31
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biosynthesis of Ag nanoparticles using Laurus nobilis leaf extract and biomedical applications

, , &
Received 18 Apr 2023, Accepted 04 May 2024, Published online: 31 May 2024

References

  • Abdel-Mohsen, A. M.; Hrdina, R.; Burgert, L.; Krylová, G.; Abdel-Rahman, R. M.; Krejčová, A.; Steinhart, M.; Beneš, L. Green Synthesis of Hyaluronan Fibers with Silver Nanoparticles. Carbohydr. Polym. 2012, 89, 411–422. DOI: 10.1016/j.carbpol.2012.03.022.
  • Al-Ghamdi, A. Y. Antimicrobial and Catalytic Activities of Green Synthesized Silver Nanoparticles Using Bay Laurel (Laurus nobilis) Leaves Extract. JBNB 2019, 10, 26–39. DOI: 10.4236/jbnb.2019.101003.
  • Sana, S. S.; Badineni, V. R.; Arla, S. K.; Naidu Boya, V. K. Eco-Friendly Synthesis of Silver Nanoparticles Using Leaf Extract of Grewia Flaviscences and Study of Their Antimicrobial Activity. Mater. Lett. 2015, 145, 347–350. DOI: 10.1016/j.matlet.2015.01.096.
  • Mohanta, Y. K.; Panda, S. K.; Jayabalan, R.; Sharma, N.; Bastia, A. K.; Mohanta, T. K. Antimicrobial, Antioxidant and Cytotoxic Activity of Silver Nanoparticles Synthesized by Leaf Extract of Erythrina suberosa (Roxb.). Front. Mol. Biosci. 2017, 4, 14. DOI: 10.3389/fmolb.2017.00014.
  • Poor, M. H. S.; Khatami, M.; Azizi, H.; Abazari, Y. Cytotoxic Activity of Biosynthesized Ag Nanoparticles by Plantago Major towards a Human Breast Cancer Cell Line. Rend. Fis. Acc. Lincei 2017, 28, 693–699. DOI: 10.1007/s12210-017-0641-z.
  • Tian, J.; Wong, K. K.; Ho, C.; Lok, C.; Yu, W.; Che, C.; Chiu, J.; Tam, P. K. Topical Delivery of Silver Nanoparticles Promotes Wound Healing. ChemMedChem 2007, 2, 129–136. DOI: 10.1002/cmdc.200600171.
  • Nambiar, D.; Bhathena, Z. Use of Silver Nanoparticles from Fusarium oxysporum in Wound Dressings. J. Pure Appl. Microbiol. 2010, 4, 207–214.
  • Singh, R.; Singh, D. Chitin Membranes Containing Silver Nanoparticles for Wound Dressing Application. Int. Wound J. 2014, 11, 264–268. DOI: 10.1111/j.1742-481X.2012.01084.x.
  • Kaur, J.; Tikoo, K. Evaluating Cell Specific Cytotoxicity of Differentially Charged Silver Nanoparticles. Food Chem. Toxicol. 2013, 51, 1–14. DOI: 10.1016/j.fct.2012.08.044.
  • Ahmadi, S.; Fazilati, M.; Mousavi, S. M.; Nazem, H. Anti-Bacterial/Fungal and Anti-Cancer Performance of Green Synthesized Ag Nanoparticles Using Summer Savory Extract. J. Exp. Nanosci. 2020, 15, 363–380. DOI: 10.1080/17458080.2020.1799981.
  • Chokkalingam, M.; Singh, P.; Huo, Y.; Soshnikova, V.; Ahn, S.; Kang, J.; Mathiyalagan, R.; Kim, Y. J.; Yang, D. C. Facile Synthesis of Au and Ag Nanoparticles Using Fruit Extract of Lycium Chinense and Their Anticancer Activity. J. Drug Delivery Sci. Technol. 2019, 49, 308–315. DOI: 10.1016/j.jddst.2018.11.025.
