1,891
Views
1
CrossRef citations to date
0
Altmetric
Articles

The importance of riparian plant orientation in river flow: implications for flow structures and drag

ORCID Icon, , & ORCID Icon
Pages 108-129 | Received 18 Sep 2018, Accepted 17 Jan 2019, Published online: 05 Apr 2019

References

  • Albayrak I, Nikora V, Miler O, O’Hare M. 2012. Flow-plant interactions at a leaf scale: effects of leaf shape, serration, roughness and flexural rigidity. Aquat Sci. 74:267–286.
  • Anderson JD. 1984. Fundamentals of aerodynamics. New York (NY): McGraw-Hill.
  • Bakry MF, Gates TK, Khattab AF. 1992. Field-measured hydraulic resistance characteristics in vegetation-infested canals. J Irrigat Drain Eng. 118:256–274.
  • Bauer BO, Walker IJ, Baas ACW, Jackson DWT, McKenna-Neuman C, Wiggs GFS, Hesp PA. 2013. Critical reflections on the coherent flow structures paradigm in aeolian geomorphology. In: Venditti JG, Best JL, Church M, Hardy RJ, editors. Coherent flow structures at earth’s surface. Chichester (England): Wiley; p. 111–134.
  • Béland M, Baldocchi DD, Widlowski J-L, Fournier RA, Verstraete MM. 2014. On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR. Agric Forest Meteorol. 184:82–97.
  • Berens P. 2009. CircStat: a matlab toolbox for circular statistics. J Stat Softw. 31:1–21.
  • Bienert A, Hess C, Maas HG, von Oheimb G. 2014. A voxel-based technique to estimate the volume of trees from terrestrial laser scanner data. Int Arch Photogramm Remote Sens Spatial Inform Sci. XL-5:101–106.
  • Biggs H, Nikora VI, Papadopoulos K, Vettori D, Gibbins C. Kucher M. 2016. Flow-vegetation interactions: a field study of ranunculus penicillatus at the large patch scale. In: Webb JA, Costelloe JF, Casas-Mulet R, Lyon JP, Stewardson MJ, editors. Proceedings of the 11th International Symposium on Ecohydraulics; 7–12 February; Melbourne (Australia). Melbourne (Australia): The University of Melbourne.
  • Boothroyd RJ, Hardy RJ, Warburton J, Marjoribanks TI. 2016a. The importance of accurately representing submerged vegetation morphology in the numerical prediction of complex river flow. Earth Surf Process Landforms. 41:567–576.
  • Boothroyd RJ, Hardy RJ, Warburton J, Marjoribanks TI. 2016b. Modelling vegetation-flow interactions: the importance of accurately representing plant morphology. In: Webb JA, Costelloe JF, Casas-Mulet R, Lyon JP, Stewardson MJ, editors. Proceedings of the 11th International Symposium on Ecohydraulics; 7–12 February; Melbourne (Australia). Melbourne (Australia): The University of Melbourne.
  • Boothroyd RJ, Hardy RJ, Warburton J, Marjoribanks TI. 2017. Modeling complex flow structures and drag around a submerged plant of varied posture. Water Resour Res. 53:2877–2901.
  • Bradbrook KF, Lane SN, Richards KS. 2000. Numerical simulation of three-dimensional, time-averaged flow structure at river channel confluences. Water Resour Res. 36:2731–2746.
  • Byrd TC, Furbish DJ, Warburton J. 2000. Estimating depth-averaged velocities in rough-channels. Earth Surf Process Landforms. 25:167–173.
  • Cameron SM, Nikora VI, Albayrak I, Miler O, Stewart M, Siniscalchi F. 2013. Interactions between aquatic plants and turbulent flow: a field study using stereoscopic PIV. J Fluid Mech. 732:345–372.
  • Cooper GG, Callaghan FM, Nikora VI, Lamouroux N, Statzner B, Sagnes P. 2007. Effects of flume characteristics on the assessment of drag on flexible macrophytes and a rigid cylinder. N Z J Marine Freshwater Res. 41:129–135.
  • Coops H, Van der Velde G. 1996. Effects of waves on helophyte stands: mechanical characteristics of stems of Phragmites australis and Scirpus lacustris. Aquat Bot. 53:175–185.
