32
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tailoring the morphology of TiO2 nanotube arrays: Independent effect of tube’s morphology on its photoelectrocatalytic efficiency during water splitting

, , &
Received 09 Dec 2022, Accepted 05 May 2024, Published online: 10 Jun 2024

References

  • Zhang, Z.; Hossain, M. F.; Takahashi, T. Photoelectrochemical Water Splitting on Highly Smooth and Ordered TiO2 Nanotube Arrays for Hydrogen Generation. Int J. Hydrogen Energy. 2010, 35, 8528–8535. DOI: 10.1016/j.ijhydene.2010.03.032.
  • Haring, A.; Morris, A.; Hu, M. Controlling Morphological Parameters of Anodized Titania Nanotubes for Optimized Solar Energy Applications. Materials. 2012, 5, 1890–1909. DOI: 10.3390/ma5101890.
  • Palmas, S.; Mais, L.; Mascia, M.; Vacca, A. Trend in Using TiO2 Nanotubes as Photoelectrodes in Pec Processes for Wastewater Treatment. Curr Opin Electrochem. 2021, 28, 100699. DOI: 10.1016/j.coelec.2021.100699.
  • Kumar, P.; Kar, P.; Manuel, A. P.; Zeng, S.; Thakur, U. K.; Alam, K. M.; Zhang, Y.; Kisslinger, R.; Cui, K.; Bernard, G. M.; et al. Noble Metal Free, Visible Light Driven Photocatalysis Using TiO2 Nanotube Arrays Sensitized by P-Doped C3N4 Quantum Dots. Adv Opt Mater. 2020, 8, 1901275. DOI: 10.1002/adom.201901275.
  • Khudhair, D.; Bhatti, A.; Li, Y.; Hamedani, H. A.; Garmestani, H.; Hodgson, P.; Nahavandi, S. Anodization Parameters Influencing the Morphology and Electrical Properties of TiO2 Nanotubes for Living Cell Interfacing and Investigations. Mater Sci Eng C Mater Biol Appl. 2016, 59, 1125–1142. DOI: 10.1016/j.msec.2015.10.042.
  • Cortes, F. J. Q.; Arias-Monje, P. J.; Phillips, J.; Zea, H. Empirical Kinetics for the Growth of Titania Nanotube Arrays by Potentiostatic Anodization in Ethylene Glycol. Mater Des. 2016, 96, 80–89. DOI: 10.1016/j.matdes.2016.02.006.
  • Ni, J.; Noh, K.; Frandsen, C. J.; Kong, S. D.; He, G.; Tang, T.; Jin, S. Preparation of Near Micrometer-Sized TiO2 Nanotube Arrays by High Voltage Anodization. Mater Sci Eng C Mater Biol Appl. 2013, 33, 259–264. DOI: 10.1016/j.msec.2012.08.038.
  • Regonini, D.; Clemens, F. J. Anodized TiO2 Nanotubes: Effect of Anodizing Time on fi lm Length, Morphology and Photoelectrochemical Properties. Mater Lett. 2015, 142, 97–101. DOI: 10.1016/j.matlet.2014.11.145.
  • Puga, M. L.; Venturini, J.; ten Caten, C. S.; Bergmann, C. P. Influencing Parameters in the Electrochemical Anodization of TiO2 Nanotubes: Systematic Review and Meta-Analysis. Ceram Int. 2022, 48, 19513–19526. DOI: 10.1016/j.ceramint.2022.04.059.
  • Sun, Y.; Yan, K.-P. Effect of Anodization Voltage on Performance of TiO2 Nanotube Arrays for Hydrogen Generation in a Two-Compartment Photoelectrochemical Cell. Int J Hydrogen Energy. 2014, 39, 11368–11375. DOI: 10.1016/j.ijhydene.2014.05.115.
  • Li, Y.; Yu, H.; Zhang, C.; Song, W.; Li, G.; Shao, Z.; Yi, B. Effect of Water and Annealing Temperature of Anodized TiO2 Nanotubes on Hydrogen Production in Photoelectrochemical Cell. Electrochim Acta. 2013, 107, 313–319. DOI: 10.1016/j.electacta.2013.05.090.
  • Sun, Y.; Wang, G.; Yan, K. TiO2 Nanotubes for Hydrogen Generation by Photocatalytic Water Splitting in a Two-Compartment Photoelectrochemical Cell. Int J Hydrogen Energy. 2011, 36, 15502–15508. DOI: 10.1016/j.ijhydene.2011.08.112.
  • Adán, C.; Marugán, J.; Sánchez, E.; Pablos, C.; van Grieken, R. Understanding the Effect of Morphology on the Photocatalytic Activity of TiO2 Nanotube Array Electrodes. Electrochim Acta. 2016, 191, 521–529. DOI: 10.1016/j.electacta.2016.01.088.