  • Al-Zahrani, F. A. M.; Al-Zahrani, N. A., Al-Ghamdi, S. N., Lin, L., Salem, S. S., El-Shishtawy, R. M. Synthesis of Ag/Fe2O3 Nanocomposite from Essential Oil of Ginger via Green Method and Its Bactericidal Activity. Biomass Conv. Bioref. 2022, DOI: 10.1007/s13399-022-03248-9.
  • Elakraa, A. A.; Salem, S. S.; El-Sayyad, G. S.; Attia, M. S. Cefotaxime Incorporated Bimetallic Silver-Selenium Nanoparticles: Promising Antimicrobial Synergism, Antibiofilm Activity, and Bacterial Membrane Leakage Reaction Mechanism. RSC Adv. 2022, 12, 26603–26619. DOI: 10.1039/D2RA04717A.
  • Dung Dang, T. M.; Tuyet Le, T. T.; Fribourg-Blanc, E.; Chien Dang, M. The Influence of Solvents and Surfactants on the Preparation of Copper Nanoparticles by a Chemical Reduction Method. Adv. Nat. Sci: Nanosci. Nanotechnol. 2011, 2, 025004. DOI: 10.1088/2043-6262/2/2/025004.
  • Zhu, H.; Zhang, C.; Yin, Y. Rapid Synthesis of Copper Nanoparticles by Sodium Hypophosphite Reduction in Ethylene Glycol under Microwave Irradiation. J. Cryst. Growth 2004, 270, 722–728. DOI: 10.1016/j.jcrysgro.2004.07.008.
  • Thakkar, K. N.; Mhatre, S. S.; Parikh, R. Y. Biological Synthesis of Metallic Nanoparticles. Nanomedicine 2010, 6, 257–262. DOI: 10.1016/j.nano.2009.07.002.
  • Otari, S.; Patil, R.; Nadaf, N.; Ghosh, S.; Pawar, S. Green Biosynthesis of Silver Nanoparticles from an Actinobacteria Rhodococcus sp. Mater. Lett. 2012, 72, 92–94. DOI: 10.1016/j.matlet.2011.12.109.
  • Ghaffari-Moghaddam, M.; Hadi-Dabanlou, R.; Khajeh, M.; Rakhshanipour, M.; Shameli, K. Green Synthesis of Silver Nanoparticles Using Plant Extracts. Korean J. Chem. Eng. 2014, 31, 548–557. DOI: 10.1007/s11814-014-0014-6.
  • Salem, S. S. A Mini Review on Green Nanotechnology and Its Development in Biological Effects. Arch. Microbiol. 2023, 205, 128. DOI: 10.1007/s00203-023-03467-2.
  • Kashkouli, S.; Jamzad, M.; Nouri, A. Total Phenolic and Flavonoids Contents, Radical Scavenging Activity and Green Synthesis of Silver Nanoparticles by Laurus nobilis L Leaves Aqueous Extract. J. Med. Plants By-product 2018, 7, 25–32.
  • Pradeep, B.; Hemba, P.; Jagadeesh, A. K.; Ramakkanavar, C. G.; Nayak, S.; Rao, C. V. Anticandidal and Antioxidant Activity of Silver and Gold Nanoparticles Biosynthesised Using Matured Areca Nut Husk Extract. IJNP 2021, 13, 21–32. DOI: 10.1504/IJNP.2021.114897.
  • Nayak, S.; Goveas, L. C.; Kumar, P. S.; Selvaraj, R.; Vinayagam, R. Plant-Mediated Gold and Silver Nanoparticles as Detectors of Heavy Metal Contamination. Food Chem. Toxicol. 2022, 167, 113271. DOI: 10.1016/j.fct.2022.113271.
  • Mohanta, Y. K.; Panda, S. K.; Bastia, A. K.; Mohanta, T. K. Biosynthesis of Silver Nanoparticles from Protium Serratum and Investigation of Their Potential Impacts on Food Safety and Control. Front. Microbiol. 2017, 8, 626. DOI: 10.3389/fmicb.2017.00626.
