOI: 10.1080/19443994.2015.1050701.
  • Rahmayeni, R.; Zulhadjri, Z.; Jamarun, N.; Emriadi, E.; Arief, S. Synthesis of ZnO-NiFe2O4 Magnetic Nanocomposites by Simple Solvothermal Method for Photocatalytic Dye Degradation Under Solar Light. Orient. J. Chem. 2016, 32, 1411–1419. DOI: 10.13005/ojc/320315.
  • Mosaviniya, M.; Kikhavani, T.; Tanzifi, M.; Tavakkoli Yaraki, M.; Tajbakhsh, P.; Lajevardi, A. Facile Green Synthesis of Silver Nanoparticles Using Crocus Haussknechtii Bois Bulb Extract: Catalytic Activity and Antibacterial Properties. Colloids. Interface Sci. Commun. 2019, 33, 100211. DOI: 10.1016/j.colcom.2019.100211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.