161
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computational fluid dynamics simulation of passive downstream fish passage over a weir with OpenFOAM®

ORCID Icon, , &
Received 18 Dec 2023, Accepted 21 May 2024, Published online: 30 Jun 2024

References

  • Abernethy C, Amidan B, Cada G. 2001. Laboratory studies of the effects of pressure and dissolved gas supersaturation on Turbine-Passed Fish. Richland (WA): Pacific Northwest National Laboratory.
  • Abernethy C, Amidan B, Cada G. 2002. Simulated passage through a modified Kaplan turbine pressure regime: a supplement to “laboratory studies of the effects of pressure and dissolved gas supersaturation on turbine-passed fish”. Richland (WA): Pacific Northwest National Laboratory.
  • Adam B, Lehmann B. 2011. Ethohydraulik: grundlagen, Methoden und Erkenntnisse. Berlin, Germany: Springer.
  • Andrews MJ, O'Rourke PJ. 1996. The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. Int J Multiph Flow. 22(2):379–402.
  • Barbarossa V, Schmitt RJP, Huijbregts MAJ, Zarfl C, King H, Schipper AM. 2020. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc Natl Acad Sci USA. 117(7):3648–3655. doi: 10.1073/pnas.1912776117.
  • Baumgartner LJ, Daniel Deng Z, Thorncraft G, Boys CA, Brown RS, Singhanouvong D, Phonekhampeng O. 2014. Perspective: towards environmentally acceptable criteria for downstream fish passage through mini hydro and irrigation infrastructure in the Lower Mekong River Basin. J Renew Sustain Energy. 6(1):12301.
  • Baumgartner LJ, Reynoldson N, Gilligan DM. 2006. Mortality of larval Murray Cod (Maccullochella peelii peelii) and Golden Perch (Macquaria ambigua) associated with passage through two types of low-head weirs. Mar Freshw Res. 57(2):187–191.
  • Baumgartner LJ, Thorncraft G, Phonekhampheng O, Boys C, Navarro A, Robinson W, Brown R, Deng ZD. 2017. High fluid shear strain causes injury in Silver Shark: preliminary implications for Mekong hydropower turbine design. Fish Manag Ecol. 24(3):193–198.
  • Bell M, DeLacy A. 1972. A compendium on the survival of fish passing through spillways and conduits. Portland (OR): US Army Corps of Engineers.
  • Belletti B, Garcia de Leaniz C, Jones J, Bizzi S, Börger L, Segura G, Castelletti A, van de Bund W, Aarestrup K, Barry J, et al. 2020. More than one million barriers fragment Europe’s rivers. Nature. 588(7838):436–441. doi: 10.1038/s41586-020-3005-2.
  • Benigni H, Schneider J, Reckendorfer W, Jaberg H, Zenz G, Tuhtan J. 2021. Numerical simulation and experimental verification of downstream fish migration in a Kaplan turbine. IOP Conf Ser: earth Environ Sci. 774(1):012149. doi: 10.1088/1755-1315/774/1/012149.
  • Benigni H, Schneider J, Reckendorfer W, Schiffer J, Tuhtan J, Leithner S, Zenz G, Meusburger P. 2022. Numerical simulation and experimental verification of downstream fish migration in a Bulb turbine. IOP Conf Ser: earth Environ Sci. 1079(1):012101. doi: 10.1088/1755-1315/1079/1/012101.
  • Boys C, Baumgartner L, Miller B, Deng Z, Brown R, Pflugrath B. 2013. Protecting downstream migrating fish at mini hydropower and other river infrastructure. Nelson Bay, Australia: NSW Department of Primary Industry.
  • Boys C, Navarro A, Robinson W, Fowler A, Chilcott S, Pflugrath B, Baumgartner L, McPherson J, Brown R, Deng Z. 2014. Downstream fish passage criteria for hydropower and irrigation infrastructure in the Murray–Darling Basin. Nelson Bay, Australia: NSW Department of Primary Industries.
