244
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The optimum inertial amplifier viscoelastic base isolators for dynamic response mitigation of structures: an analytical study

, &

References

  • Abal, E., & Uckan, E. (2010). Parametric analysis of liquid storage tanks base isolated by curved surface sliding bearings. Soil Dynamics and Earthquake Engineering, 30(1–2), 21–31. https://doi.org/10.1016/j.soildyn.2009.08.001
  • Allen, J. C. (2012). H engineering and amplifier optimization. Springer Science & Business Media.
  • Aly, A. A., & Salem, F. A. (2013). Vehicle suspension systems control: A review. International Journal of Control, Automation, and Systems, 2(2), 46–54.
  • Asami, T., Nishihara, O., & Baz, A. M. (2002). Analytical solutions to h∞ and h2 optimization of dynamic vibration absorbers attached to damped linear systems. Journal of Vibration and Acoustics, 124(2), 284–295. https://doi.org/10.1115/1.1456458
  • Ayad, M., Karathanasopoulos, N., Ganghoffer, J.-F., & Lakiss, H. (2020). Higher-gradient and micro-inertia contributions on the mechanical response of composite beam structures. International Journal of Engineering Science, 154, 103318. https://doi.org/10.1016/j.ijengsci.2020.103318
  • Ayad, M., Karathanasopoulos, N., Reda, H., Ganghoffer, J.-F., & Lakiss, H. (2020). On the role of second gradient constitutive parameters in the static and dynamic analysis of heterogeneous media with micro-inertia effects. International Journal of Solids and Structures, 190, 58–75. https://doi.org/10.1016/j.ijsolstr.2019.10.017
  • Baduidana, M., & Kenfack-Jiotsa, A. (2021). Optimal design of inerter-based isolators minimizing the compliance and mobility transfer function versus harmonic and random ground acceleration excitation. Journal of Vibration and Control, 27(11–12), 1297–1310. https://doi.org/10.1177/1077546320940175
  • Bai, X.-X., Jiang, P., & Qian, L.-J. (2017). Integrated semi-active seat suspension for both longitudinal and vertical vibration isolation. Journal of Intelligent Material Systems and Structures, 28(8), 1036–1049. https://doi.org/10.1177/1045389X16666179
  • Banerjee, S., & Ghosh, A. (2020). Optimal design of nonlinear TMD with Bingham-type damping for base-excited structures. Journal of Structural Integrity and Maintenance, 5(4), 211–222. https://doi.org/10.1080/24705314.2020.1783121
  • Barys, M., Jensen, J. S., & Frandsen, N. M. (2018). Efficient attenuation of beam vibrations by inertial amplification. European Journal of Mechanics-A/solids, 71, 245–257. https://doi.org/10.1016/j.euromechsol.2018.04.001
  • Barys, M., & Zalewski, R. (2018). Analysis of inertial amplification mechanism with smart spring-damper for attenuation of beam vibrations. MATEC Web of Conferences, 157, 03002. EDP Sciences.
  • Buckle, I. G. (1985). New Zealand seismic base isolation concepts and their application to nuclear engineering. Nuclear Engineering and Design, 84(3), 313–326. https://doi.org/10.1016/0029-5493(85)90243-2
  • Čakmak, D., Tomičević, Z., Wolf, H., Božić, Ž., & Semenski, D. (2021). Stability and performance of supercritical inerter-based active vibration isolation systems. Journal of Sound and Vibration, 518, 116234.
