353
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Spatiotemporal modeling and optimization for personalized cardiac simulation

References

  • Aliev, R. R., & Panfilov, A. V. (1996). A simple two-variable model of cardiac excitation. Chaos, Solitons & Fractals, 7(3), 293–301. https://doi.org/10.1016/0960-0779(95)00089-5
  • Ba, S., & Joseph, V. R. (2012). Composite Gaussian process models for emulating expensive functions. The Annals of Applied Statistics, 6(4), 1838–1860. https://doi.org/10.1214/12-AOAS570
  • Bondarenko, V. E., & Rasmusson, R. L. (2007). Simulations of propagated mouse ventricular action potentials: Effects of molecular heterogeneity. American Journal of Physiology. Heart and Circulatory Physiology, 293(3), H1816–H1832. https://doi.org/10.1152/ajpheart.00471.2007
  • Bondarenko, V. E., Szigeti, G. P., Bett, G. C., Kim, S.-J., & Rasmusson, R. L. (2004). Computer model of action potential of mouse ventricular myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 287(3), H1378–H1403. https://doi.org/10.1152/ajpheart.00185.2003
  • Boyle, P. M., Zghaib, T., Zahid, S., Ali, R. L., Deng, D., Franceschi, W. H., Hakim, J. B., Murphy, M. J., Prakosa, A., Zimmerman, S. L., Ashikaga, H., Marine, J. E., Kolandaivelu, A., Nazarian, S., Spragg, D. D., Calkins, H., & Trayanova, N. A. (2019). Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nature Biomedical Engineering, 3(11), 870–879. https://doi.org/10.1038/s41551-019-0437-9
  • Chen, Y., & Yang, H. (2016). Numerical simulation and pattern characterization of nonlinear spatiotemporal dynamics on fractal surfaces for the whole-heart modeling applications. The European Physical Journal B, 89(8), 181. https://doi.org/10.1140/epjb/e2016-60960-6
  • Chinchapatnam, P., Rhode, K. S., Ginks, M., Rinaldi, C. A., Lambiase, P., Razavi, R., Arridge, S., & Sermesant, M. (2008). Model-based imaging of cardiac apparent conductivity and local conduction velocity for diagnosis and planning of therapy. IEEE Transactions on Medical Imaging, 27(11), 1631–1642. https://doi.org/10.1109/TMI.2008.2004644
  • Clayton, R., Bernus, O., Cherry, E., Dierckx, H., Fenton, F. H., Mirabella, L., Panfilov, A. V., Sachse, F. B., Seemann, G., & Zhang, H. (2011). Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Progress in Biophysics and Molecular Biology, 104(1–3), 22–48. https://doi.org/10.1016/j.pbiomolbio.2010.05.008
  • Cozad, A., Sahinidis, N. V., & Miller, D. C. (2014). Learning surrogate models for simulation-based optimization. AIChE Journal, 60(6), 2211–2227. https://doi.org/10.1002/aic.14418
  • Decker, K. F., & Rudy, Y. (2010). Ionic mechanisms of electrophysiological heterogeneity and conduction block in the infarct border zone. American Journal of Physiology. Heart and Circulatory Physiology, 299(5), H1588–H1597. https://doi.org/10.1152/ajpheart.00362.2010
  • Dhamala, J., Arevalo, H. J., Sapp, J., Horácek, B. M., Wu, K. C., Trayanova, N. A., & Wang, L. (2018). Quantifying the uncertainty in model parameters using gaussian process-based markov chain monte carlo in cardiac electrophysiology. Medical Image Analysis, 48, 43–57. https://doi.org/10.1016/j.media.2018.05.007
  • Dhamala, J., Arevalo, H. J., Sapp, J., Horacek, M., Wu, K. C., Trayanova, N. A., & Wang, L. (2017). Spatially adaptive multi-scale optimization for local parameter estimation in cardiac electrophysiology. IEEE Transactions on Medical Imaging, 36(9), 1966–1978. https://doi.org/10.1109/TMI.2017.2697820
  • Du, D., Yang, H., Ednie, A. R., & Bennett, E. S. (2018). In-silico modeling of the functional role of reduced sialylation in sodium and potassium channel gating of mouse ventricular myocytes. IEEE Journal of Biomedical and Health Informatics, 22(2), 631–639. https://doi.org/10.1109/JBHI.2017.2664579
  • Dutta, S., Mincholé, A., Quinn, T. A., & Rodriguez, B. (2017). Electrophysiological properties of computational human ventricular cell action potential models under acute ischemic conditions. Progress in Biophysics and Molecular Biology, 129, 40–52. https://doi.org/10.1016/j.pbiomolbio.2017.02.007
  • Farmanesh, B., Pourhabib, A., Balasundaram, B., & Buchanan, A. (2021). A Bayesian framework for functional calibration of expensive computational models through non-isometric matching. IISE Transactions, 53(3), 352–330. https://doi.org/10.1080/24725854.2020.1774688
  • Giffard-Roisin, S., Jackson, T., Fovargue, L., Lee, J., Delingette, H., Razavi, R., Ayache, N., & Sermesant, M. (2017). Noninvasive personalization of a cardiac electrophysiology model from body surface potential mapping. IEEE Transactions on Biomedical Engineering, 64(9), 2206–2218. https://doi.org/10.1109/TBME.2016.2629849
  • Gorissen, D., Couckuyt, I., Demeester, P., Dhaene, T., & Crombecq, K. (2010). A surrogate modeling and adaptive sampling toolbox for computer based design. Journal of Machine Learning Research, 11, 2051–2055.