  • Boys CA, Robinson W, Miller B, Pflugrath B, Baumgartner LJ, Navarro A, Brown R, Deng Z. 2016a. A piecewise regression approach for determining biologically relevant hydraulic thresholds for the protection of fishes at river infrastructure. J Fish Biol. 88(5):1677–1692.
  • Boys CA, Robinson W, Miller B, Pflugrath B, Baumgartner LJ, Navarro A, Brown R, Deng Z. 2016b. How low can they go when going with the flow? Tolerance of egg and larval fishes to rapid decompression. Biol Open. 5(6):786–793. doi: 10.1242/bio.017491.
  • Brackbill J, Kothe D, Zemach C. 1992. A continuum method for modeling surface tension. J Comput Phys. 100(2):335–354.
  • Brown RS, Carlson TJ, Gingerich AJ, Stephenson JR, Pflugrath BD, Welch AE, Langeslay MJ, Ahmann ML, Johnson RL, Skalski JR, et al. 2012. Quantifying mortal injury of juvenile Chinook Salmon exposed to simulated hydro-turbine passage. Trans Am Fish Soc. 141(1):147–157. doi: 10.1080/00028487.2011.650274.
  • Brown RS, Colotelo AH, Pflugrath BD, Boys CA, Baumgartner LJ, Deng ZD, Silva LGM, Brauner CJ, Mallen-Cooper M, Phonekhampeng O, et al. 2014. Understanding barotrauma in fish passing hydro structures: a global strategy for sustainable development of water resources. Fisheries. 39(3):108–122. doi: 10.1080/03632415.2014.883570.
  • Čada G, Carlson T, Ferguson J, Richmond M, Sale M. 1999. Exploring the role of shear stress and severe turbulence in downstream fish passage. Paper presented at: Waterpower Conference. Hydro’s future: technology, markets and policy; July 6–9, 1999; Las Vegas (NV). Reston (VA): American Society of Civil Engineers; p. 1–9.
  • Čada G, Charles C. 1997. Development of biological criteria for the design of advanced hydropower turbines. Oak Ridge (TN): Oak Ridge National Laboratory.
  • Čada GF. 1990. A review of studies relating to the effects of propeller-type turbine passage on fish early life stages. N Am J Fish Manag. 10(4):418–426.
  • Čada GF. 2001. The development of advanced hydroelectric turbines to improve fish passage survival. Fisheries. 26(9):14–23. doi: 10.1577/1548-8446(2001)026<0014:TDOAHT>2.0.CO;2.
  • Čada GF. 2007. Determining the effect of shear stress on fish mortality during turbine passage. Hydro Rev. 26(7):52.
  • Carlson TJ, Brown RS, Stephensons JR, Gingerich AJ, Pflugrath BD, Colotelo AH, Welch AE, Benjamin PL, Skalski JR, Seaburg AG, et al. 2010. Assessment of barotrauma in untagged and tagged juvenile Chinook Salmon exposed to simulated hydro turbine passage. Richland (WA): Pacific Northwest National Laboratory.
  • Colotelo AH, Mueller RP, Harnish RA, Martinez JJ, Phommavong T, Phommachanh K, Thorncraft G, Baumgartner LJ, Hubbard JM, Rhode BM, et al. 2018. Injury and mortality of two Mekong River species exposed to turbulent shear forces. Mar Freshw Res. 69(12):1945.
  • Cox RX, Kingsford RT, Suthers I, Felder S. 2023. Fish injury from movements across hydraulic structures: a review. Water. 15(10):1888. doi: 10.3390/w15101888.
  • Dauble DD, Deng Z, Richmond MC, Moursund RA, Carlson TJ, Rakowski CL, Duncan JP. 2007. Biological assessment of the advanced turbine design at Wanapum Dam, 2005. Richland (WA): Pacific Northwest National Laboratory.
  • Dedual M. 2007. Survival of juvenile Rainbow Trout passing through a Francis turbine. N Am J Fish Manag. 27(1):181–186.
  • Deng Z, Carlson TJ, Dauble DD, Ploskey GR. 2011. Fish passage assessment of an advanced hydropower turbine and conventional turbine using blade-strike modeling. Energies. 4(1):57–67. doi: 10.3390/en4010057.
