600
Views
17
CrossRef citations to date
0
Altmetric
Articles

Catchment-scale, high-resolution, hydraulic models and habitat maps – a salmonid's perspective

, , , , , & show all
Pages 53-68 | Received 04 Feb 2020, Accepted 10 May 2020, Published online: 07 Aug 2020

References

  • Amiro PG. 1983. Aerial Photographic Measurement of Atlantic Salmon Habitat of the Miramichi River, New Brunswick. DFO Canadian Science Advisory Secretariat Science Response 83/74.
  • Bardonnet A, Baglinière J-L. 2000. Freshwater habitat of Atlantic Salmon (Salmo salar). Can J Fish Aquat Sci. 57(2):497–506.
  • Borsányi P, Alfredsen K, Harby A, Ugedal O, Kraxner C. 2004. A meso-scale habitat classification method for production modelling of Atlantic Salmon in Norway. Hydroécol Appl. 14:119–138.
  • Boruah S, Gilvear D, Hunter P, Sharma N. 2008. Quantifying channel planform and physical habitat dynamics on a large braided river using satellite data—the Brahmaputra. River Res Appl. 24(5):650–660.
  • Box GEP. 1976. Science and statistics. J Am Stat Assoc. 71(356):791–799.
  • Breau C, Cunjak RA, Bremset G. 2007. Age-specific aggregation of wild juvenile Atlantic Salmon Salmo salar at cool water sources during high temperature events. J Fish Biol. 71(4):1179–1191.
  • Caissie D. 2006. River discharge and channel width relationships for New Brunswick rivers. Can Tech Rep Fish Aquat Sci. 2637:26.
  • Caissie J, Caissie D, El-Jabi N. 2015. Hydrologically based environmental flow methods applied to rivers in the maritime provinces (Canada). River Res Appl. 31(6):651–662.
  • Calvert J, Strong JA, Service M, McGonigle C, Quinn R. 2015. An evaluation of supervised and unsupervised classification techniques for marine benthic habitat mapping using multibeam echosounder data. ICES J Marine Sci. 72(5):1498–1513.
  • Carbonneau P, Fonstad MA, Marcus WA, Dugdale SJ. 2012. Making riverscapes real. Geomorphology. 137(1):74–86.
  • Chadwick EMP. 1995. Water, science, and the public: the Miramichi ecosystem. Can Spec Pub Fish Aquat Sci. 123:300.
  • Chaput G, Douglas SG, Hayward J. 2016. Biological characteristics and population dynamics of Atlantic Salmon (Salmo salar) from the Miramichi River, New Brunswick, Canada. Canadian Science Advisory Secretariat (CSAS) Research Document. Moncton, NB.
  • Chen F, Lin H, Zhou W, Hong T, Wang G. 2013. Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section, Tibet Plateau, China. Remote Sens Environ. 138:10–18.
  • Corey E, Linnansaari T, Cunjak RA, Currie S. 2017. Physiological effects of environmentally relevant, multi-day thermal stress on wild juvenile Atlantic Salmon (Salmo salar). Conserv Physiol. 5(1):cox014.
  • Corey E, Linnansaari T, Dugdale SJ, Bergeron N, Gendron J, Lapointe M, Cunjak RA. 2020. Comparing the behavioural thermoregulation response to heat stress by Atlantic Salmon parr (Salmo salar) in two rivers. Ecol Freshw Fish. 29(1):50–62.
  • Cunjak RA. 1988. Behaviour and Microhabitat of Young Atlantic Salmon (Salmo salar) during Winter. Can J Fish Aquat Sci. 45(12):2156–2160.
  • Cunjak RA, Caissie D. 1993. Frazil ice accumulation in a large Salmon pool in the Miramichi River, New Brunswick: Ecological implications for overwintering fishes. Proceedings of the 7th Workshop on the Hydraulics of Ice Covered Rivers; Saskatoon, Saskatchewan. p. 279–295.
  • Cunjak RA, Green JM. 1983. Habitat utilization by brook char (Salvelinus fontinalis) and rainbow trout (Salmo gairdneri) in Newfoundland streams. Can J Zool. 61(6):1214–1219.
  • Cunjak RA, Newbury RW. 2005. Atlantic coast rivers of Canada. In: Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier; p. 938–980.
  • Curry RA, Noakes DLG. 1995. Groundwater and the selection of spawning sites by brook trout (Salvelinus fontinalis). Can J Fish Aquat Sci. 52(8):1733–1740.
