1,653
Views
4
CrossRef citations to date
0
Altmetric
Review

Turbulent eddy identification of a meander and vertical-slot fishways in numerical models applying the IPOS-framework

, , &
Pages 124-143 | Received 11 May 2020, Accepted 24 Dec 2020, Published online: 13 May 2021

References

  • ANSYS, Inc. 2014. Introduction to ANSYS Fluent. Turbulence modeling. Limitations of wall-functions. ANSYS, Inc.
  • Blevins RD. 1990. Flow induced vibration. 2nd edition, Van Nostrand Reinhold (reprinted by Kreiger, 1993).
  • BMUB/UBA. 2016. Water Framework Directive. The status of German waters 2015. Bonn: Umweltbundesamt.
  • Bombač M, Četina M, Novak G. 2017. Study on flow characteristics in vertical slot fishways regarding slot layout optimization. Ecol Eng. 107:126–136.
  • Cada GF, Odeh M. 2001. Turbulence at hydroelectric power plants and its potential effects on fish. Report to Bonneville Power Administration, United States: N. p., 2001. Web. doi:10.2172/781814.
  • Celik IB, Ghia U, Roache PJ, Freitas CJ, Coleman H, Raad PE. 2008. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng. 130(7):78001.
  • CFDyna. 2015. A-priori estimation of boundary layer height for mesh generation. Y-plus: estimation of first layer height near wall; [Accessed 2020 Oct 15]. http://www.cfdyna.com/CFDHT/Y_Plus.html.
  • Cotel AJ, Webb PW, Tritico H. 2006. Do Brown Trout choose locations with reduced turbulence? Trans Am Fish Soc. 135(3):610–619.
  • Duguay JM, Lacey RWJ, Gaucher J. 2017. A case study of a pool and weir fishway modeled with OpenFOAM and FLOW-3D. Ecol Eng. 103:31–42.
  • DWA. 2014. Fischaufstiegsanlagen und fischpassierbare Bauwerke. Gestaltung, Bemessung, Qualitätssicherung (DWA-Regelwerk: M, Merkblatt, 509). Hennef: DWA Dt. Vereinigung für Wasserwirtschaft Abwasser und Abfall e.V.
  • Enders EC, Boisclair D, Roy AG. 2003. The effect of turbulence on the cost of swimming for juvenile Atlantic salmon (Salmo salar). Can J Fish Aquat Sci. 60(9):1149–1160.
  • European Community. 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Anal Proc. 21(6):196.
  • Fehér J, Gáspár J, Veres KS, Kiss A, Globevnik L, Peterlin, M., Kirn, T., Stein, U., Prins, T., Spiteri, C., Laukkonen, E., Heiskanen, A.-S., Austner, K., Semeradova, S., Künitzer, A. 2012. Hydromorpholgical alterations and pressures in European rivers, lakes, transitional and coastal waters. Thematic Assessment for EEA Water. Vol. 2.
  • Gerstner CL. 1998. Use of substratum ripples for flow refuging by Atlantic cod. In: Environmental Biology of Fishes. 51 (4)S. :455–460.
  • Gisen DC, Weichert RB, Nestler JM. 2017. Optimizing attraction flow for upstream fish passage at a hydropower dam employing 3D Detached-Eddy Simulation. In: Ecol Eng. 100S. :344–353.
  • Gramlich M. 2012. Numerical Investigations of the Unsteady Flow in the Stuttgart Swirl Generator with OpenFOAM [Master Thesis]. Gothenburg, Sweden: Chalmers University of Technology. Department of Ap-plied Mechanics, Division of Fluid Dynamics.
  • Greenshields CJ. 2015. OpenFOAM programmer's guide. UK: Open-FOAM Foundation Ltd.
  • Gritskevich MS, Garbaruk AV, Schütze J, Menter FR. 2012. Development of DDES and IDDES formulations for the k-ω shear stress transport model. Flow Turbulence Combust. 88(3):431–449.
  • Höger V, Musall M, Sokoray-Varga B. 2015. Hydraulik von Fischaufstiegsanlagen in Schlitzpassbauweise. physikalische und numerische Untersuchungen zur Optimierung der Passierbarkeit. Germany: Bundesanstalt Für Gewässerkunde.
  • Holmén V. Methods for vortex identification. Mathematics (Faculty of Engineering), Master’s Theses. Lund University Libraries.
  • Holmén V. 2012. Methods for vortex identification [master thesis]. Lund: Faculty of Engineering, Lund University. https://lup.lub.lu.se/student-papers/search/publication/3241710 (accessed on November 23, 2020).
  • Hunt J, Wray A, Moin P. 1988. Eddies, streams, and convergence zones in turbulent flows. In: Studying turbulence using numerical simulation databases. Vol. 1. p. 193–208.
  • Jähnel C. 2017. Hydraulische Untersuchungen zur Anströmung von Schlitzöffnungen in Rundbeckenpässen. Study Project. Dresden: Institut für Wasserbau und THM, Technische Universität Dresden.
  • Lacey RWJ, Neary VS, Liao JC, Enders EC, Tritico HM. 2012. The IPOS framework: linking fish swimming performance in altered flows from laboratory experiments to rivers. River Res Appl. 28(4):429–443.
  • Liao JC, Beal DN, Lauder GV, Triantafyllou MS. 2003. Fish exploiting vortices decrease muscle activity. Science. 302(5650):1566–1569.
  • Liao JC. 2007. A review of fish swimming mechanics and behaviour in altered flows. Philos Trans R Soc Lond B Biol Sci. 362(1487):1973–1993.