  • de Langre E. 2008. Effects of wind on plants. Annu Rev Fluid Mech. 40:141–168.
  • Disney MI, Boni Vicari M, Calders K, Burt A, Lewis S, Raumonen P, Wilkes P. 2018. Weighing trees with lasers: advances, challenges and opportunities. R Soc Interface Focus. 8:20170048.
  • Dittrich A, Aberle J, Schoneboom T. 2012. Drag forces and flow resistance of flexible riparian vegetation. In: Rodi W, Uhlmann M, editors. Environmental fluid mechanics. London (UK): CRC Press; p. 195–215.
  • Edwards PJ, Kollmann J, Gurnell AM, Petts GE, Tockner K, Ward JV. 1999. A conceptual model of vegetation dynamics on gravel bars of a large Alpine river. Wetlands Ecol Manag. 7:141–153.
  • Ferguson RI, Parsons DR, Lane SN, Hardy RJ. 2003. Flow in meander bends with recirculation at the inner bank. Water Resour Res. 39:1322–1333.
  • Folkard AM. 2016. Creating patches of comprehension and filling gaps in knowledge: physical modelling contributions to joined-up understanding of heterogeneous eco-scapes. In: Webb JA, Costelloe JF, Casas-Mulet R, Lyon JP, Stewardson MJ, editors. Proceedings of the 11th International Symposium on Ecohydraulics; 7–12 February; Melbourne (Australia). Melbourne (Australia): The University of Melbourne.
  • Gardiner B, Berry P, Moulia B. 2016. Review: wind impacts on plant growth, mechanics and damage. Plant Sci. 245:94–118.
  • Gippel CJ, O’Neill IC, Finlayson BL, Schnatz I. 1996. Hydraulic guidelines for the re-introduction and management of large woody debris in lowland rivers. Regul Rivers: Res Manag. 12:223–236.
  • Hardy RJ, Lane SN, Ferguson RI, Parsons DR. 2003. Assessing the credibility of a series of computational fluid dynamic simulations of open channel flow. Hydrol Process. 17:1539–1560.
  • Hardy RJ, Lane SN, Lawless MR, Best JL, Elliott L, Ingham DB. 2005. Development and testing of a numerical code for treatment of complex river channel topography in three-dimensional CFD models with structured grids. J Hydraulic Res. 43:468–480.
  • Hess C, Bienert A, Härdtle W, von Oheimb G. 2015. Does tree architectural complexity influence the accuracy of wood volume estimates of single young trees by terrestrial laser scanning? Forests. 6:3847–3867.
  • Hodskinson A, Ferguson RI. 1998. Numerical modelling of separated flow in river bends: model testing and experimental investigation of geometric controls on the extent of flow separation at the concave bank. Hydrol Process. 12:1323–1338.
  • Hosoi F, Nakai Y, Omasa K. 2013. 3-D voxel-based solid modeling of a broad-leaved tree for accurate volume estimation using portable scanning lidar. ISPRS J Photogramm Remote Sens. 82:41–48.
  • Hurd CL. 2000. Water motion, marine macroalgal physiology, and production. J Phycol. 36:453–472.
  • Hygelund B, Manga M. 2003. Field measurements of drag coefficients for model large woody debris. Geomorphology. 51:175–185.
  • Idestam-Almquist J, Kautsky L. 1995. Plastic responses in morphology of Potamogeton pectinatus L. to sediment and above sediment conditions at two sites in the northern Baltic proper. Aquat Bot. 52:205–216.
  • Jalonen J, Järvelä J, Aberle J. 2013. Leaf area index as vegetation density measure for hydraulic analyses. J Hydraulic Eng. 139:461–469.
  • Jalonen J, Järvelä J, Virtanen J-P, Vaaja M, Kurkela M, Hyyppä H. 2015. Determining characteristic vegetation areas by terrestrial laser scanning for floodplain flow modeling. Water. 7:420–437.
  • Kadlec R. 1990. Overland flow in wetlands: vegetation resistance. J Hydraulic Eng. 116:691–706.
  • Kouwen N, Unny TE, Hill H. 1969. Flow retardance in vegetated channels. J Irrigat Drain Div. 95:329–342.