  • Gavade, N. L.; Kadam, A. N.; Suwarnkar, M. B.; Ghodake, V. P.; Garadkar, K. M. Biogenic Synthesis of Multi-Applicative Silver Nanoparticles by Using Ziziphus Jujuba Leaf Extract. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 136 Pt B, 953–960. DOI: 10.1016/j.saa.2014.09.118.
  • Eya’ane Meva, F.; Segnou, M. L.; Okalla Ebongue, C.; Ntoumba, A. A.; Belle Ebanda Kedi, P.; Deli, V.; Etoh, M.-A.; Mpondo Mpondo, E. Spectroscopic Synthetic Optimizations Monitoring of Silver Nanoparticles Formation from Megaphrynium macrostachyum Leaf Extract. Revista Brasileira De Farmacognosia 2016, 26, 640–646. DOI: 10.1016/j.bjp.2016.06.002.
  • Meena, P. R., Singh, A. P., Tejavath, K. K. Biosynthesis of Silver Nanoparticles Using Cucumis Prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity Against Cancer Cell Lines. ACS Omega, 2020, 5 (10), 5520–5528. DOI: 10.1021/acsomega.0c00155.
  • Shankar, S. S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid Synthesis of Au, Ag, and Bimetallic Au Core–Ag Shell Nanoparticles Using Neem (Azadirachta ındica) Leaf Broth. J. Colloid Interface Sci. 2004, 275, 496–502. DOI: 10.1016/j.jcis.2004.03.003.
  • Ruíz-Baltazar, Á. d J.; Reyes-López, S. Y.; Mondragón-Sánchez, M. d L.; Estevez, M.; Hernández-Martinez, A. R.; Pérez, R. Biosynthesis of Ag Nanoparticles Using Cynara Cardunculus Leaf Extract: Evaluation of Their Antibacterial and Electrochemical Activity. Results Phys. 2018, 11, 1142–1149. DOI: 10.1016/j.rinp.2018.11.032.
  • Kiruba Daniel, S. C. G.; Vinothini, G.; Subramanian, N.; Nehru, K.; Sivakumar, M. Biosynthesis of Cu, ZVI, and Ag Nanoparticles Using Dodonaea viscosa Extract for Antibacterial Activity Against Human Pathogens. J. Nanopart. Res. 2012, 15, 1319. DOI: 10.1007/s11051-012-1319-1.
  • Nanaei, M.; Nasseri, M. A.; Allahresani, A.; Kazemnejadi, M. Phoenix Dactylifera L. Extract: Antioxidant Activity and Its Application for Green Biosynthesis of Ag Nanoparticles as a Recyclable Nanocatalyst for 4-Nitrophenol Reduction. SN Appl. Sci. 2019, 1, 853. DOI: 10.1007/s42452-019-0895-4.
  • Alamier, W. M.; Hasan, N.; Ali, S. K.; Oteef, M. D. Y. Biosynthesis of Ag Nanoparticles Using Caralluma Acutangula Extract and Its Catalytic Functionality towards Degradation of Hazardous Dye Pollutants. Crystals 2022, 12, 1069. DOI: 10.3390/cryst12081069.
  • Mohammed, A. E. Green Synthesis, Antimicrobial and Cytotoxic Effects of Silver Nanoparticles Mediated by Eucalyptus Camaldulensis Leaf Extract. Asian Pac. J. Trop. Biomed. 2015, 5, 382–386. DOI: 10.1016/S2221-1691(15)30373-7.
  • Nayak, S.; Sajankila, S. P.; Rao, C. V.; Hegde, A. R.; Mutalik, S. Biogenic Synthesis of Silver Nanoparticles Using Jatropha curcas Seed Cake Extract and Characterization: Evaluation of Its Antibacterial Activity. Energy Sources Part A 2021, 43, 3415–3423. DOI: 10.1080/15567036.2019.1632394.