  • Deng Z, Guensch GR, McKinstry CA, Mueller RP, Dauble DD, Richmond MC. 2005. Evaluation of fish-injury mechanisms during exposure to turbulent shear flow. Can J Fish Aquat Sci. 62(7):1513–1522.
  • Deng Z, Mueller RP, Richmond MC, Johnson GE. 2010. Injury and mortality of juvenile salmon entrained in a submerged jet entering still water. N Am J Fish Manag. 30(3):623–628.
  • Deng ZD, Lu J, Myjak MJ, Martinez JJ, Tian C, Morris SJ, Carlson TJ, Zhou D, Hou H. 2014. Design and implementation of a new autonomous sensor fish to support advanced hydropower development. Rev Sci Instrum. 85(11):115001.
  • Deshpande SS, Anumolu L, Trujillo MF. 2013. Evaluating the performance of the two-phase flow solver interFoam. Comput Sci Disc. 5(1):014016.
  • Doyle KE, Ning N, Silva LGM, Brambilla EM, Boys CA, Deng ZD, Fu T, Du Preez JA, Robinson W, Baumgartner LJ. 2020. Gambusia holbrooki survive shear stress, pressurization and avoid blade strike in a simulated pumped hydroelectric scheme. Front Environ Sci. 8:1–14. doi: 10.3389/fenvs.2020.563654.
  • Doyle KE, Ning N, Silva LGM, Brambilla EM, Deng ZD, Fu T, Boys C, Robinson W, Du Preez JA, Baumgartner LJ. 2022. Survival estimates across five life stages of Redfin (Perca fluviatilis) exposed to simulated pumped-storage hydropower stressors. Conserv Physiol. 10(1):coac017. doi: 10.1093/conphys/coac017.
  • Duncan JP. 2013. Characterization of fish passage conditions through the fish weir and turbine unit 1 at Foster Dam, Oregon, using Sensor Fish, 2012. Richland (WA): Pacific Northwest National Laboratory.
  • Dunn OJ. 1964. Multiple comparisons using rank sums. Technometrics. 6(3):241–252. doi: 10.1080/00401706.1964.10490181.
  • DWA. 2005. Fischschutz- und Fischabstiegsanlagen: bemessung, Gestaltung, Funktionskontrolle. Hennef (Germany): DWA Dt. Vereinigung für Wasserwirtschaft Abwasser und Abfall.
  • DWA. 2021. Methodische Grundlagen zur standörtlichen Evaluierung des Fischschutzes und Fischabstiegs. Hennef (Germany): Deutsche Vereinigung für Wasserwirtschaft Abwasser und Abfall.
  • Ebel G. 2013. Fischschutz und Fischabstieg an Wasserkraftanlagen: fish protection and downstream passage at hydro Power stations; Handbuch Rechen- und Bypasssysteme. Halle (Saale) (Germany): Büro für Gewässerökologie und Fischereibiologie Dr. Ebel.
  • Ebel G. 2014. Modellierung der Schwimmfähigkeit europäischer Fischarten—Zielgrößen für die hydraulische Bemessung von Fischschutzsystemen. Wasserwirtschaft. 104(7-8):40–47. doi: 10.1365/s35147-014-1095-1.
  • Elghobashi S. 1994. On predicting particle-laden turbulent flows. Appl Sc Res. 52(4):309–329.
  • Eyler SM, Welsh SA, Smith DR, Rockey MM. 2016. Downstream passage and impact of turbine shutdowns on survival of Silver American Eels at five hydroelectric dams on the Shenandoah River. Trans Am Fish Soc. 145(5):964–976. doi: 10.1080/00028487.2016.1176954.
  • Feathers MG, Knable AE. 1983. Effects of depressurization upon Largemouth Bass. N Am J Fish Manag. 3(1):86–90.
  • Fernandes C, Semyonov D, Ferrás LL, Nóbrega JM. 2018. Validation of the CFD-DPM solver DPMFoam in OpenFOAM® through analytical, numerical and experimental comparisons. Granul Matter. 20(4):64.