  • Lane SN, Hardy RJ, Elliott L, Ingham DB. 2002. High-resolution numerical modelling of three dimensional flows over complex river bed topography. Hydrol Process. 16:2261–2272.
  • Lane SN, Hardy RJ, Elliott L, Ingham DB. 2004. Numerical modeling of flow processes over gravelly surfaces using structured grids and a numerical porosity treatment. Water Resour Res. 40:W01302.
  • Launder BE, Spalding DB. 1974. The numerical computation of turbulent flows. Comput Methods Appl Mech Eng. 3:269–289.
  • Lee BE, Soliman BF. 1977. An investigation of the forces on three dimensional bluff bodies in rough wall turbulent boundary layers. J Fluids Eng. 99:503–509.
  • Lien FS, Leschziner MA. 1994. Assessment of turbulence-transport models including non-linear ring eddy-viscosity formulation and second-moment closure for flow over a backward-facing step. Comput Fluids. 23:983–1004.
  • Lightbody AF, Nepf HM. 2006. Prediction of velocity profiles and longitudinal dispersion in salt marsh vegetation. Limnol Oceanogr. 51:218–228.
  • Lilly DK. 1967. The representation of small scale turbulence in numerical simulation experiments. In: Goldstine HH, editor. Proceedings of IBM Scientific Computing Symposium on Environmental Sciences; 14–16 November; New York (NY). New York (NY): White Plains.
  • Liu C, Zheng Z, Cheng H, Zou X. 2018. Airflow around single and multiple plants. Agric Forest Meteorol. 252:27–38.
  • Luhar M, Nepf HM. 2011. Flow induced reconfiguration of buoyant and flexible aquatic vegetation. Limnol Oceanogr. 56:2003–2017.
  • Manners RB, Doyle MW, Small MJ. 2007. Structure and hydraulics of natural woody debris jams. Water Resour Res. 43:W06432.
  • Manners RB, Wilcox AC, Kui L, Lightbody AF, Stella JC, Sklar LS. 2015. When do plants modify fluvial processes? Plant–hydraulic interactions under variable flow and sediment supply rates. J Geophys Res Earth Surf. 120:325–345.
  • Marjoribanks TI, Hardy RJ, Lane SN. 2014a. The hydraulic description of vegetated river channels: the weaknesses of existing formulations and emerging alternatives. Wiley Interdiscip Rev Water. 1:549–560.
  • Marjoribanks TI, Hardy RJ, Lane SN, Parsons DR. 2014b. Dynamic drag modeling of submerged aquatic vegetation canopy flows. In: Schleiss AJ, Cesare G, Franca MJ, Pfister M, editors. Proceedings of River Flow 2014; 3–5 September, Lausanne (Switzerland). London (UK): CRC Press.
  • Marjoribanks TI, Hardy RJ, Lane SN, Tancock MJ. 2016. Patch-scale representation of vegetation within hydraulic models. Earth Surf Process Landforms. 42:699–710.
  • McBride M, Hession WC, Rizzo DM, Thompson DM. 2007. The influence of riparian vegetation on near-bank turbulence: a flume experiment. Earth Surf Process Landforms. 32:2019–2037.
  • McKenna-Neuman C, Sanderson RS, Sutton SLF. 2013. Vortex shedding and morphodynamic response of bed surfaces containing non-erodible roughness elements. Geomorphology. 198:45–56.
  • Moorthy I, Miller JR, Hu B, Chen J, Li Q. 2008. Retrieving crown leaf area index from an individual tree using ground-based lidar data. Can J Remote Sens. 34:320–332.
  • Moorthy I, Miller JR, Berni JAJ, Zarco-Tejada P, Hu B, Chen J. 2011. Field characterization of olive (Olea europaea L.) tree crown architecture using terrestrial laser scanning data. Agric Forest Meteorol. 151:204–214.
  • Naiman RJ, Décamps H. 1997. The ecology of interfaces: riparian zones. Annu Rev Ecol Syst. 28:621–658.
  • Nepf HM, Ghisalberti M, White B, Murphy E. 2007. Retention time and dispersion associated with submerged aquatic canopies. Water Resour Res. 43:W04422.
