168
Views
12
CrossRef citations to date
0
Altmetric
Articles

Effects of interlocked carpet ramps on upstream movement of brown trout Salmo trutta in an upland stream

, &
Pages 3-30 | Received 07 Feb 2019, Accepted 07 Feb 2019, Published online: 29 Apr 2019

References

  • Altinakar MS, Czernuszenko W, Rowiński P, Wang SY (eds). 2005. Computational modeling for the development of sustainable water resources systems in Poland. Warsaw, Poland: Publications Institute of Geophysics, Polish Academy of Sciences, E-5 (387).
  • Arthington A. 2012. Environmental flows: Saving rivers in the Third Millennium. Oakland, California, USA: University of California Press. 406 pp.
  • Birnie-Gauvin K, Tummer JS, Lucas MC, Aarestrup K. 2017. Adaptive management in the context of barriers in European freshwater ecosystems. J Environ Manage. 204:436–441.
  • Bunt CM, Castro-Santos T, Haro A. 2012. Performance of fish passage structures at upstream barriers to migration. River Res Appl. 28:457–478.
  • Castro-Santos T, Cotel A, Webb PW. 2009. Fishway evaluations for better bioengineering - an integrative approach. In: AJ Haro, KL Smith, RA Rulifson, CM Moffit, RJ Klauda, MJ Dadswell, RA Cunjak, J, Cooper, KL Beal, TS Avery editors. Challenges for diadromous fishes in a dynamic global environment. Bethesda, MD: American Fisheries Society, Symposium 69, p. 557–575.
  • Dobija A. 1985. The Poniczanka catchment – hydromorphological characteristics. In: Bandoła-Ciołczyk E, editor. Morphological and ecological investigations in catchments. Vol. 29: (In Polish: Charakterystyka hydromorfologiczna górnej części zlewni Poniczanki [w:] Bandoła-Ciołczyk E. Badania fizjograficzne i ekologiczne na obszarze zlewni Poniczanki w Gorcach.) Studia Naturae, Seria A – Wydawnictwa Naukowe, PWN – PAN, Warszawa – Kraków, p. 15–23.
  • Duan G, Wang SSY, Jia Y. 2001. The applications of the enhanced CCHE2D model to study the alluvial channel migration processes. J Hydraul Res. 39 (5 Suppl):79.
  • DVWK. 1996. Fish passes – design, dimensions and monitoring (In German: Fischaufstiegsanlagen – Bemessung, Gestaltung, Funktionskontrolle), Merkblatt 232.
  • Finstad AG, Armstrong JD, Nislow K.H. 2011. Freshwater habitat requirements of Atlantic Salmon. In: Aas Ø, Einum S, Klemetsen A, Skurdal J, editors. Atlantic salmon ecology. London: Wiley-Blackwell; p. 67–87.
  • Foley MM, Bellmore JR, O’Connor JE, Duda JJ, East AE, Grant GE, Anderson CW, Bountry JA, Collins MJ, Connolly, PJ,Craig, LS, Evans JE, Greene, SL, Magillan, FJ, Magirl, CS, Major, JJ, Pess, GR, Randle, TJ, Shafroth, PB, Torheson, CE, Tullos, D and Wilcox, AC. 2017. Dam removal—listening in. Water Resour Res. 53: 5229–5246.
  • Hassan MA, Gottesfeld AS, Montgomery DR, Tunnicliffe JF, Clarke GC, Wynn G, Jones-Cox H, Poirier R, MacIsaac E, Herunter H, Macdonald SJ. 2008 Salmon-driven bed load transport and bed morphology in mountain streams. Geophys Res Lett. 35(4): L04405.
  • Jelonek M, Wierzbicki M. 2008. Technical presentations of fish-passes using French, German and US examples (In Polish: Prezentacja technicznych możliwości przywrócenia wędrówek ryb w rzekach na podstawie wybranych przykładów inwestycji zrealizowanych we Francji i Niemczech oraz USA. Ministerstwo Rolnictwa i Rozwoju Wsi. Kraków – Poznań). Krakov-Posnan, Poland: Polish Ministry of Agriculure and Land Development www.pl.pdfsb.com/technicznych
  • Jia Y, Wang SSY. 1999. Numerical model for channel flow and morphological change studies. J Hydraul Eng ASCE. 125(9):924–933
  • Klimada. 2013. http://klimada.mos.gov.pl/en/climate-change-in-poland/ accessed 24 November 2018.
  • Kondracki J. 2000. Regional Geography of Poland. (In Polish: Geografia regionalna Polski), PWN. Warszawa, Polski.
  • Langendoen EJ. 2001. Evaluation of the effectiveness of selected computer models of depth-averaged free surface flow and sediment transport to predict the effects of hydraulic structures on river morphology, Project Report, USDA-ARS National Sedimentation Laboratory, Oxford M.S.
  • Li L, Zheng B, Liu L. 2010. Biomonitoring and bioindicators used for river ecosystems: Definitions, approaches and trends. Procedia Environ Sci. 2:1510–1524.