  • Liang, S.; He, J.; Sun, Z.; Liu, Q.; Jiang, Y.; Cheng, H.; He, B.; Xie, Z.; Wei, S. Improving Photoelectrochemical Water Splitting Activity of TiO 2 Nanotube Arrays by Tuning Geometrical Parameters. J Phys Chem C. 2012, 116, 9049–9053. DOI: 10.1021/JP300552S/ASSET/IMAGES/LARGE/JP-2012-00552S_0006.JPEG.
  • Sopha, H.; Baudys, M.; Hromadko, L.; Lhotka, M.; Pavlinak, D.; Krysa, J.; Macak, J. M. Scaling up Anodic TiO2 Nanotube Layers – Influence of the Nanotube Layer Thickness on the Photocatalytic Degradation of Hexane and Benzene. Appl Mater Today. 2022, 29, 101567. DOI: 10.1016/j.apmt.2022.101567.
  • Arifin, K.; Yunus, R. M.; Minggu, L. J.; Kassim, M. B. Improvement of TiO2 Nanotubes for Photoelectrochemical Water Splitting: Review. Int J Hydrogen Energy. 2021, 46, 4998–5024. DOI: 10.1016/j.ijhydene.2020.11.063.
  • Paramasivam, I.; Jha, H.; Liu, N.; Schmuki, P. A Review of Photocatalysis Using Self-Organized TiO2 Nanotubes and Other Ordered Oxide Nanostructures. Small. 2012, 8, 3073–3103. DOI: 10.1002/smll.201200564.
  • Liu, B.; Nakata, K.; Liu, S.; Sakai, M.; Ochiai, T.; Murakami, T.; Takagi, K.; Fujishima, A. Theoretical Kinetic Analysis of Heterogeneous Photocatalysis by TiO2 Nanotube Arrays: The Effects of Nanotube Geometry on Photocatalytic Activity. J Phys Chem C. 2012, 116, 7471–7479. DOI: 10.1021/jp300481a.
  • Lianos, P. Production of Electricity and Hydrogen by Photocatalytic Degradation of Organic Wastes in a Photoelectrochemical Cell the Concept of the Photofuelcell: A Review of a Re-Emerging Research Field. J. Hazard Mater. 2011, 185, 575–590. DOI: 10.1016/j.jhazmat.2010.10.083.
  • Albu, S. P.; Schmuki, P. Influence of Anodization Parameters on the Expansion Factor of TiO2 Nanotubes. Electrochim Acta. 2013, 91, 90–95. DOI: 10.1016/j.electacta.2012.12.094.
  • Han, S. C.; Doh, J. M.; Yoon, J. K.; Kim, G. H.; Byun, J. Y.; Han, S. H.; Hong, K. T.; Kwun, S. I. Highly Ordered Self-Organized TiO2 Nanotube Arrays Prepared by a Multi-Step Anodic Oxidation Process. Met Mater Int. 2009, 15, 493–499. DOI: 10.1007/s12540-009-0493-x.
  • Roy, P.; Berger, S.; Schmuki, P. TiO2 Nanotubes: Synthesis and Applications. Angew Chem Int Ed Engl. 2011, 50, 2904–2939. DOI: 10.1002/anie.201001374.
  • Chen, Y.; Wang, X.-M.; Lu, S.-S.; Zhang, X. Formation of Titanium Oxide Nanogrooves Island Arrays by Anodization. Electrochem Commun. 2010, 12, 86–89. DOI: 10.1016/j.elecom.2009.10.042.
  • Li, S.; Zhang, G.; Guo, D.; Yu, L.; Zhang, W. Anodization Fabrication of Highly Ordered TiO 2 Nanotubes. J Phys Chem C. 2009, 113, 12759–12765. DOI: 10.1021/jp903037f.
  • Wang, D.; Yu, B.; Wang, C.; Zhou, F.; Liu, W. A Novel Protocol toward Perfect Alignment of Anodized TiO2 Nanotubes. Adv Mater. 2009, 21, 1964–1967. DOI: 10.1002/adma.200801996.
  • Yin, L.; Ji, S.; Liu, G.; Xu, G.; Ye, C. Understanding the Growth Behavior of Titania Nanotubes. Electrochem Commun. 2011, 13, 454–457. DOI: 10.1016/j.elecom.2011.02.019.
  • Li, Y.-M.; Young, L. Non-Thickness-Limited Growth of Anodic Oxide Films on Tantalum. J Electrochem Soc. 2001, 148, B337. DOI: 10.1149/1.1386387.
  • Li, Z.; Pan, J.; Bian, H.; Lu, J.; Li, Y. Y. New Explanation on Formation Mechanism of Anodic TiO2 Nanotubes. Mater Sci Eng B. 2022, 286, 115985. DOI: 10.1016/j.mseb.2022.115985.