  • Venugobal, J.; Anandalakshmi, K. Green Synthesis of Silver Nanoparticles Using Commiphora Caudata Leaves Extract and the Study of Bactericidal Efficiency. J. Clust. Sci. 2016, 27, 1683–1699. DOI: 10.1007/s10876-016-1032-9.
  • Davarnia, B.; Shahidi, S.-A.; Karimi-Maleh, H.; Ghorbani-HasanSaraei, A.; Karimi, F. Biosynthesis of Ag Nanoparticle by Peganum Harmala Extract; Antimicrobial Activity and Ability for Fabrication of Quercetin Food Electrochemical Sensor. Int. J. Electrochem. Sci. 2020, 15, 2549–2560. DOI: 10.20964/2020.03.70.
  • Sharma, A.; Singh, J.; Kumar, S. Bay Leaves. In Handbook of Herbs and Spices; Elsevier, 2012; pp 73–85.
  • Kendir, G.; Laurus Nobilis, L. In Novel Drug Targets With Traditional Herbal Medicines; Gürağaç Dereli, F. T., Ilhan, M., Belwal, T., Eds.; Springer International Publishing: Cham, 2022; pp 359–376. DOI: 10.1007/978-3-031-07753-1_24.
  • El, S. N.; Karagozlu, N.; Karakaya, S.; Sahın, S. Antioxidant and Antimicrobial Activities of Essential Oils Extracted from Laurus Nobilis L. Leaves by Using Solvent-Free Microwave and Hydrodistillation. FNS 2014, 5, 97–106. DOI: 10.4236/fns.2014.52013.
  • Simić, A.; Soković, M. D.; Ristić, M.; Grujić-Jovanović, S.; Vukojević, J.; Marin, P. D. The Chemical Composition of Some Lauraceae Essential Oils and Their Antifungal Activities. Phytother. Res. 2004, 18, 713–717. DOI: 10.1002/ptr.1516.
  • Bayar, Y.; Onaran, A.; Yilar, M.; Gul, F. Determination of the Essential Oil Composition and the Antifungal Activities of Bilberry (Vaccinium myrtillus L.) and Bay Laurel (Laurus nobilis L.) J. Essent. Oil Bear. Plants 2018, 21, 548–555. DOI: 10.1080/0972060X.2017.1417060.
  • Sayyah, M.; Valizadeh, J.; Kamalinejad, M. Anticonvulsant Activity of the Leaf Essential Oil of Laurus Nobilis against Pentylenetetrazole- and Maximal Electroshock-Induced Seizures. Phytomedicine 2002, 9, 212–216. DOI: 10.1078/0944-7113-00113.
  • Dias, M. I.; Barros, L.; Dueñas, M.; Alves, R. C.; Oliveira, M. B. P. P.; Santos-Buelga, C.; Ferreira, I. C. F. R. Nutritional and Antioxidant Contributions of Laurus nobilis L. Leaves: Would be More Suitable a Wild or a Cultivated Sample? Food Chem. 2014, 156, 339–346. DOI: 10.1016/j.foodchem.2014.01.122.
  • Kupeli, E.; Orhan, I.; Yesilada, E. Evaluation of Some Plants Used in Turkish Folk Medicine for Their Anti-Inflammatory and Antinociceptive Activities. Pharm. Biol. 2007, 45, 547–555. DOI: 10.1080/13880200701498895.
  • Al-Mijalli, S. H.; Mrabti, H. N.; Ouassou, H.; Flouchi, R.; Abdallah, E. M.; Sheikh, R. A.; Alshahrani, M. M.; Awadh, A. A. A.; Harhar, H.; Omari, N. E.; et al. Chemical Composition, Antioxidant, Anti-Diabetic, Anti-Acetylcholinesterase, Anti-Inflammatory, and Antimicrobial Properties of Arbutus unedo L. and Laurus nobilis L. Essential Oils. Life 2022, 12, 1876. DOI: 10.3390/life12111876.