  • Foye RE, Scott M. 1965. Effects of pressure on survival of six species of fish. Trans Am Fish Soc. 94(1):88–91.
  • Fu T, Deng ZD, Duncan JP, Zhou D, Carlson TJ, Johnson GE, Hou H. 2016. Assessing hydraulic conditions through Francis turbines using an autonomous sensor device. Renew Energ. 99:1244–1252.
  • Gisen DC, Weichert RB, Nestler JM. 2017. Optimizing attraction flow for upstream fish passage at a hydropower dam employing 3D Detached-Eddy Simulation. Ecol Eng. 100:344–353.
  • Harvey HH. 1963. Pressure in the early life history of sockeye salmon. Vancouver (BC): University of British Columbia.
  • Hirt C, Nichols B. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys. 39(1):201–225.
  • Hughes JH, Weiland MA, Woodley CM, Ploskey GR, Carpenter SM, Hennen MJ, Fischer ES, Batten GW, III, Carlson TJ, Cushing AW, et al. 2013. Survival and passage of yearling and subyearling Chinook Salmon and juvenile Steelhead at McNary Dam, 2012. Richland (WA): Pacific Northwest National Laboratory.
  • Israel GD. 1992. Determining sample size. Gainsville (FL): University of Florida.
  • Kaminski L, Thorenz C, Weichert R. 2021. Numerical simulation of fish passage over a weir. 8th ed. Logan (UT): Utah State University.
  • Killgore KJ, Maynord ST, Chan MD, Morgan RP. 2001. Evaluation of propeller-induced mortality on early life stages of selected fish species. N Am J Fish Manag. 21(4):947–955.
  • Knott J, Mueller M, Pander J, Geist J. 2023. Downstream fish passage at small-scale hydropower plants: Turbine or bypass? Front Environ Sci. 11:1–20.
  • Knott J, Suttor C, Klarl M, Mueller M, Pander J, Geist J. 2022. Fischökologisches monitoring an innovativen Wasserkraftanlagen: abschlussbericht 2022, band 10: großweil an der loisach. München, Germany.
  • Kruskal WH, Wallis WA. 1952. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 47(260):583–621.
  • Larinier M, Travade F. 2002. Downstream migration: problems and facilities. Bull Fr Pêche Piscic. 364:181–207. doi: 10.1051/kmae/2002102.
  • Mao X, Zhao W, Huang S, Xu Y, Cheng Z, Shi G, Tang K, Jiang L, Guan Z, Yang Y. 2022. A review of the effects of total dissolved gas supersaturation in discharge water on fish. Fresenius Environ Bull. 31:3854–3861.
  • Mueller M, Knott J, Pander J, Geist J. 2022. Fischökologisches Monitoring an innovativen Wasserkraftanlagen: abschlussbericht 2020, Band 11: standortübergreifende Verbesserungsmöglichkeiten für den Fischschutz und die Gewässerökologie, 2. aktualisierte Auflage 2022. München (Germany): Technical University of Munich.
  • Navarro A, Boys CA, Robinson W, Baumgartner LJ, Miller B, Deng ZD, Finlayson CM. 2019. Tolerable ranges of fluid shear for early life-stage fishes: implications for safe fish passage at hydropower and irrigation infrastructure. Mar Freshw Res. 70(11):1503.
  • Neitzel DA, Dauble DD, Čada GF, Richmond MC, Guensch GR, Mueller RP, Abernethy CS, Amidan B. 2004. Survival estimates for juvenile fish subjected to a laboratory-generated shear environment. Trans Am Fish Soc. 133(2):447–454.
  • Neitzel DA, Richmond MC, Dauble DD, Mueller RP, Moursund RA, Abernethy CS, Guensch GR. 2000. Laboratory studies on the effects of shear on fish. Richland (WA): Pacific Northwest National Laboratory.
  • Nielsen N, Szabo-Meszaros M. 2022. A roadmap for best practice management on hydropower and Fish – IEA Hydro report on Annex XIII hydropower and fish. Switzerland: Zenodo.