  • Lusk S. 1978. Boulder block ramps for fish (In Czech: Zhodnoceni balvanitych skluzu z rybařskeho hlediska). Zaverečna Sprava, UVO ČSAV, Brno.
  • Lusk S. 1980a. Boulder block ramps and fish production in streams (In Czech: Balvanite skluzy a produkcne-rybarska funkce vodniho toku). Zaverečna Sprava UVO ČSAV, Brno.
  • Lusk S. 1980b. Ramps for fish built on mountain streams [in Czech: Balvanite skluzy a rybi osidleni toku). Vodni hospodářstvi, 9:237–240.
  • Malcolm IA, Gibbins CN, Moir HJ, Soulsby C, Tetzlaff D. 2012. The influence of hydrology and hydraulics on salmonids between spawning and emergence: implications for the management of flows in regulated rivers. Fish Manag Ecol. 19:464–476.
  • McLay A, Gorden-Rogers K, editors. 1997. Report of the Scottish salmon strategy task force. Edinburgh: The Scottish Office.
  • Mussetter RA, Wolff CG, Peters MR, Thomas DB, Grochowski D. 2004. Two-dimensional hydrodynamic modeling of the Rio Grande to support fishery habitat investigations. Critical Transitions in Water and Environmental Resources Management, World Water Congress, Sehlke G, Hayes DF, Stevens DK. editors. ASCE, p. 1–10.
  • Norris RH, Hawkins CP. 2000. Monitoring river health. Hydrobiologia. 435:5–17
  • Numerical 2D simulation of morphological phenomena of a block ramp in Poniczanka stream: Polish Carpathians. In: Bung D, Tullis B, Pagliara S, Palermo M. 2013. Scour at Foundations of Rock Made Low-Head Structures. In: Bung, Daniel B.; Pagliara, Stefano (Hg.): IWLHS 2013 - International Workshop on Hydraulic Design of Low-Head Structures. Karlsruhe: Bundesanstalt für Wasserbau. S. 169–177. Hydraulic Engineering repository (HENRY). https://hdl.handle.net/20.500.11970/104406 editors. 7th IAHR International Symposium on Hydraulic Structures, Utah State University, Aachen, Germany, 15–18 May, 2018.
  • Oertel M, Schlenkhoff A. 2012. Crossbar block ramps: Flow regimes, energy dissipation, friction factors, and drag forces. J Hydraul Eng. 138(5):440–448.
  • Ovidio M, Philippart, JC. 2002. The impact of small physical obstacles on upstream movements of six species of fish – Synthesis of a 5-year telemetry study in the River Meuse basin. Hydrobiologia. 483:55–69.
  • Pagliara S, Palermo M. 2013. Scour at foundations of rock made low-head structures. In: Bung, Daniel B.; Pagliara, Stefano (Hg.), editors. International Workshop on Hydraulic Design of Low-Head Structures, IWLHS. Karlsruhe: Bundesanstalt für Wasserbau S., 169–177, Hydraulic Engineering repository (HENRY). https://hdl.handle.net/20.500.11970/104406.
  • Pagliara S, Radecki-Pawlik A, Palermo M and Plesiński K. 2017. Block ramps in Curved Rivers: Morphology analysis and prototype data supported design criteria for mild bed slopes. River Res Appl. 33(3):427–437
  • Pagliara S, Radecki-Pawlik A, Palermo N, Plesiński K. 2018. A Preliminary Study of field scour morphology downstream of block ramps located at river bends. In: Bung D, Tullis B, editors. 7th IAHR International Symposium on Hydraulic Structures, Utah State University, Aachen, Germany, 15–18 May, 2018.
  • Piecuch, J, Lojkasek, B, Lusk S, Marek, T. 2007. Spawning migration of brown trout, Salmo trutta, in the Moravka reservoir. Folia Zool. 56(2):201–212.
  • Plesiński K, Radecki-Pawlik A, Wyżga B. 2015. Sediment transport processes related to the operation of a rapid hydraulic structure (Boulder Ramp) in a Mountain Stream Channel: A polish carpathian example. In: Heininger P, Cullmann J, editors. Sediment matters, Springer, Berlin, Germany, pp. 259.
  • Plesiński K., Pachla F., Radecki-Pawlik A., Tatara T., Radecki-Pawlik B. 2018. Possibilities of fish passage through the block ramp: Model-based estimation of permeability. Sci Tot Environ. 631:1201–1211.
  • Radecki-Pawlik A, Plesiński K, Wyżga B. 2013 Analysis of chosen hydraulic parameters of a rapid hydraulic structure (RHS) in Porębianka Stream, Polish Carpathians. In: Bung DB and Pagliara S, editors. International Workshop on Hydraulic Design of Low-Head Structures, IWLHS. BundesanstaltfürWasserbau, Aachen, 121–128.
  • Radecki-Pawlik A. 1995. Woda v.2.0 a simple hydrological computer model when a t-year flood is calculated. International Conference on Hydrological Processes in the Catchment, editor B. Więzik, Politechnika Krakowska PK, pp. 31–141.