  • Duletić-Laušević, S.; Oalđe, M.; Alimpić-Aradski, A. In Vitro Evaluation of Antioxidant, Antineurodegenerative and Antidiabetic Activities of Ocimum basilicum L., Laurus nobilis L. Leaves and Citrus reticulata Blanco Peel Extracts. Lekovite Sirovine 2019, 60–68. DOI: 10.5937/leksir1939060D.
  • Senou, M.; Ezéchiel Lokonon, J.; Ayitchehou, G.; Agbogba, F.; J. Dehou, R.; Medoatinsa, E.; Tchogou, P.; Fresel Cachon, B.; Houngbeme, A.; Attakpa, E.; et al. Antidiabetic Activity of Aqueous Extracts of Laurus nobilis, a Spice Used by Beninese Traditional Therapists. AJMSM 2021, 9, 115–119. DOI: 10.12691/ajmsm-9-4-4.
  • Al-Kalaldeh, J. Z.; Abu-Dahab, R.; Afifi, F. U. Volatile Oil Composition and Antiproliferative Activity of Laurus nobilis, Origanum syriacum, Origanum vulgare, and Salvia triloba Against Human Breast Adenocarcinoma Cells. Nutr. Res. 2010, 30, 271–278. DOI: 10.1016/j.nutres.2010.04.001.
  • Brinza, I.; Boiangiu, R. S.; Hancianu, M.; Cioanca, O.; Erdogan Orhan, I.; Hritcu, L. Bay Leaf (Laurus nobilis L.) Incense Improved Scopolamine-Induced Amnesic Rats by Restoring Cholinergic Dysfunction and Brain Antioxidant Status. Antioxidants (Basel) 2021, 10, 259. DOI: 10.3390/antiox10020259.
  • Dobroslavić, E.; Repajić, M.; Dragović-Uzelac, V.; Elez Garofulić, I. Isolation of Laurus nobilis Leaf Polyphenols: A Review on Current Techniques and Future Perspectives. Foods 2022, 11, 235. DOI: 10.3390/foods11020235.
  • Jemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E.; Forman, D. Global Cancer Statistics. CA Cancer J. Clin. 2011, 61, 69–90. DOI: 10.3322/caac.20107.
  • Fukuoka, M.; Yano, S.; Giaccone, G.; Tamura, T.; Douillard, K. N. J.-Y.; Nishiwaki, Y.; Vansteenkiste, J.; Kudoh, S.; Rischin, D.; Eek, R. Multi-İnstitutional Randomized Phase II Trial of Gefitinib for Previously Treated Patients with Advanced Non-Small-Cell Lung Cancer (The IDEAL 1 Trial). J. Clin. Oncol. 2003, 21, 2237–2246.
  • Torchilin, V. P. Targeted Pharmaceutical Nanocarriers for Cancer Therapy and Imaging. AAPS J. 2007, 9, E128–E147. DOI: 10.1208/aapsj0902015.
  • Itani, R.; Al Faraj, A. SiRNA Conjugated Nanoparticles—A Next Generation Strategy to Treat Lung Cancer. Int J. Mol. Sci. 2019, 20, 6088. DOI: 10.3390/ijms20236088.
  • Zhou, Y.; Wang, X. Study on Synergistic Effect of New Functionalized Ag Nanoparticles for Intracellular Drug Uptake in Cancer Cells. Nano Biomed. Eng. 2010, 2, 208–213. DOI: 10.5101/nbe.v2i4.p208-213.
  • Hoda, N.; Budama Akpolat, L.; Mert Sivri, F.; Kurtuluş, D. Biosynthesis of Bimetallic Ag-Au (Core-Shell) Nanoparticles Using Aqueous Extract of Bay Leaves (Laurus nobilis L.). J. Turkish Chem. Soc. Sect. A: Chem. 2021, 8, 1035–1044. DOI: 10.18596/jotcsa.885558.