  • NMFS. 1995. Juvenile fish screen criteria. Portland (OR): NMFS.
  • NMFS. 1997. Fish screening criteria for anadromous Salmonids. Portland (OR): NMFS.
  • Odeh M, Noreika JF, Haro A, Maynard A, Castro-Santos T, Čada GF. 2002. Evaluation of the effects of turbulence on the behavior of migratory fish. Portland (OR): Bonneville Power Administration United States Department of Energy.
  • Odeh M, Orvis C. 1998. Downstream fish passage design considerations and developments at yydroelectric projects in the north-east USA. In: Jungwirth M, editor. Fish migration and fish bypasses. Oxford: Fishing News Books; p. 267–280.
  • Okagaki Y, Yonomoto T, Ishigaki M, Hirose Y. 2021. Numerical study on an interface compression method for the volume of fluid approach. Fluids. 6(2):80. doi: 10.3390/fluids6020080.
  • Pauwels IS, Baeyens R, Toming G, Schneider M, Buysse D, Coeck J, Tuhtan JA. 2020. Multi-species assessment of injury, mortality, and physical conditions during downstream passage through a large Archimedes hydrodynamic screw (Albert Canal, Belgium). Sustainability. 12(20):8722. doi: 10.3390/su12208722.
  • Pauwels IS, Tuhtan J, Coeck J, Buysse D, Baeyens R, et al. 2022. Archimedes Screw—An alternative for safe migration through turbines. In: Rutschmann P, Kampa E, Wolter C, Albayrak I, David L, Stoltz U, editors. Novel developments for sustainable hydropower. Cham: Springer International Publishing; p. 125–133.
  • Pelicice FM, Pompeu PS, Agostinho AA. 2015. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish Fish. 16(4):697–715.
  • Peltonen P, Kanninen P, Laurila E, Vuorinen V. 2020. The ghost fluid method for OpenFOAM: a comparative study in marine context. Ocean Eng. 216:108007.
  • Pflugrath BD, Boys CA, Cathers B, Deng ZD. 2019. Over or under: autonomous sensor fish reveals why overshot weirs may be safer than undershot weirs for fish passage. Ecol Eng. 132:41–48.
  • Putnam A. 1961. Integratable form of droplet drag coefficient. ARS J. 10:1467–1468.
  • Richmond M, Serkowski J, Rakowski C, Strickler b, Weisbeck M, Dotson C. 2014. Computational tools to assess turbine biological performance. Hydro Review. 33(6).
  • Rodi W. 2017. Turbulence modeling and simulation in hydraulics: a historical review. J Hydraul Eng. 143(5):03117001. doi: 10.1061/(ASCE)HY.1943-7900.0001288.
  • Romero-Gomez P, Richmond MC. 2017. Movement and collision of Lagrangian particles in hydro-turbine intakes: a case study. J Hydraul Res. 55(5):706–720.
  • Romero-Gomez P, Singh RK, Richmond MC, Weissenberger S. 2022. Numerical investigation of inertial sphere impaction on a cylinder in subcritical flow. Part Sci Technol. 40(1):35–49.
  • Rusche H. 2003. Computational fluid dynamics of dispersed two-phase flows at high phase fractions. London: Imperial College London.
  • Schilt CR. 2007. Developing fish passage and protection at hydropower dams. Appl Anim Behac Sci. 104(3–4):295–325.
  • Schmalz W, Wagner F, Sonny D. 2015. Forum "fischschutz und fischabstieg": arbeitshilfe zur standörtlichen evaluierung des fischschutzes und fischabstiegs. Berlin (Germany): Ecological Insitute.
  • Schwevers U, Adam B. 2020. Fish protection technologies and fish ways for downstream migration. Cham, Switzerland: Springer.
  • Scruton DA, Pennell CJ, Bourgeois CE, Goosney RF, King L, Booth RK, Eddy W, Porter TR, Ollerhead LMN, Clarke KD. 2008. Hydroelectricity and fish: a synopsis of comprehensive studies of upstream and downstream passage of anadromous wild Atlantic salmon, Salmo salar, on the Exploits River, Canada. Hydrobiologia. 609(1):225–239. doi: 10.1007/s10750-008-9410-4.