  • Curry RA, Devito KJ. 1996. Hydrogeology of brook trout (Salvelinus fontinalis) spawning and incubation habitats: implications for forestry and land use development. Can J for Res. 26(5):767–772.
  • Curry RA, Van De Sande J, Whoriskey FG. 2006. Temporal and spatial habitats of anadromous brook charr in the Laval River and its estuary. Environ Biol Fish. 76(2–4):361–370..
  • Curry RA, Bernatchez L, Whoriskey F, Audet C. 2010. The origins and persistence of anadromy in brook charr. Rev Fish Biol Fish. 20(4):557–570.
  • Daigle A, Jeong D Il, Lapointe MF. 2015. Climate change and resilience of tributary thermal refugia for salmonids in eastern Canadian rivers. Hydrol Sci J. 60(6):1044–1063.
  • DFO. 2018. Update of indicators to 2017 of adult Altantic Salmon for the Miramichi River (NB), Salmon Fishing Area 16, DFO Gulf Region. DFO Canadian Science Advisory Secretariat Science Response 2017/043.
  • Dugdale SJ, Bergeron NE, St-Hilaire A. 2015. Spatial distribution of thermal refuges analysed in relation to riverscape hydromorphology using airborne thermal infrared imagery. Remote Sens Environ. 160:43–55.
  • Dugdale SJ, Franssen J, Corey E, Bergeron NE, Lapointe M, Cunjak RA. 2016. Main stem movement of Atlantic Salmon parr in response to high river temperature. Ecol Freshw Fish. 25(3):429–445.
  • Dunbar MJ, Alfredsen K, Harby A. 2012. Hydraulic-habitat modelling for setting environmental river flow needs for salmonids. Fish Manag Ecol. 19(6):500–517.
  • Eisner A, Young C, Schneider M, Kopecki I. 2005. MesoCASiMiR – new mapping method and comparison with other current approaches. COST 626 European Aquatic Modelling Network – Proceedings from the Final Meeting in Silkeborg, Denmark. p. 397.
  • El‐Jabi N, Caissie D. 2019. Characterization of natural and environmental flows in New Brunswick. River Res Appl. 35(1):14–24.
  • Enders EC, Scruton DA, Clarke KD. 2009. The “natural flow paradigm” and Atlantic salmon-moving from concept to practice. River Res Appl. 25(1):2–15.
  • Farò, D., G. Zolezzi, P. Vezza, K. Baumgartner, R. Klar, & A. Andreaoli, 2018. Testing 2D hydraulic modeling of mesoscale fish habitats in the Mareit / Mareta River (Italy). 12th International Symposium on Ecohydraulics, Tokyo, Japan
  • Fausch KD, Torgersen CE, Baxter CV, Li HW. 2002. Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. BioScience. 52(6):483.
  • Fleischmann A, Paiva R, Collischonn W. 2019. Can regional to continental river hydrodynamic models be locally relevant? A cross-scale comparison. J Hydrol X. 3:100027.
  • Flener C, Lotsari E, Alho P, Käyhkö J. 2012. Comparison of empirical and theoretical remote sensing based bathymetry models in river environments. River Res Appl. 28(1):118–133.
  • Fonstad MA, Marcus WA. 2005. Remote sensing of stream depths with hydraulically assisted bathymetry (HAB) models. Geomorphology. 72(1–4):320–339.
  • Fullerton AH, Torgersen CE, Lawler JJ, Faux RN, Steel EA, Beechie TJ, Ebersole JL, Leibowitz SG. 2015. Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures. Hydrol Process. 29(22):4719–4737.
  • Fullerton AH, Torgersen CE, Lawler JJ, Steel EA, Ebersole JL, Lee SY. 2018. Longitudinal thermal heterogeneity in rivers and refugia for coldwater species: effects of scale and climate change. Aquat Sci. 80(1):3.
  • Ganong WF. 1906. Notes on the natural history and physiography of New Brunswick. Saint John (NB): Barners & Company.
  • Gibson RJ. 1978. The behavior of juvenile Atlantic Salmon (Salmo salar) and brook trout (Salvelinus fontinalis) with regard to temperature and to water velocity. Trans Am Fish Soc. 107(5):703–712.
  • Grant GE, O'Connor J, Safran E. 2017. Excursions in fluvial (dis)continuity. Geomorphology. 277:145–153.
  • Harby A, Martinez-Capel F, Lamouroux N. 2017. From microhabitat ecohydraulics to an improved management of river catchments: bridging the gap between scales. River Res Appl. 33(2):189–191.