  • Andrews, J. M. Determination of Minimum Inhibitory Concentrations. J. Antimicrob. Chemother. 2001, 48 Suppl 1, 5–16. DOI: 10.1093/jac/48.suppl_1.5.
  • Akkoç, S. Derivatives of 1‐(2‐(Piperidin‐1‐Yl)Ethyl)‐1 H ‐Benzo [d] Imidazole: Synthesis, Characterization, Determining of Electronic Properties and Cytotoxicity Studies. ChemistrySelect 2019, 4, 4938–4943. DOI: 10.1002/slct.201900353.
  • Huang, H.; Yang, X. Synthesis of Polysaccharide-Stabilized Gold and Silver Nanoparticles: A Green Method. Carbohydr. Res. 2004, 339, 2627–2631. DOI: 10.1016/j.carres.2004.08.005.
  • Wang, Y.; Wei, S.; Wang, K.; Wang, Z.; Duan, J.; Cui, L.; Zheng, H.; Wang, Y.; Wang, S. Evaluation of Biosynthesis Parameters, Stability and Biological Activities of Silver Nanoparticles Synthesized by Cornus officinalis Extract under 365 Nm UV Radiation. RSC Adv. 2020, 10, 27173–27182. DOI: 10.1039/D0RA04482B.
  • Trak, D.; Arslan, Y. Synthesis of Silver Nanoparticles Using Dried Black Mulberry (Morus Nigra L.) Fruit Extract and Their Antibacterial and Effective Dye Degradation Activities. Inorg. Nano-Met. Chem. 2021, 1–13. DOI: 10.1080/24701556.2021.1980038.
  • Sorbiun, M.; Shayegan Mehr, E.; Ramazani, A.; Taghavi Fardood, S. Biosynthesis of Ag, ZnO and Bimetallic Ag/ZnO Alloy Nanoparticles by Aqueous Extract of Oak Fruit Hull (Jaft) and Investigation of Photocatalytic Activity of ZnO and Bimetallic Ag/ZnO for Degradation of Basic Violet 3 Dye. J. Mater. Sci.: Mater. Electron. 2018, 29, 2806–2814. DOI: 10.1007/s10854-017-8209-3.
  • Kumar, V. A.; Ammani, K.; Jobina, R.; Subhaswaraj, P.; Siddhardha, B. Photo-Induced and Phytomediated Synthesis of Silver Nanoparticles Using Derris Trifoliata Leaf Extract and Its Larvicidal Activity Against Aedes aegypti. J. Photochem. Photobiol. B 2017, 171, 1–8. DOI: 10.1016/j.jphotobiol.2017.04.022.
  • Jyoti, K.; Baunthiyal, M.; Singh, A. Characterization of Silver Nanoparticles Synthesized Using Urtica dioica Linn. Leaves and Their Synergistic Effects with Antibiotics. J. Radiat. Res. Appl. Sci. 2016, 9, 217–227. DOI: 10.1016/j.jrras.2015.10.002.
  • Soliman, M. K. Y.; Salem, S. S.; Abu-Elghait, M.; Azab, M. S. Biosynthesis of Silver and Gold Nanoparticles and Their Efficacy Towards Antibacterial, Antibiofilm, Cytotoxicity, and Antioxidant Activities. Appl. Biochem. Biotechnol. 2023, 195, 1158–1183. DOI: 10.1007/s12010-022-04199-7.
  • Gole, A.; Dash, C.; Ramakrishnan, V.; Sainkar, S.; Mandale, A.; Rao, M.; Sastry, M. Pepsin − Gold Colloid Conjugates: Preparation, Characterization, and Enzymatic Activity. Langmuir 2001, 17, 1674–1679. DOI: 10.1021/la001164w.