  • Čakmak, D., Tomičević, Z., Wolf, H., Božić, Ž., & Semenski, D. (2022). Stability and performance of supercritical inerter-based active vibration isolation systems. Journal of Sound and Vibration, 518, 116234. https://doi.org/10.1016/j.jsv.2021.116234
  • Carrella, A., Brennan, M., Kovacic, I., & Waters, T. (2009). On the force transmissibility of a vibration isolator with quasi-zero-stiffness. Journal of Sound and Vibration, 322(4–5), 707–717. https://doi.org/10.1016/j.jsv.2008.11.034
  • Carrella, A., Brennan, M., & Waters, T. (2007). Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound and Vibration, 301(3–5), 678–689. https://doi.org/10.1016/j.jsv.2006.10.011
  • Cheng, X., Jing, W., & Gong, L. (2017). Simplified model and energy dissipation characteristics of a rectangular liquid-storage structure controlled with sliding base isolation and displacement-limiting devices. Journal of Performance of Constructed Facilities, 31(5), 04017071. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001066
  • Cheng, C., Li, S., Wang, Y., & Jiang, X. (2016). On the analysis of a high-static-low-dynamic stiffness vibration isolator with time-delayed cubic displacement feedback. Journal of Sound and Vibration, 378, 76–91. https://doi.org/10.1016/j.jsv.2016.05.029
  • Cheng, Z., Palermo, A., Shi, Z., & Marzani, A. (2020). Enhanced tuned mass damper using an inertial amplification mechanism. Journal of Sound and Vibration, 475, 115267. https://doi.org/10.1016/j.jsv.2020.115267
  • Chen, M. Z., & Hu, Y. (2019). Inerter and its application in vibration control systems. Springer.
  • Cheung, Y., & Wong, W. O. (2011). H-infinity optimization of a variant design of the dynamic vibration absorber—revisited and new results. Journal of Sound and Vibration, 330(16), 3901–3912. https://doi.org/10.1016/j.jsv.2011.03.027
  • Chowdhury, S., & Banerjee, A. (2022a). The exact closed-form equations for optimal design parameters of enhanced inerter-based isolation systems. Journal of Vibration and Control, 10775463221133428. https://doi.org/10.1177/10775463221133428
  • Chowdhury, S., & Banerjee, A. (2022b). The exact closed-form expressions for optimal design parameters of resonating base isolators. International Journal of Mechanical Sciences, 224, 107284. https://doi.org/10.1016/j.ijmecsci.2022.107284
  • Chowdhury, S., Banerjee, A., & Adhikari, S. (2021). Enhanced seismic base isolation using inertial amplifiers. Structures, 33, 1340–1353. https://doi.org/10.1016/j.istruc.2021.04.089
  • Chowdhury, S., Banerjee, A., & Adhikari, S. (2022a). Optimal design of inertial amplifier base isolators for dynamic response control of multi-storey buildings. International Journal of Structural Stability and Dynamics. https://doi.org/10.1142/S0219455423500475
  • Chowdhury, S., Banerjee, A., & Adhikari, S. (2022b). Optimal negative stiffness inertial-amplifier-base-isolators: Exact closed-form expressions. International Journal of Mechanical Sciences, 218, 107044. https://doi.org/10.1016/j.ijmecsci.2021.107044
  • Chowdhury, S., Banerjee, A., & Adhikari, S. (2022c). The optimum inertial amplifier tuned mass dampers for nonlinear dynamic systems. International Journal of Applied Mechanics, 2350009. https://doi.org/10.1142/S1758825123500096
  • Chowdhury, S., Banerjee, A., & Adhikari, S. (2023). The optimal design of dynamic systems with negative stiffness inertial amplifier tuned mass dampers. Applied Mathematical Modelling, 114, 694–721. https://doi.org/10.1016/j.apm.2022.10.011
  • Chun, S., Lee, Y., & Kim, T.-H. (2015). h∞ optimization of dynamic vibration absorber variant for vibration control of damped linear systems. Journal of Sound and Vibration, 335, 55–65. https://doi.org/10.1016/j.jsv.2014.09.020
  • Crandall, S. H., & Mark, W. D. (2014). Random vibration in mechanical systems. Academic Press.
  • De Domenico, D., Deastra, P., Ricciardi, G., Sims, N. D., & Wagg, D. J. (2019). Novel fluid inerter based tuned mass dampers for optimised structural control of base-isolated buildings. Journal of the Franklin Institute, 356(14), 7626–7649. https://doi.org/10.1016/j.jfranklin.2018.11.012
  • de Haro Moraes, F., Silveira, M., & Gonçalves, P. J. P. (2018). On the dynamics of a vibration isolator with geometrically nonlinear inerter. Nonlinear Dynamics, 93(3), 1325–1340. https://doi.org/10.1007/s11071-018-4262-6
  • Den Hartog, J. P. (1985). Mechanical vibrations. Courier Corporation.