  • Harrison LR, Bray E, Overstreet B, Legleiter CJ, Brown RA, Merz JE, Bond RM, Nicol CL, Dunne T. 2019. Physical controls on Salmon redd site selection in restored reaches of a regulated, gravel-bed river. Water Resour Res. 55(11):8942–8966.
  • Hauer C, Mandlburger G, Habersack H. 2009. Hydraulically related hydro-morphological units: description based on a new conceptual mesohabitat evaluation model (MEM) using LiDAR data as geometric input. River Res Appl. 25(1):29–47.
  • Hauer C, Unfer G, Holzmann H, Schmutz S, Habersack H. 2013. The impact of discharge change on physical instream habitats and its response to river morphology. Clim Change. 116(3–4):827–850.
  • Heggenes J, Bagliniere JL, Cunjak RA. 1999. Spatial niche variability for young Atlantic Salmon (Salmo salar) and brown trout (S. trutta) in heterogeneous streams. Ecol Freshwater Fish. 8(1):1–21.
  • Heggenes J, Borgstrøm R. 1991. Effect of habitat types on survival, spatial distribution and production of an allopatric cohort of Atlantic salmon, Salmo salar L., under conditions of low competition. J Fish Biol. 38(2):267–280.
  • Heggenes J, Saltveit SJ. 1990. Seasonal and spatial microhabitat selection and segregation in young Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L., in a Norwegian river. J Fish Biol. 36(5):707–720.
  • Hockley FA, Wilson CAME, Brew A, Cable J. 2014. Fish responses to flow velocity and turbulence in relation to size, sex and parasite load. J R Soc Interface. 11(91):20130814.
  • Höjesjö J, Kaspersson R, Armstrong JD. 2016. Size-related habitat use in juvenile Atlantic salmon: the importance of intercohort competition. Can J Fish Aquat Sci. 73(8):1182–1189.
  • Holm CF, Armstrong JD, Gilvear DJ. 2001. Investigating a major assumption of predictive instream habitat models: is water velocity preference of juvenile Atlantic Salmon independent of discharge? J Fish Biol. 59(6):1653–1666.
  • Hugue F, Lapointe M, Eaton BC, Lepoutre A. 2016. Satellite-based remote sensing of running water habitats at large riverscape scales: Tools to analyze habitat heterogeneity for river ecosystem management. Geomorphology. 253:353–369.
  • Jensen JR. 1996. Introductory digital image processing: a remote sensing perspective. Upper Saddle River (NJ): Prentice Hall..
  • Jordan D C, Fonstad M A. 2005. Two dimensional mapping of river Bathymetry and power using aerial photography and GIS on the Brazos river, Texas. Geocarto International. 20(3):13–20.
  • Jowett IG. 1993. A method for objectively identifying pool, run, and riffle habitats from physical measurements. N Z J Mar Freshwater Res. 27(2):241–248.
  • Kasvi E, Salmela J, Lotsari E, Kumpula T, Lane SN. 2019. Comparison of remote sensing based approaches for mapping bathymetry of shallow, clear water rivers. Geomorphology. 333:180–197.
  • Katopodis C, Kemp PS. 2018. Challenges of integrating habitat for aquatic life and morphodynamics offer a plethora of opportunities for advances in Ecohydraulics. J Ecohydraulics. 3(1):1–3.
  • Kinzel PJ, Legleiter CJ, Nelson JM. 2013. Mapping river bathymetry with a small footprint green LiDAR: applications and challenges1. JAWRA J Am Water Res Assoc. 49(1):183–204.
  • Legleiter CJ, Roberts DA, Marcus WA, Fonstad MA. 2004. Passive optical remote sensing of river channel morphology and in-stream habitat: physical basis and feasibility. Remote Sens Environ. 93(4):493–510.
  • Legleiter CJ, Goodchild MF. 2005. Alternative representations of in‐stream habitat: classification using remote sensing, hydraulic modeling, and fuzzy logic. Int J Geog Inf Sci. 19(1):29–50.
  • Legleiter CJ, Roberts DA, Lawrence RL. 2009. Spectrally based remote sensing of river bathymetry. Earth Surf Process Landforms. 34(8):1039–1059.
  • Legleiter CJ, Overstreet BT. 2012. Mapping gravel bed river bathymetry from space. J Geophys Res. 117(F4):n/a–n/a.
  • Legleiter CJ. 2015. Calibrating remotely sensed river bathymetry in the absence of field measurements: Flow REsistance Equation‐Based Imaging of River Depths (FREEBIRD).Water Resour Res. 51(4):2865–2884.