  • Shaligram, N. S.; Bule, M.; Bhambure, R.; Singhal, R. S.; Singh, S. K.; Szakacs, G.; Pandey, A. Biosynthesis of Silver Nanoparticles Using Aqueous Extract from the Compactin Producing Fungal Strain. Process Biochem. 2009, 44, 939–943. DOI: 10.1016/j.procbio.2009.04.009.
  • Mashwani, Z.-R.; Khan, M. A.; Khan, T.; Nadhman, A. Applications of Plant Terpenoids in the Synthesis of Colloidal Silver Nanoparticles. Adv. Colloid Interface Sci. 2016, 234, 132–141. DOI: 10.1016/j.cis.2016.04.008.
  • Magudapatty, P.; Gangopadhyayrans, P.; Panigrahi, B.; Nair, K.; Dhara, S. Electrical Transport Studies of Ag Nanoparticles Embedded in Glass Matrix. Physica B 2001, 299, 00580–00589.
  • Kannan, R. R. R.; Stirk, W. A.; Van Staden, J. Synthesis of Silver Nanoparticles Using the Seaweed Codium capitatum P.C. Silva (Chlorophyceae). S Afr. J. Bot. 2013, 86, 1–4. DOI: 10.1016/j.sajb.2013.01.003.
  • Abdelmoteleb, A.; Valdez-Salas, B.; Ceceña-Duran, C.; Tzintzun-Camacho, O.; Gutiérrez-Miceli, F.; Grimaldo-Juarez, O.; González-Mendoza, D. Silver Nanoparticles from Prosopis glandulosa and Their Potential Application as Biocontrol of Acinetobacter calcoaceticus and Bacillus cereus. Chem. Speciation Bioavailability 2017, 29, 1–5. DOI: 10.1080/09542299.2016.1252693.
  • Khanra, K.; Panja, S.; Choudhuri, I.; Chakraborty, A.; Bhattacharyya, N. Evaluation of Antibacterial Activity and Cytotoxicity of Green Synthesized Silver Nanoparticles Using Scoparia Dulcis. Nano Biomed. Eng. 2015, 7, 128–133. DOI: 10.5101/nbe.v7i3.p128-133.
  • Chugh, D.; Viswamalya, V. S.; Das, B. Green Synthesis of Silver Nanoparticles with Algae and the Importance of Capping Agents in the Process. J. Genet. Eng. Biotechnol. 2021, 19, 126. DOI: 10.1186/s43141-021-00228-w.
  • Patra, J. K.; Baek, K.-H. Green Nanobiotechnology: Factors Affecting Synthesis and Characterization Techniques. J. Nanomater. 2014, 2014, 1–12. DOI: 10.1155/2014/417305.
  • Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The Bactericidal Effect of Silver Nanoparticles. Nanotechnology 2005, 16, 2346–2353. DOI: 10.1088/0957-4484/16/10/059.
  • Vishwanath, R.; Negi, B. Conventional and Green Methods of Synthesis of Silver Nanoparticles and Their Antimicrobial Properties. Curr. Res. Green Sustain. Chem. 2021, 4, 100205. DOI: 10.1016/j.crgsc.2021.100205.
  • Li, J.; Rong, K.; Zhao, H.; Li, F.; Lu, Z.; Chen, R. Highly Selective Antibacterial Activities of Silver Nanoparticles Against Bacillus Subtilis. J. Nanosci. Nanotechnol. 2013, 13, 6806–6813. DOI: 10.1166/jnn.2013.7781.
  • Dogru, E.; Demirbas, A.; Altinsoy, B.; Duman, F.; Ocsoy, I. Formation of Matricaria Chamomilla Extract-Incorporated Ag Nanoparticles and Size-Dependent Enhanced Antimicrobial Property. J. Photochem. Photobiol. B 2017, 174, 78–83. DOI: 10.1016/j.jphotobiol.2017.07.024.