  • Du, H., Li, W., & Zhang, N. (2011). Semi-active variable stiffness vibration control of vehicle seat suspension using an mr elastomer isolator. Smart Materials and Structures, 20(10), 105003. https://doi.org/10.1088/0964-1726/20/10/105003
  • Ebrahimi, B., Bolandhemmat, H., Khamesee, M. B., & Golnaraghi, F. (2011). A hybrid electromagnetic shock absorber for active vehicle suspension systems. Vehicle System Dynamics, 49(1–2), 311–332. https://doi.org/10.1080/00423111003602400
  • Frandsen, N. M., Bilal, O. R., Jensen, J. S., & Hussein, M. I. (2016). Inertial amplification of continuous structures: Large band gaps from small masses. Journal of Applied Physics, 119(12), 124902. https://doi.org/10.1063/1.4944429
  • Fulcher, B. A., Shahan, D. W., Haberman, M. R., Conner Seepersad, C., & Wilson, P. S. (2014). Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. Journal of Vibration and Acoustics, 136(3). https://doi.org/10.1115/1.4026888
  • Furinghetti, M., Lanese, I., & Pavese, A. (2020). Experimental assessment of the seismic response of a base-isolated building through a hybrid simulation. Recent Advances and Applications of Seismic Isolation and Energy Dissipation Devices. https://doi.org/10.3389/fbuil.2020.00033
  • Furinghetti, M., Pavese, A., Quaglini, V., & Dubini, P. (2019). Experimental investigation of the cyclic response of double curved surface sliders subjected to radial and bidirectional sliding motions. Soil Dynamics and Earthquake Engineering, 117, 190–202. https://doi.org/10.1016/j.soildyn.2018.11.020
  • Furinghetti, M., Yang, T., Calvi, P. M., & Pavese, A. (2021). Experimental evaluation of extra-stroke displacement capacity for curved surface slider devices. Soil Dynamics and Earthquake Engineering, 146, 106752. https://doi.org/10.1016/j.soildyn.2021.106752
  • Han, C., Kang, B.-H., Choi, S.-B., Tak, J. M., & Hwang, J.-H. (2019). Control of landing efficiency of an aircraft landing gear system with magnetorheological dampers. Journal of Aircraft, 56(5), 1980–1986. https://doi.org/10.2514/1.C035298
  • Hao, Z., & Cao, Q. (2015). The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness. Journal of Sound and Vibration, 340, 61–79. https://doi.org/10.1016/j.jsv.2014.11.038
  • Hou, M., Wu, J. H., Cao, S., Guan, D., & Zhu, Y. (2017). Extremely low frequency band gaps of beam-like inertial amplification metamaterials. Modern Physics Letters B, 31(27), 1750251. https://doi.org/10.1142/S0217984917502517
  • Huang, X., Liu, X., Sun, J., Zhang, Z., & Hua, H. (2014). Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: A theoretical and experimental study. Journal of Sound and Vibration, 333(4), 1132–1148. https://doi.org/10.1016/j.jsv.2013.10.026
  • Hua, Y., Wong, W., & Cheng, L. (2018). Optimal design of a beam-based dynamic vibration absorber using fixed-points theory. Journal of Sound and Vibration, 421, 111–131. https://doi.org/10.1016/j.jsv.2018.01.058
  • Hu, Y., & Chen, M. Z. (2015). Performance evaluation for inerter-based dynamic vibration absorbers. International Journal of Mechanical Sciences, 99, 297–307. https://doi.org/10.1016/j.ijmecsci.2015.06.003
  • Hwang, J., & Chiou, J. (1996). An equivalent linear model of lead-rubber seismic isolation bearings. Engineering Structures, 18(7), 528–536. https://doi.org/10.1016/0141-0296(95)00132-8
  • Iemura, H., Igarashi, A., Pradono, M. H., & Kalantari, A. (2006). Negative stiffness friction damping for seismically isolated structures. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 13(2–3), 775–791. https://doi.org/10.1002/stc.111
  • Iemura, H., & Pradono, M. H. (2009). Advances in the development of pseudo-negative-stiffness dampers for seismic response control. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 16, 784–799. https://doi.org/10.1002/stc.345
  • Jangid, R. (2005a). Computational numerical models for seismic response of structures isolated by sliding systems. Structural Control & Health Monitoring, 12(1), 117–137. https://doi.org/10.1002/stc.59