  • Regonini, D.; Satka, A.; Jaroenworaluck, A.; Allsopp, D. W. E.; Bowen, C. R.; Stevens, R. Factors Influencing Surface Morphology of Anodized TiO2 Nanotubes. Electrochim Acta. 2012, 74, 244–253. DOI: 10.1016/j.electacta.2012.04.076.
  • Macak, J. M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P. TiO2 Nanotubes: Self-Organized Electrochemical Formation, Properties and Applications. Curr Opin Solid State Mater Sci 2007, 11, 3–18. DOI: 10.1016/j.cossms.2007.08.004.
  • Regonini, D.; Bowen, C. R.; Jaroenworaluck, a.; Stevens, R. A Review of Growth Mechanism, Structure and Crystallinity of Anodized TiO2 Nanotubes. Mater Sci Eng R Rep 2013, 74, 377–406. DOI: 10.1016/j.mser.2013.10.001.
  • Liu, N.; Mirabolghasemi, H.; Lee, K.; Albu, S. P.; Tighineanu, A.; Altomare, M.; Schmuki, P. Anodic TiO2 Nanotubes: Double Walled vs. Single Walled. Faraday Discuss. 2013, 164, 107–116. DOI: 10.1039/c3fd00020f.
  • Paramasivam, I. Self-Organized TiO2 Nanotubular Arrays and Their Modifications for Photocatalytic Applications. Universität Erlangen-Nürnberg, Doktor - Ingenieur Thesis work. 2012. https://open.fau.de/handle/openfau/2266
  • Shankar, K.; Mor, G. K.; Prakasam, H. E.; Yoriya, S.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Highly-Ordered TiO2 Nanotube Arrays up to 220 µm in Length: Use in Water Photoelectrolysis and Dye-Sensitized Solar Cells. Nanotechnology. 2007, 18, 065707. DOI: 10.1088/0957-4484/18/6/065707.
  • Li, J.; Hao Shen, W.; Song, S. f.; Quan Chen, X.; Corriou, J. P. Preparation and Characterization of TiO2 Nanotube Arrays with Short Tube Length and Its Photocatalytic Degradation of Organic Pollutants. Water Air Soil Pollut. 2020, 231, 19. DOI: 10.1007/s11270-019-4379-3.
  • McEvoy, A. J.; Markvart, T.; Castaner, L. Practical Handbook of Photovoltaics: Fundamentals and Applications. Academic Press, 2012. DOI: 10.1016/C2011-0-05723-X
  • Sreethawong, T.; Yoshikawa, S. Enhanced Photocatalytic Hydrogen Evolution over Pt Supported on Mesoporous TiO2 Prepared by Single-Step Sol–Gel Process with Surfactant Template. Int J Hydrogen Energy. 2006, 31, 786–796. DOI: 10.1016/j.ijhydene.2005.06.015.
  • Zhang, W.; Chen, G.; Yang, Z.; Zeng, C. A Novel Approach to Well-Aligned TiO2 Nanotube Arrays and Their Enhanced Photocatalytic Performances. AlChE. J 2013, 59, 2134–2144. DOI: 10.1002/aic.13985.
  • Freitas, R. G.; Santanna, M. a.; Pereira, E. C. Dependence of TiO2 Nanotube Microstructural and Electronic Properties on Water Splitting. J Power Source. 2014, 251, 178–186. DOI: 10.1016/j.jpowsour.2013.11.067.
  • Sun, Y.; Yan, K.; Wang, G.; Guo, W.; Ma, T. Effect of Annealing Temperature on the Hydrogen Production of TiO2 Nanotube Arrays in a Two-Compartment Photoelectrochemical Cell. J Phys Chem C. 2011, 115, 12844–12849. DOI: 10.1021/jp1116118.
  • Ji, Y.; Zhang, M.; Cui, J.; Lin, K.-C.; Zheng, H.; Zhu, J.-J.; Samia, A. C. S. Highly-Ordered TiO2 Nanotube Arrays with Double-Walled and Bamboo-Type Structures in Dye-Sensitized Solar Cells. Nano Energy. 2012, 1, 796–804. DOI: 10.1016/j.nanoen.2012.08.006.
  • Wu, H.; Zhang, Z. High Photoelectrochemical Water Splitting Performance on Nitrogen Doped Double-Wall TiO2 Nanotube Array Electrodes. Int J Hydrogen Energy. 2011, 36, 13481–13487. Oct DOI: 10.1016/j.ijhydene.2011.08.014.
  • Tenkyong, T.; Sahaya Selva Mary, J.; Praveen, B.; Pugazhendhi, K.; Sharmila, D. J.; Shyla, J. M. Structural Modulation and Band Gap Optimisation of Electrochemically Anodised TiO2 Nanotubes. Mater Sci Semicond Process. 2018, 83, 150–158. DOI: 10.1016/j.mssp.2018.04.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.