  • Erjaee, H.; Rajaian, H.; Nazifi, S. Synthesis and Characterization of Novel Silver Nanoparticles Using Chamaemelum nobile Extract for Antibacterial Application. Adv. Nat. Sci: Nanosci. Nanotechnol. 2017, 8, 025004. DOI: 10.1088/2043-6254/aa690b.
  • Martínez-Castañón, G. A.; Niño-Martínez, N.; Martínez-Gutierrez, F.; Martínez-Mendoza, J. R.; Ruiz, F. Synthesis and Antibacterial Activity of Silver Nanoparticles with Different Sizes. J. Nanopart. Res. 2008, 10, 1343–1348. DOI: 10.1007/s11051-008-9428-6.
  • Aref, M. S.; Salem, S. S. Bio-Callus Synthesis of Silver Nanoparticles, Characterization, and Antibacterial Activities via Cinnamomum Camphora Callus Culture. Biocatal. Agric. Biotechnol. 2020, 27, 101689. DOI: 10.1016/j.bcab.2020.101689.
  • Soliman, M. K. Y.; Abu-Elghait, M.; Salem, S. S.; Azab, M. S. Multifunctional Properties of Silver and Gold Nanoparticles Synthesis by Fusarium pseudonygamai. Biomass Conv. Bioref. 2022, DOI: 10.1007/S13399-022-03507-9.
  • SALEM, S. S. Baker’s Yeast-Mediated Silver Nanoparticles: Characterisation and Antimicrobial Biogenic Tool for Suppressing Pathogenic Microbes. BioNanoSci 2022, 12, 1220–1229. DOI: 10.1007/s12668-022-01026-5.
  • Salem, S. S.; Ali, O. M.; Reyad, A. M.; Abd-Elsalam, K. A.; Hashem, A. H. Pseudomonas Indica-Mediated Silver Nanoparticles: Antifungal and Antioxidant Biogenic Tool for Suppressing Mucormycosis Fungi. J. Fungi (Basel) 2022, 8, 126. DOI: 10.3390/jof8020126.
  • Duncan, T. V. Applications of Nanotechnology in Food Packaging and Food Safety: Barrier Materials, Antimicrobials and Sensors. J. Colloid Interface Sci. 2011, 363, 1–24. DOI: 10.1016/j.jcis.2011.07.017.
  • Eid, A. M.; Fouda, A.; Niedbała, G.; Hassan, S. E.-D.; Salem, S. S.; Abdo, A. M. F.; Hetta, H.; Shaheen, T. I. Endophytic Streptomyces Laurentii Mediated Green Synthesis of Ag-NPs with Antibacterial and Anticancer Properties for Developing Functional Textile Fabric Properties. Antibiotics (Basel) 2020, 9, 641. DOI: 10.3390/antibiotics9100641.
  • Alsharif, S. M.; Salem, S. S.; Abdel-Rahman, M. A.; Fouda, A.; Eid, A. M.; El-Din Hassan, S.; Awad, M. A.; Mohamed, A. A. Multifunctional Properties of Spherical Silver Nanoparticles Fabricated by Different Microbial Taxa. Heliyon 2020, 6, e03943. DOI: 10.1016/j.heliyon.2020.e03943.
  • Zubair, M.; Azeem, M.; Mumtaz, R.; Younas, M.; Adrees, M.; Zubair, E.; Khalid, A.; Hafeez, F.; Rizwan, M.; Ali, S. Green Synthesis and Characterization of Silver Nanoparticles from Acacia Nilotica and Their Anticancer, Antidiabetic and Antioxidant Efficacy. Environ. Pollut. 2022, 304, 119249. DOI: 10.1016/j.envpol.2022.119249.
  • Kathiravan, V.; Ravi, S.; Ashokkumar, S. Synthesis of Silver Nanoparticles from Melia Dubia Leaf Extract and Their in Vitro Anticancer Activity. Spectrochim Acta A Mol Biomol Spectrosc 2014, 130, 116–121. DOI: 10.1016/j.saa.2014.03.107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.