  • Jangid, R. (2005b). Optimum friction pendulum system for near-fault motions. Engineering Structures, 27(3), 349–359. https://doi.org/10.1016/j.engstruct.2004.09.013
  • Jensen, H. A., & Kusanovic, D. (2014). On the effect of near-field excitations on the reliability-based performance and design of base-isolated structures. Probabilistic Engineering Mechanics, 36, 28–44. https://doi.org/10.1016/j.probengmech.2014.03.003
  • Jiang, Y., Zhao, Z., Zhang, R., De Domenico, D., & Pan, C. (2020). Optimal design based on analytical solution for storage tank with inerter isolation system. Soil Dynamics and Earthquake Engineering, 129, 105924. https://doi.org/10.1016/j.soildyn.2019.105924
  • Kapasakalis, K. A., Antoniadis, I. A., & Sapountzakis, E. J. (2020). Performance assessment of the kdamper as a seismic absorption base. Structural Control & Health Monitoring, 27(4), e2482. https://doi.org/10.1002/stc.2482
  • Kapasakalis, K. A., Antoniadis, I. A., & Sapountzakis, E. J. (2021). Constrained optimal design of seismic base absorbers based on an extended kdamper concept. Engineering Structures, 226, 111312. https://doi.org/10.1016/j.engstruct.2020.111312
  • Karathanasopoulos, N., Dos Reis, F., Diamantopoulou, M., & Ganghoffer, J.-F. (2020). Mechanics of beams made from chiral metamaterials: Tuning deflections through normal-shear strain couplings. Materials & Design, 189, 108520. https://doi.org/10.1016/j.matdes.2020.108520
  • Kazeminezhad, E., Kazemi, M. T., & Mirhosseini, S. M. (2020). Assessment of the vertical stiffness of elastomeric bearing due to displacement and rotation. International Journal of Non-Linear Mechanics, 119, 103306. https://doi.org/10.1016/j.ijnonlinmec.2019.103306
  • Kim, D., Wang, F., & Chaudhary, S. (2016). Modal energy balance approach for seismic performance evaluation of building structures considering nonlinear behaviour. Journal of Structural Integrity and Maintenance, 1(1), 10–17. https://doi.org/10.1080/24705314.2016.1153309
  • Kuhnert, W. M., Gonçalves, P. J. P., Ledezma-Ramirez, D. F., & Brennan, M. J. (2020). Inerter-like devices used for vibration isolation: A historical perspective. Journal of the Franklin Institute, 358(1), 1070–1086. https://doi.org/10.1016/j.jfranklin.2020.11.007
  • Li, M., Cheng, W., & Xie, R. (2021). A quasi-zero-stiffness vibration isolator using a cam mechanism with user-defined profile. International Journal of Mechanical Sciences, 189, 105938. https://doi.org/10.1016/j.ijmecsci.2020.105938
  • Lindberg, E., Östberg, M., Hörlin, N.-E., & Göransson, P. (2014). A vibro-acoustic reduced order model using undeformed coupling interface substructuring–application to rubber bushing isolation in vehicle suspension systems. Applied Acoustics, 78, 43–50. https://doi.org/10.1016/j.apacoust.2013.11.001
  • Liu, X., Huang, X., & Hua, H. (2013). On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. Journal of Sound and Vibration, 332(14), 3359–3376. https://doi.org/10.1016/j.jsv.2012.10.037
  • Marian, L., & Giaralis, A. (2014). Optimal design of a novel tuned mass-damper–inerter (tmdi) passive vibration control configuration for stochastically support-excited structural systems. Probabilistic Engineering Mechanics, 38, 156–164. https://doi.org/10.1016/j.probengmech.2014.03.007
  • Mazza, F. (2019). Effects of the long-term behaviour of isolation devices on the seismic response of base-isolated buildings. Structural Control & Health Monitoring, 26(4), e2331. https://doi.org/10.1002/stc.2331
  • Minh Le, L., Van Nguyen, D., Chang, S., Kim, D., Cho, S. G., & Nguyen, D. D. (2019). Vibration control of jacket offshore wind turbine subjected to earthquake excitations by using friction damper. Journal of Structural Integrity and Maintenance, 4(1), 1–5. https://doi.org/10.1080/24705314.2019.1565055
  • Miniaci, M., Mazzotti, M., Amendola, A., & Fraternali, F. (2020). Inducing dispersion curves with negative group velocity in inertially amplified phononic crystals through the application of an external state of prestress. In XI International Conference on Structural Dynamic, EURODYN 2020 (pp. 612–620).