  • Radecki-Pawlik A. 2013. On using artificial rapid hydraulic structures (RHS) within mountain stream channels – some exploitation and hydraulic problems. In: Rowiński P, editor. Experimental and computational solutions of hydraulic problems, series. GeoPlanet: Earth Planetary Sciences, Springer, Berlin, Germany, 101–115.
  • Radecki-Pawlik, A, Plesiński K, Radecki-Pawlik, B, Kubon P, Manson R. 2018. Hydrodynamic parameters in a flood impacted boulder block ramp: Krzczonówka mountain stream, Polish Carpathians. J Mt Sci. 15(9):2335–2346
  • Radinger J, Wolter C. 2014. Patterns and predictors of fish dispersal in rivers. Fish Fisheries. 15:456–473.
  • Richter B, Bauggartner JV, Wigington R, Braun DP. 1997. How much water does a river need? Fhreshwater Biology. 37:231–249.
  • Sakowicz S, Szczerowski J. 1965. The course of spawning of trout (Salmo trutta n lacustis L.) from the Wdzydze Lake in 1963. Acta Hydrobiol. 7:99–107.
  • Sattar AMA, Plesiński K, Radecki-Pawlik A, Gharabaghi B. 2018. Scour depth model for grade-control structures. J Hydroinform. 20(1):117–133.
  • Silva, AT, Lucas MC, Castro-Santos T, Katopodis C, Baumgartner LJ, Thiem JD, Aarestrup K, Pompeu PS, O’Brien GCO, Braun DC, Burnett NJ, Zhu DZ, Fjeldstad H-P, Forseth T, Rajaratnam N, Williams JG and Cooke S. 2017. The future of fish passage science, engineering, and practice. Fish Fisheries. 19:340–362.
  • Tetzlaff, D, Soulsby C, Youngson A, Gibbins C.N, Bacon P, Malcolm IA, Langan S, 2005a. Variability in stream discharge and temperature: a preliminary assessment of the implications for juvenile and spawning Atlantic salmon. Hydrol Earth Syst Sci. 9(3):193–208.
  • Tetzlaff D, Soulsby C, Gibbins CN, Youngson A, Bacon B. 2005b. An approach to assessing hydrological influences on feeding opportunities in juvenile Atlantic salmon: a case study of two contrasting years in small nursery stream. Hydrobiologia. 549:65–77.
  • TNV. 2011 Weirs on streams stopping fish movement [in Czech: Zpruchodňování migračních bariér přechody]. Odvětvovà technická norma vodního hospodářství, TNV 75 2321, Praha.
  • Travade F, Larinier M. 2006. French Experience in Downstream Migration Devices, Proceeding of the International DWA Symposium on Water Resources Management, Berlin.
  • Vowles, AS, Karageorgopoulos P, Kemp PS. 2019. Upstream movement of river lamprey through a culvert retrofitted with spoiler baffles under experimental conditions. J Ecohydraulics. 4:1–9.
  • Vowles, AS, Eakins, LR, Piper, AT, Kerr JR and Kemp P. 2013. Developing realistic fish passage criteria: An ecohydraulics approach. In: Maddock I, Harby A, Kemp P, Wood PJ, editors. Ecohydraulics: An integrated approach. Chichester: Wiley Blackwell; p. 143–156.
  • Wang H, Chanson H. 2018. On upstream fish passage in standard box culverts: interactions between fish and turbulence. J Ecohydraulics. 3:18–29.
  • Wang S. 2005. Analysis of Aquatic Habitat Suitability Using a Depth-averaged 2-d Model. In proceedings Sematic Schoolar. https://www.semanticscholar.org/paper/Analysis-of-Aquatic-Habitat-Suitability-Using-a-2-d-Wu-Wang/5bed558ae5a374f59c2b2b9b069feac64ac48ab4
  • Warren M, Dunbar MJ, Smith C. 2015. River flow as a determinant of salmonid distribution and abundance: a review. Env Biol Fish. 98:1695–1717.
  • Weihs, D 1974. Energetic advantages of burst swimming of fish. J Theor Biol. 48 (1):215–222.
  • WFD, Directive 2000/60/WE of the European Parliament and of the Council of 23 October 2000. Establishing a framework for Community action in the field of water policy.
  • Wu W. 2004. Depth-averaged two-dimensional numerical modeling of unsteady flow and non-uniform sediment transport in open channels. J Hydraul Eng. 130(10):1013–1024.
  • Wu W, Wang SS. 2004. Depth-averaged 2-D calculation of flow and sediment transport in curved channels. Int J Sediment Res. 19:241–257.
  • Wu W, Wang SS. 2005. Development and application of NCCHE’s sediment transport models. Proceedings of US–China workshop on advanced computational modelling in hydroscience & engineering.
  • Zastěra Z. 1973. Otazky sklonu skluzove plochy balvanitych spadowych objektu. Sbornik DT-ČSVTS, Ostrava.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.