  • Silva AT, Lucas MC, Castro-Santos T, Katopodis C, Baumgartner LJ, Thiem JD, Aarestrup K, Pompeu PS, O’Brien GC, Braun DC, et al. 2018. The future of fish passage science, engineering, and practice. Fish Fish. 19(2):340–362.
  • Singh R, Richmond M, Romero-Gomez P, Rakowski C, Serkowski J. 2021. Validation of computational fluid dynamics simulations for the biological performance assessment of hyropower generation units. Richland (WA): Pacific Northwest National Laboratory.
  • Singh RK, Romero-Gomez P, Colotelo AH, Perkins WA, Richmond MC. 2022. Computational studies of hydraulic stressors for biological performance assessment in a hydropower plant with Kaplan turbine. Renew Energ. 199:768–781.
  • Skalski JR, Mathur D, Heisey PG. 2002. Effects of turbine operating efficiency on smolt passage survival. N Am J Fish Manag. 22(4):1193–1200.
  • Thorenz C. 2024. Boundary conditions for hydraulic structures modelling with OpenFOAM. 10th International Symposium on Hydraulic Structures; 17–19 June 2024; Zurich, Switzerland (Forthcoming).
  • Thorenz C, Gebhardt M, Weichert R. 2018. Numerical study on the hydraulic conditions for species migrating downstream over a weir. 7th International Symposium on Hydraulic Structures; 15–18 May; Germany: Aachen.
  • Thorenz C, Schulze L. 2021. Numerical investigations of ship forces during lockage. J Coast Hyd Struc. 1:27.
  • Thorncraft G, Phonekhampheng O, Baumgartner L, Martin K, Pflugrath BD, Brown RS, Deng ZD, Boys CA, Navarro A. 2013. Optimising fish-friendly criteria for incorporation into the design of mini-hydro schemes in the Lower Mekong Basin. Vientiane, Laos: National University of Laos.
  • Trumbo BA, Ahmann ML, Renholds JF, Brown RS, Colotelo AH, Deng ZD. 2014. Improving hydroturbine pressures to enhance salmon passage survival and recovery. Rev Fish Biol Fish. 24(3):955–965.
  • Tsvetkov VI, Pavlov DS, Nezdoliy VK. 1972. Changes of hydrostatic pressure lethal to young of some freshwater fish. J Ichthyol. 12:307–318.
  • Turnpenny AWH, Davis MH, Fleming JM, Davies JK. 1992. Experimental studies relating to the passage of fish and shrimps through tidal power turbines. Southampton. UK: National Power, Marine and Freshwater Biology Unit.
  • USACE. 1991. Fisheries handbook of engineering requirements and biological criteria. Portland (OR): US Army Corps of Engineers, North Pacific Division.
  • Watson JR, Goodrich HR, Cramp RL, Gordos MA, Franklin CE. 2018. Utilising the boundary layer to help restore the connectivity of fish habitats and populations. Ecol Eng. 122:286–294.
  • WDFW. 2000. Fish protection screen guidelines for Washington state. Olympia (WA): WDFW.
  • Yoshizawa A. 1986. Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Phys Fluids. 29(7):2152–2164. doi: 10.1063/1.865552.
  • Yusuf SNA, Asako Y, Che Sidik NA, Mohamed SB, Aziz Japa WMA. 2020. A short review on RANS turbulence models. CFDL. 12(11):83–96. doi: 10.37934/cfdl.12.11.8396.
  • Zhao Y, Akolekar HD, Weatheritt J, Michelassi V, Sandberg RD. 2020. RANS turbulence model development using CFD-driven machine learning. J Comput Phys. 411:109413.
  • Zhu G, Guo Y, Feng J, Gao L, Wu G, Luo X. 2022. Analysis and reduction of the pressure and shear damage probability of fish in a Francis turbine. Renew Energ. 199:462–473.