  • Moghimi, G., & Makris, N. (2020). Seismic response of yielding structures equipped with inerters. Soil Dynamics and Earthquake Engineering, 141, 106474. https://doi.org/10.1016/j.soildyn.2020.106474
  • Muhammad, S., Wang, S., Li, F., & Zhang, C. (2020). Bandgap enhancement of periodic nonuniform metamaterial beams with inertial amplification mechanisms. Journal of Vibration and Control, 26(15–16), 1077546319895630. https://doi.org/10.1177/1077546319895630
  • Narkis, Y., & Lyrintzis, C. S. (1994). Optimal isolation and response of a linear-quadratic system under random excitation. Probabilistic Engineering Mechanics, 9(3), 213–219. https://doi.org/10.1016/0266-8920(94)90007-8
  • Nguyen, D. C. (2022). Vibration control of an articulated tower with a tuned mass damper subjected to the inertial force of ground acceleration. Journal of Structural Integrity and Maintenance, 7(3), 188–197. https://doi.org/10.1080/24705314.2022.2048240
  • Nguyen, X. B., Komatsuzaki, T., & Truong, H. T. (2022). Adaptive parameter identification of bouc-wen hysteresis model for a vibration system using magnetorheological elastomer. International Journal of Mechanical Sciences, 213, 106848. https://doi.org/10.1016/j.ijmecsci.2021.106848
  • Palazzo, B., & Petti, L. (1999). Optimal structural control in the frequency domain: Control in norm H2 and H∞. Journal of Structural Control, 6(2), 205–221. https://doi.org/10.1002/stc.4300060202
  • Pan, Z., Wang, W., Li, X., Chen, F., & Jiang, Z. (2022). Passive control of feather fault offshore wind turbine under combined earthquake wind and wave loads. Journal of Structural Integrity and Maintenance, 7(2), 75–90. https://doi.org/10.1080/24705314.2021.2018842
  • Podworna, M., Sniady, P., & Grosel, J. (2021). Random vibrations of a structure modified by damped absorbers. Probabilistic Engineering Mechanics, 66, 103151. https://doi.org/10.1016/j.probengmech.2021.103151
  • Qian, F., Luo, Y., Sun, H., Tai, W. C., & Zuo, L. (2019a). Optimal tuned inerter dampers for performance enhancement of vibration isolation. Engineering Structures, 198, 109464. https://doi.org/10.1016/j.engstruct.2019.109464
  • Qian, F., Luo, Y., Sr., Sun, H., Tai, W. C., & Zuo, L. (2019b). Performance enhancement of a base-isolation structure using optimal tuned inerter dampers. Active and Passive Smart Structures and Integrated Systems XIII, 10967, 1096715. International Society for Optics and Photonics.
  • Robertson, W. S., Kidner, M., Cazzolato, B. S., & Zander, A. C. (2009). Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation. Journal of Sound and Vibration, 326(1–2), 88–103. https://doi.org/10.1016/j.jsv.2009.04.015
  • Roberts, J. B., & Spanos, P. D. (2003). Random vibration and statistical linearization. Courier Corporation.