  • Lohnstein J. 2016. Hydraulische Untersuchung der Rund-beckenpassanlage Höxter/Godelheim [diploma thesis]. Dresden: Technische Universität Dresden.
  • Musall M, Oberle P, Henning M, Weichert R, Nestmann F. 2014. Analysen zu Strömungsmustern in technischen Fischaufstiegsanlagen. Dresden: Gesellschaft der Förderer des Hubert-Engels Institut.
  • Nikora VI, Aberle J, Biggs BJF, Jowett IG, Sykes JRE. 2003. Fish size, time to fatigue, and turbulence on swimming performance: a case study of Galaxias maculatus. J Fish Biol. 63(6):1365–1382.
  • Pavlov DS, Lupandin AI, Skorobogatov MA. 2000. The effects of flow turbulence on the behaviour and distribution of fish. J Ichthyol. 40:232–261.
  • Peters HW. 2004. Der Mäander Fischpass. Wasserwirtsch. 94(7–8):33–39.
  • Rajaratnam N, van der Vinne G, Katopodis C. 1986. Hydraulics of vertical slot fishways. J Hydraul Eng. 112(10):909–927.
  • Rajaratnam N, Katopodis C, Solanki S. 1992. New designs of vertical slot fishways. Canadian J. Civil Engineering, 19(3):402–414
  • Rodi W. 2017. Turbulence modeling and simulation in hydraulics: a historical review. J Hydraul Eng. 143(5):03117001.
  • Roth MS. 2019. Implementierung einer geometrischen Rauheit für Wandrandbedingungen in der 3D-HN-Modellierung [Implementation of a geometric roughness for wall-boundary-conditions in 3D-CFD-models] [diploma thesis]. Dresden: Technische Universität Dresden, Institut für Wasserbau und Technische Hydromechanik.
  • Schlichting H, Gersten K. 2017. Boundary-layer theory. Unter Mitarbeit von Egon Krause und Herbert Oertel. 9th ed. Berlin (Heidelberg): Springer.
  • Schneider LK. 2017. Hydro-numerical investigations concerning the influence of two different turbulence modeling approaches (RANS with k-e-equation and LES) within two types of fish migration facilities (Vertical Slot Fish Pass and Meander-Type Fish Pass) [master’s thesis]. Dresden: Technische Universität Dresden.
  • Schulze L, Thorenz C. 2014. The multiphase capabilities of the CFD toolbox OpenFOAM for hydraulic engineering applications. Hg. v. International Conference on Hydro-Science and -Engineering; Hamburg.
  • Silva AT, Katopodis C, Santos JM, Ferreira MT, Pinheiro AN. 2012. Cyprinid swimming behaviour in response to turbulent flow. Ecol. Eng., 44:314–328 doi:10.1016/j.ecoleng.2012.04.015
  • Slater JW. 2008. Examining spatial (grid) convergence. NPARC Alliance CFD Verification and Validation Web Site; [Accessed 2008 Jul 17] https://www.grc.nasa.gov/www/wind/valid/tutorial/spatconv.html.
  • Spalart PR. 2001. Young-Person's guide to detached-eddy simulation grids. Unter Mitarbeit von Craig Streett. Seattle (WA): NASA, Boeing Commercial Airplane Group. [Accessed 2020 Jun 17]. https://ntrs.nasa.gov/search.jsp?R=20010080473.
  • Spalart PR. 2009. Detached-Eddy simulation. Annu Rev Fluid Mech. 41(1):181–202.
  • Stamm J, Helbig U, Seidel C, Zimmermann R, Martin H. 2015a. Hydraulische Charakteristik von Rundbeckenpässen (45). Proceedings in Internationales Wasserbau-Symposium Aachen.
  • Stamm J, Helbig U, Zimmermann R. 2015b. Hydraulic characteristics of meander-type fish passes. Proceedings of the 36th IAHR World Congress, 2015, Deltas of the Future and What Happens Upstream Proceedings held between 28 June - 3 July 2015, The Hague, The Netherlands.
  • Tallin University of Technology. 2018. Differential pressure sensor base artificial lateral line probe, iRon. Estonia: Centre for Biorobotics, Tallin University of Technology (TUT), FIThydro; [Accessed 2020 Sep 30]. https://www.fithydro.wiki/index.php/Differential_pressure_sensor_base_artificial_lateral_line_probe.
  • Tritico HM, Cotel AJ. 2010. The effects of turbulent eddies on the stability and critical swimming speed of creek chub (Semotilus atromaculatus). J Exp Biol. 213(Pt 13):2284–2293.
  • Tudorache C, Viaene P, Blust R, Vereecken H, Boeck GD. 2008. A comparison of swimming capacity and energy use in seven European freshwater fish species. Ecol Freshwater Fish. 17(2):284–291.
  • Verma S, Novati G, Koumoutsakos P. 2018. Efficient collective swimming by harnessing vortices through deep reinforcement learning. Proc Natl Acad Sci U S A. 115(23):5849–5854.
  • Wang RW, David L, Larinier M. 2010. Contribution of experimental fluid mechanics to the design of vertical slot fish passes. Knowl Manag Aquatic Ecosyst. 396(396):02.
  • Webb PW. 1998. Entrainment by river chub nocomis micropogon and smallmouth bass micropterus dolomieu on cylinders. J Exp Biol. 201(Pt 16):2403–2412.
  • Wilcox DC. 2010. Turbulence modeling for CFD. 3rd ed. La Cañada (CA): DCW Industries.
  • Williamson CHK. 1996. Vortex dynamics in the cylinder wake. Rev Fluid Mech. 28:477–539.
  • Wu S, Rajaratnam N, Katopodis C. 1999. Structure of flow in vertical slot fishway. J Hydraul Eng. 125(4):351–360.