  • Legleiter C, Fosness R. 2019. Defining the limits of spectrally based bathymetric mapping on a large river. Remote Sens. 11(6):665.
  • Legleiter CJ. 2012. Remote measurement of river morphology via fusion of LiDAR topography and spectrally based bathymetry. Earth Surf Process Landforms. 37(5):499–518.
  • Linnansaari T, Cunjak RA. 2010. Patterns in apparent survival of Atlantic Salmon (Salmo salar) parr in relation to variable ice conditions throughout winter. Can J Fish Aquat Sci. 67(11):1744–1754.
  • Linnansaari T, Keskinen A, Romakkaniemi A, Erkinaro J, Orell P. 2010. Deep habitats are important for juvenile Atlantic Salmon Salmo salar L. in large rivers. Ecol Freshwater Fish. 19(4):618–626.
  • Linnansaari T, Cunjak RA. 2013. Effects of ice on behaviour of juvenile Atlantic Salmon (Salmo salar). Can J Fish Aquat Sci. 70(10):1488–1497.
  • Lyzenga D R. 1981. Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data. Int J Remote Sens. 2(1):71–82.
  • Magilligan FJ, Nislow KH, Kynard BE, Hackman AM. 2016. Immediate changes in stream channel geomorphology, aquatic habitat, and fish assemblages following dam removal in a small upland catchment. Geomorphology. 252:158–170.
  • Marcus WA. 2002. Mapping of stream microhabitats with high spatial resolution hyperspectral imagery. J Geog Syst. 4(1):113–126.
  • Marcus WA, Legleiter CJ, Aspinall RJ, Boardman JW, Crabtree RL. 2003. High spatial resolution hyperspectral mapping of in-stream habitats, depths, and woody debris in mountain streams. Geomorphology. 55(1–4):363–380. (03)00150-8
  • Marcus WA, Fonstad MA. 2008. Optical remote mapping of rivers at sub-meter resolutions and watershed extents. Earth Surf Process Landforms. 33(1):4–24.
  • Marcus WA, Fonstad MA. 2010. Remote sensing of rivers: the emergence of a subdiscipline in the river sciences. Earth Surf Process Landforms. 35(15):1867–1872.
  • Marzadri A, Tonina D, Bellin A. 2013. Quantifying the importance of daily stream water temperature fluctuations on the hyporheic thermal regime: Implication for dissolved oxygen dynamics. J Hydrol. 507:241–248.
  • Mather PM. 2004. Computer processing of remotely sensed data: an introduction. In Computer processing of remotely sensed data: an introduction. 3rd ed. Chichester, UK: John Wiley and Sons. p. 442.
  • McFeeters SK. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens. 17(7):1425–1432.
  • Merz JE, Setka JD, Pasternack GB, Wheaton JM. 2004. Predicting benefits of spawning-habitat rehabilitation to salmonid (Oncorhynchus spp.) fry production in a regulated California river. Can J Fish Aquat Sci. 61(8):1433–1446.
  • Moir HJ, Soulsby C, Youngson A. 1998. Hydraulic and sedimentary characteristics of habitat utilized by Atlantic Salmon for spawning in the Girnock Burn, Scotland. Fish Manage Ecol. 5(3):241–254.
  • Moir HJ, Gibbins CN, Soulsby C, Webb JH. 2006. Discharge and hydraulic interactions in contrasting channel morphologies and their influence on site utilization by spawning Atlantic Salmon (Salmo salar). Can J Fish Aquat Sci. 63(11):2567–2585.
  • Monk WA, Curry RA. 2009. Models of past, present and future stream temperatures for selected Atlantic Salmon Rivers in Northeastern North America. American Fisheries Society Symposium. Vol. 69, p. 215–230.
  • Monk WA, Peters DL, Curry RA, Baird DJ. 2011. Quantifying trends in indicator hydroecological variables for regime-based groups of Canadian rivers. Hydrol Process. 25(19):3086–3100.
  • Newbury B. 2015. Stream Restoration Hydraulics, Project Casebook. UBR Services, Winfield, BC, Canada.
  • O'Sullivan AM, Devito KJ, Curry RA. 2019a. The influence of landscape characteristics on the spatial variability of river temperatures. Catena. 177:70–83.
  • O'Sullivan AM, Linnansaari T, Curry RA. 2019b. Ice Cover Exists (ICE): a quick method to delineate groundwater inputs in running waters for cold and temperate regions. Hydrol Process. 33(26):3297–3309.