  • Robinson, W. H. (1982). Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes. Earthquake Engineering & Structural Dynamics, 10(4), 593–604. https://doi.org/10.1002/eqe.4290100408
  • Salman, K., Kim, D., Maher, A., & Latif, A. (2020). Optimal control on structural response using outrigger braced frame system under lateral loads. Journal of Structural Integrity and Maintenance, 5(1), 40–50. https://doi.org/10.1080/24705314.2019.1701799
  • Shakib, H., & Fuladgar, A. (2003). Response of pure-friction sliding structures to three components of earthquake excitation. Computers & Structures, 81(4), 189–196. https://doi.org/10.1016/S0045-7949(02)00444-3
  • Sheng, T., Liu, G.-B., Bian, X.-C., Shi, W.-X., & Chen, Y. (2022). Development of a three-directional vibration isolator for buildings subject to metro-and earthquake-induced vibrations. Engineering Structures, 252, 113576. https://doi.org/10.1016/j.engstruct.2021.113576
  • Shi, X., & Zhu, S. (2017). Simulation and optimization of magnetic negative stiffness dampers. Sensors and Actuators A: Physical, 259, 14–33. https://doi.org/10.1016/j.sna.2017.03.026
  • Sierra, I. E. M., Losanno, D., Strano, S., Marulanda, J., & Thomson, P. (2019). Development and experimental behavior of hdr seismic isolators for low-rise residential buildings. Engineering Structures, 183, 894–906. https://doi.org/10.1016/j.engstruct.2019.01.037
  • Smith, M. C., & Wang, F.-C. (2004). Performance benefits in passive vehicle suspensions employing inerters. Vehicle System Dynamics, 42(4), 235–257. https://doi.org/10.1080/00423110412331289871
  • Su, L., & Ahmadi, G. (1988). Response of frictional base isolation systems to horizontal-vertical random earthquake excitations. Probabilistic Engineering Mechanics, 3(1), 12–21. https://doi.org/10.1016/0266-8920(88)90003-3
  • Sun, F., Dai, X., Liu, Y., & Xiao, L. (2021). Seismic mitigation performance of periodic foundations with inertial amplification mechanism considering superstructure-foundation interaction. Smart Materials and Structures, 30(2), 025018. https://doi.org/10.1088/1361-665X/abd58e
  • Sun, H., Zuo, L., Wang, X., Peng, J., & Wang, W. (2019). Exact h2 optimal solutions to inerter-based isolation systems for building structures. Structural Control & Health Monitoring, 26(6), e2357. https://doi.org/10.1002/stc.2357
  • Taniker, S., & Yilmaz, C. (2013). Phononic gaps induced by inertial amplification in bcc and FCC lattices. Physics Letters A, 377(31–33), 1930–1936. https://doi.org/10.1016/j.physleta.2013.05.022
  • Taniker, S., & Yilmaz, C. (2017). Generating ultra wide vibration stop bands by a novel inertial amplification mechanism topology with flexure hinges. International Journal of Solids and Structures, 106, 129–138. https://doi.org/10.1016/j.ijsolstr.2016.11.026
  • Touaillon, J. (1870). Improvement in buildings. U.S. Patent No. 99,973.
  • Tran, T.-T., Nguyen, T.-H., & Kim, D. (2018). Seismic incidence on base-isolated nuclear power plants considering uni-and bi-directional ground motions. Journal of Structural Integrity and Maintenance, 3(2), 86–94. https://doi.org/10.1080/24705314.2018.1461547
  • Tubaldi, E., Mitoulis, S. A., & Ahmadi, H. (2018). Comparison of different models for high damping rubber bearings in seismically isolated bridges. Soil Dynamics and Earthquake Engineering, 104, 329–345. https://doi.org/10.1016/j.soildyn.2017.09.017
  • Tyapin, A. G. (2016). Damping in the platform models for soil-structure interaction problems: Rayleigh damping options and limitations in modal analysis. Journal of Structural Integrity and Maintenance, 1(3), 114–123. https://doi.org/10.1080/24705314.2016.1211237
  • Wang, F.-C., Liao, M.-K., Liao, B.-H., Su, W.-J., & Chan, H.-A. (2009). The performance improvements of train suspension systems with mechanical networks employing inerters. Vehicle System Dynamics, 47(7), 805–830. https://doi.org/10.1080/00423110802385951
  • Wang, M., Sun, F.-F., & Jin, H.-J. (2018). Performance evaluation of existing isolated buildings with supplemental passive pseudo-negative stiffness devices. Engineering Structures, 177, 30–46. https://doi.org/10.1016/j.engstruct.2018.09.049
  • Wei, X., Lui, H., & Qin, Y. (2011). Fault isolation of rail vehicle suspension systems by using similarity measure. In Proceedings of 2011 IEEE International Conference on Service Operations, Logistics and Informatics (pp. 391–396). IEEE.