  • Nikora N, Nikora V. 2007. A viscous drag concept for flow resistance in vegetated channels. In: Di Silvio G, Lanzoni S, editors. Proceedings of the 32nd Congress of IAHR. Venice, Italy: Coirdila.
  • Nikora V. 2010. Hydrodynamics of aquatic ecosystems: an interface between ecology, biomechanics and environmental fluid mechanics. River Res Appl. 26:367–384.
  • Nikora V, Cameron S, Albayrak I, Miler O, Nikora N, Siniscalchi F, Stewart M, O' Hare M. 2012. Flow-biota interactions in aquatic systems. In: Rodi W, Uhlmann M, editors. Environmental fluid mechanics. London (UK): CRC Press; p. 217–235.
  • Nobile, I. 2007. Dendrometric analysis of riparian vegetation in mountain streams [Ph.D. Thesis]. Trento (Italy): University of Trento.
  • O’Hare MT, Mountford JO, Maroto J, Gunn IDM. 2016. Plant traits relevant to fluvial geomorphology and hydrological interactions. River Res Appl. 32:179–189.
  • Oplatka M. 1998. Stabilität von Weidenverbauungen an Flussufern. Switzerland: Eidgenössische Technische Hochschule Zürich.
  • Panton RL. 1984. Incompressible flow. New York (NY): Wiley.
  • Petr T. 2000. Interactions between fish and aquatic macrophytes in inland waters: a review. Rome, Italy: UN Food and Agriculture Organisation. Fisheries Technical Paper 396.
  • Pewsey A. 2004. The large-sample joint distribution of key circular statistics. Metrika. 60:25–32.
  • Puijalon S, Bornette G, Sagnes P. 2005. Adaptations to increasing hydraulic stress: morphology, hydrodynamics and fitness of two higher aquatic plant species. J Exp Bot. 56:777–786.
  • Riegl. 2015. Riegl laser measurement systems: Riegl VZ‐1000 datasheet. [accessed 2016 June 01] www.riegl.com/.
  • Righetti M. 2008. Flow analysis in a channel with flexible vegetation using double-averaging method. Acta Geophys. 56:801–823.
  • Rusu RB, Marton ZC, Blodow N, Dolha M, Beetz M. 2008. Towards 3D point cloud based object maps for household environments. Rob Auton Syst. 56:927–941.
  • Sand-Jensen K. 1998. Influence of submerged macrophytes on sediment composition and near-bed flow in lowland streams. Freshwater Biol. 39:663–679.
  • Sand-Jensen K. 2003. Drag and reconfiguration of freshwater macrophytes. Freshwater Biol. 48:271–283.
  • Sand-Jensen K, Madsen T. 1992. Patch dynamics of the stream macrophyte, Callitriche cophocarpa. Freshwater Biol. 27:277–282.
  • Sand-Jensen K, Pedersen M. 2008. Streamlining of plant patches in streams. Freshwater Biol. 53:714–726.
  • Shields FD, Alonso CV. 2012. Assessment of flow forces on large wood in rivers. Water Resour Res. 48:W04516.
  • Shields FD, Coulton KG, Nepf HM. 2017. Representation of vegetation in two-dimensional hydrodynamic models. J Hydraulic Eng. 143:1–9.
  • Siniscalchi F, Nikora V. 2012. Flow-plant interactions in open-channel flows: a comparative analysis of five freshwater plant species. Water Resour Res. 48:W05503.
  • Siniscalchi F, Nikora V. 2013. Dynamic reconfiguration of aquatic plants and its interrelations with upstream turbulence and drag forces. J Hydraulic Res. 51:46–55.
  • Stoesser T. 2013. Calculation and education of coherent flow structures in open-channel flow using large-eddy simulations. In: Venditti JG, Best JL, Church M, Hardy RJ, editors. Coherent flow structures at earth’s surface. Chichester (UK): Wiley; p. 175–197.
  • Stoesser T, Kim SJ, Diplas J. 2010. Turbulent flow through idealized emergent vegetation. J Hydraulic Eng. 136:1003–1017.
  • Stone MC, Chen L, Kyle McKay S, Goreham J, Acharya K, Fischenich C, Stone AB. 2013. Bending of submerged woody riparian vegetation as a function of hydraulic flow conditions. River Res Appl. 29:195–205.