  • Parasiewicz P, Rogers JN, Vezza P, Gortázar J, Seager T, Pegg M, Wiśniewolski W, Comoglio C. 2013. Applications of the MesoHABSIM simulation model. In: Maddock I, Harby A, Kemp P, Wood P, editors. Ecohydraulics: an integrated approach. Chichester: John Wiley & Sons, Ltd; p. 109–124.
  • Pasternack GB. 2020. River Restoration: Disappointing, Nascent, Yet Desperately Needed. In Reference Module in Earth Systems and Environmental Sciences. Elsevier.
  • Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC. 1997. The natural flow regime. BioScience. 47(11):769–784.
  • Rees R. 2016. New Brunswick was his country: the life of William Francis Ganong. Halifax (NS): Nimbus Publishing.
  • Reid MA, Thoms MC. 2008. Surface flow types, near-bed hydraulics and the distribution of stream macroinvertebrates. Biogeosciences. 5(4):1043–1055.
  • Riis T, Biggs BJF. 2003. Hydrologic and hydraulic control of macrophyte establishment and performance in streams. Limnol Oceanogr. 48(4):1488–1497.
  • Rosenfeld J. 2003. Assessing the habitat requirements of stream fishes: an overview and evaluation of different approaches. Trans Am Fish Soc. 132(5):953–968.
  • Schoelynck J, Meire D, Bal K, Buis K, Troch P, Bouma T, Meire P, Temmerman S. 2013. Submerged macrophytes avoiding a negative feedback in reaction to hydrodynamic stress. Limnologica. 43(5):371–380.
  • Shearer K, Hayes J, Jowett I, Olsen D. 2015. Habitat suitability curves for benthic macroinvertebrates from a small New Zealand river. N Z J Mar Freshwater Res. 49(2):178–191.
  • Southwood TRE. 1977. Habitat, the Templet for Ecological Strategies? J Animal Ecol. 46(2):336.
  • Swansburg E, El-Jabi N, Caissie D, Chaput G. 2004. Hydrometeorological trends in the Miramichi River, Canada: implications for Atlantic Salmon growth. North Am J Fish Manage. 24(2):561–576.
  • Torgersen CE, Price DM, Li HW, McIntosh BA. 1995. Thermal refugia and chinook Salmon habitat in Oregon: applications of airborne thermal videography. In: Mausel P, editor. Proceedings of the 15th Biennial Workshop on Color Photography and Videography. Terre Haute (IN): American Society for Photogrammetry and Remote Sensing; p. 167–171.
  • Torgersen CE, Price DM, Li HW, McIntosh BA. 1999. Multiscale thermal refugia and stream habitat associations of chinook Salmon in northeastern Oregon. Ecol Appl. 9(1):301–319. [0301:MTRASH]2.0.CO;2
  • Wallis C, Maddock I, Visser F, Acreman M. 2012. A framework for evaluating the spatial configuration and temporal dynamics of hydraulic patches. River Res Appl. 28(5):585–593.
  • Weatherall P, Marks KM, Jakobsson M, Schmitt T, Tani S, Arndt JE, Rovere M, Chayes D, Ferrini V, Wigley R. 2015. A new digital bathymetric model of the world’s oceans. Earth Space Sci. 2(8):331–345.
  • Wilbur NM, O'Sullivan AM, MacQuarrie KTB, Linnansaari T, Curry RA. 2020. Characterizing physical habitat preferences and thermal refuge occupancy of brook trout (Salvelinus fontinalis) and Atlantic Salmon (Salmo salar) at high river temperatures. River Res Appl.
  • Wilkes MA, Maddock I, Link O, Habit E. 2016. A community-level, mesoscale analysis of fish assemblage structure in shoreline habitats of a large river using multivariate regression trees. River Res Appl. 32(4):652–665.
  • Winterbottom SJ, Gilvear DJ. 1997. Quantification of channel bed morphology in gravel-bed rivers using airborne multispectral imagery and aerial photography. Regul Rivers Res Mgmt. 13(6):489–499.
  • Wohl E, Lane SN, Wilcox AC. 2015. The science and practice of river restoration. Water Resour Res. 51(8):5974–5997.
  • Wold S, Esbensen K, Geladi P. 1987. Principal component analysis. Chemom Intell Lab Syst. 2(1–3):37–52.
  • Wyrick JR, Pasternack GB. 2014. Geospatial organization of fluvial landforms in a gravel-cobble river: beyond the riffle-pool couplet. Geomorphology. 213:48–65.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.