  • Winterflood, J., Blair, D. G., & Slagmolen, B. (2002). High performance vibration isolation using springs in Euler column buckling mode. Physics Letters A, 300(2–3), 122–130. https://doi.org/10.1016/S0375-9601(02)00258-X
  • Wu, W., Chen, X., & Shan, Y. (2014). Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness. Journal of Sound and Vibration, 333(13), 2958–2970. https://doi.org/10.1016/j.jsv.2014.02.009
  • Wu, J., Zeng, L., Han, B., Zhou, Y., Luo, X., Li, X., Chen, X., & Jiang, W. (2022). Analysis and design of a novel arrayed magnetic spring with high negative stiffness for low-frequency vibration isolation. International Journal of Mechanical Sciences, 216, 106980. https://doi.org/10.1016/j.ijmecsci.2021.106980
  • Yilmaz, C., & Hulbert, G. (2010). Theory of phononic gaps induced by inertial amplification in finite structures. Physics Letters A, 374(34), 3576–3584. https://doi.org/10.1016/j.physleta.2010.07.001
  • Yilmaz, C., & Hulbert, G. M. (2017). Dynamics of locally resonant and inertially amplified lattice materials. Dynamics of Lattice Materials; Phani, AS, Hussein, MI, Eds, 233.
  • Yilmaz, C., Hulbert, G. M., & Kikuchi, N. (2007). Phononic band gaps induced by inertial amplification in periodic media. Physical Review B, 76(5), 054309. https://doi.org/10.1103/PhysRevB.76.054309
  • Yuan, S., Sun, Y., Wang, M., Ding, J., Zhao, J., Huang, Y., Peng, Y., Xie, S., Luo, J., Pu, H., Liu, F., Bai, L., & Yang, X.-D. (2021). Tunable negative stiffness spring using Maxwell normal stress. International Journal of Mechanical Sciences, 193, 106127. https://doi.org/10.1016/j.ijmecsci.2020.106127
  • Yuksel, O., & Yilmaz, C. (2015). Shape optimization of phononic band gap structures incorporating inertial amplification mechanisms. Journal of Sound and Vibration, 355, 232–245. https://doi.org/10.1016/j.jsv.2015.06.016
  • Zhang, R., Zhao, Z., & Dai, K. (2019). Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system. Engineering Structures, 180, 29–39. https://doi.org/10.1016/j.engstruct.2018.11.020
  • Zhang, R., Zhao, Z., & Pan, C. (2018). Influence of mechanical layout of inerter systems on seismic mitigation of storage tanks. Soil Dynamics and Earthquake Engineering, 114, 639–649. https://doi.org/10.1016/j.soildyn.2018.07.036
  • Zhao, Z., Chen, Q., Zhang, R., Pan, C., & Jiang, Y. (2019). Optimal design of an inerter isolation system considering the soil condition. Engineering Structures, 196, 109324. https://doi.org/10.1016/j.engstruct.2019.109324
  • Zhao, Z., Chen, Q., Zhang, R., Pan, C., & Jiang, Y. (2020). Energy dissipation mechanism of inerter systems. International Journal of Mechanical Sciences, 184, 105845. https://doi.org/10.1016/j.ijmecsci.2020.105845
  • Zhao, F., Ji, J., Ye, K., & Luo, Q. (2021). An innovative quasi-zero stiffness isolator with three pairs of oblique springs. International Journal of Mechanical Sciences, 192, 106093. https://doi.org/10.1016/j.ijmecsci.2020.106093
  • Zhao, Z., Zhang, R., Wierschem, N. E., Jiang, Y., & Pan, C. (2020). Displacement mitigation–oriented design and mechanism for inerter-based isolation system. Journal of Vibration and Control, 27(17–18), 1991–2003. https://doi.org/10.1177/1077546320951662
  • Zheng, Y., Zhang, X., Luo, Y., Yan, B., & Ma, C. (2016). Design and experiment of a high-static–low-dynamic stiffness isolator using a negative stiffness magnetic spring. Journal of Sound and Vibration, 360, 31–52. https://doi.org/10.1016/j.jsv.2015.09.019
  • Zhou, J., Dou, L., Wang, K., Xu, D., & Ouyang, H. (2019). A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams. Nonlinear Dynamics, 96(1), 647–665. https://doi.org/10.1007/s11071-019-04812-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.