  • Streeter VL. 1998. Fluid mechanics. New York (NY): McGraw-Hill.
  • Sutton SLF, McKenna-Neuman C. 2008. Sediment entrainment to the lee of roughness elements: effects of vortical structures. J Geophys Res Earth Surf. 113:F02S09.
  • Takenake H, Tanaka N, Htet PM, Yagisawa J. 2010. Wind tunnel experiments on direct measurement of drag force of real tree trunks and branches and their sheltering effects at high Reynolds numbers. Proceedings of the 8th International Symposium on Ecohydraulics; 12–16 September; Seoul (Korea). Seoul (Korea): Korea Water Resources Association.
  • Telewski FW. 1995. Wind-induced physiological and developmental responses in trees. In: Coutts MP, Grace J. editors. Wind and trees. Cambridge (UK): Cambridge University Press; p. 237–263.
  • Telewski FW, Jaffe MJ. 1986. Thigmomorphogenesis: field and laboratory studies of Abies fraseri in response to wind or mechanical perturbation. Physiol Plantarum. 66:211–218.
  • Tempest JA, Möller I, Spencer T. 2015. A review of plant-flow interactions on salt marshes: the importance of vegetation structure and plant mechanical characteristics. Wiley Interdiscip Rev Water. 2:669–681.
  • Thomas RE, Johnson MF, Frostick LE, Parsons DR, Bouma TJ, Dijkstra JT, Eiff O, Gobert S, Henry P, Kemp P, et al. 2014. Physical modelling of water, fauna and flora: knowledge gaps, avenues for future research and infrastructural needs. J Hydraulic Res. 52:311–325.
  • Tritton DJ. 1988. Physical fluid dynamics. Oxford (UK): Clarendon Press.
  • Västilä K, Järvelä J. 2014. Modeling the flow resistance of woody vegetation using physically based properties of the foliage and stem. Water Resour Res. 50:229–245.
  • Vettori D, Nikora VI. 2018. Flow-seaweed interactions: a laboratory study using blade models. Environ Fluid Mech. 18:611–636.
  • Vierling KT, Vierling LA, Gould WA, Martinuzzi S, Clawges RM. 2008. Lidar: shedding new light on habitat characterization and modeling. Front Ecol Environ. 6:90–98.
  • Vogel S. 1994. Life in moving fluids: the physical biology of flow. Chichester (UK): Princeton University Press.
  • Watts JFW, Watts GD. 1990. Seasonal change in aquatic vegetation and its effect on channel flow. In: Thornes JB. editor. Vegetation and erosion. Chichester (UK): Wiley; p. 257–267.
  • Weissteiner C, Jalonen J, Järvelä J, Rauch HP. 2015. Spatial–structural properties of woody riparian vegetation with a view to reconfiguration under hydrodynamic loading. Ecol Eng. 85:85–94.
  • Whittaker P, Wilson C, Aberle J, Rauch HP, Xavier P. 2013. A drag force model to incorporate the reconfiguration of full-scale riparian trees under hydrodynamic loading. J Hydraulic Res. 51:569–580.
  • Wilson C, Hoyt J, Schnauder I. 2008. Impact of foliage on the drag force of vegetation in aquatic flows. J Hydraulic Eng. 134:885–891.
  • Wilson CAME, Stoesser T, Bates P, Pinzen A. 2003. Open channel flow through different forms of submerged flexible vegetation. J Hydraulic Eng. 129:847–853.
  • Wunder S, Lehmann B, Nestmann Franz. 2011. Determination of the drag coefficients of emergent and just submerged willows. Int J River Basin Manag. 9:231–236.
  • Yagci O, Celik MF, Kitsikoudis V, Ozgur Kirca VS, Hodoglu C, Valyrakis M, Duran Z, Kaya S. 2016. Scour patterns around isolated vegetation elements. Adv Water Resour. 97:251–265.
  • Yagci O, Kabdasli MS. 2008. The impact of single natural vegetation elements on flow characteristics. Hydrol Process. 22:4310–4321.
  • Yakhot V, Orszag S. 1986. Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput. 1:3–51.
  • Zar JH. 1999. Biostatistical analysis. Upper Saddle River (NJ): Prentice Hill.