  • Han, P. K., Klein, W. M., & Arora, N. K. (2011). Varieties of uncertainty in health care: A conceptual taxonomy. Medical Decision Making: An International Journal of the Society for Medical Decision Making, 31(6), 828–838. https://doi.org/10.1177/0272989X10393976
  • Holter, N. J. (1961). New method for heart studies: Continuous electrocardiography of active subjects over long periods is now practical. Science, 134(3486), 1214–1220. https://doi.org/10.1126/science.134.3486.1214
  • Hsu, E., Pulli, K., & Popović, J. (2005). Style translation for human motion. In ACM SIGGRAPH 2005 Papers (pp. 1082–1089). ACM. https://doi.org/10.1145/1186822.1073315
  • Hu, Z., Du, D., & Du, Y. (2018). Generalized polynomial chaos-based uncertainty quantification and propagation in multi-scale modeling of cardiac electrophysiology. Computers in Biology and Medicine, 102, 57–74. https://doi.org/10.1016/j.compbiomed.2018.09.006
  • Janse, M. J., & Wit, A. L. (1989). Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiological Reviews, 69(4), 1049–1169. https://doi.org/10.1152/physrev.1989.69.4.1049
  • Kennedy, M. C., & O'Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(3), 425–464. https://doi.org/10.1111/1467-9868.00294
  • Koeppl, T., Santin, G., Haasdonk, B., & Helmig, R. (2018). Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods. International Journal for Numerical Methods in Biomedical Engineering, 34(8), e3095. https://doi.org/10.1002/cnm.3095
  • Liebman, J., Zeno, J., Olshansky, B., Geha, A., Thomas, C., Rudy, Y., Henthorn, R., Cohen, M., & Waldo, A. (1991). Electrocardiographic body surface potential mapping in the Wolff-Parkinson-white syndrome. noninvasive determination of the ventricular insertion sites of accessory atrioventricular connections. Circulation, 83(3), 886–901. https://doi.org/10.1161/01.cir.83.3.886
  • Lopez-Perez, A., Sebastian, R., & Ferrero, J. M. (2015). Three-dimensional cardiac computational modelling: Methods, features and applications. Biomedical Engineering Online, 14(1), 35. https://doi.org/10.1186/s12938-015-0033-5
  • Lopez-Perez, A., Sebastian, R., Izquierdo, M., Ruiz, R., Bishop, M., & Ferrero, J. M. (2019). Personalized cardiac computational models: From clinical data to simulation of infarct-related ventricular tachycardia. Frontiers in Physiology, 10, 580. https://doi.org/10.3389/fphys.2019.00580
  • Mihalef, V., Ionasec, R. I., Sharma, P., Georgescu, B., Voigt, I., Suehling, M., & Comaniciu, D. (2011). Patient-specific modelling of whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac CT images. Interface Focus, 1(3), 286–296. https://doi.org/10.1098/rsfs.2010.0036
  • Niederer, S. A., Lumens, J., & Trayanova, N. A. (2019). Computational models in cardiology. Nature Reviews: Cardiology, 16(2), 100–111. https://doi.org/10.1038/s41569-018-0104-y
  • Noble, D. (2002). Modeling the heart–from genes to cells to the whole organ. Science, 295(5560), 1678–1682. https://doi.org/10.1126/science.1069881
  • Ong, Y. S., Nair, P. B., & Keane, A. J. (2003). Evolutionary optimization of computationally expensive problems via surrogate modeling. AIAA Journal, 41(4), 687–696. https://doi.org/10.2514/2.1999
  • Plumlee, M., Joseph, V. R., & Yang, H. (2016). Calibrating functional parameters in the ion channel models of cardiac cells. Journal of the American Statistical Association, 111(514), 500–509. https://doi.org/10.1080/01621459.2015.1119695
  • Rahimi, A., & Wang, L. (2015). Sensitivity of noninvasive cardiac electrophysiological imaging to variations in personalized anatomical modeling. IEEE Transactions on Biomedical Engineering, 62(6), 1563–1575. https://doi.org/10.1109/TBME.2015.2395387
  • Ramanathan, C., Ghanem, R. N., Jia, P., Ryu, K., & Rudy, Y. (2004). Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nature Medicine, 10(4), 422–428. https://doi.org/10.1038/nm1011
  • Relan, J., Pop, M., Delingette, H., Wright, G. A., Ayache, N., & Sermesant, M. (2011). Personalization of a cardiac electrophysiology model using optical mapping and MRI for prediction of changes with pacing. IEEE Transactions on Bio-Medical Engineering, 58(12), 3339–3349. https://doi.org/10.1109/TBME.2011.2107513
  • Rudy, Y., & Silva, J. R. (2006). Computational biology in the study of cardiac ion channels and cell electrophysiology. Quarterly Reviews of Biophysics, 39(1), 57–116. https://doi.org/10.1017/S0033583506004227
  • Rudy, Y., Ackerman, M. J., Bers, D. M., Clancy, C. E., Houser, S. R., London, B., McCulloch, A. D., Przywara, D. A., Rasmusson, R. L., Solaro, R. J., Trayanova, N. A., Van Wagoner, D. R., Varró, A., Weiss, J. N., & Lathrop, D. A. (2008). Systems approach to understanding electromechanical activity in the human heart: A national heart, lung, and blood institute workshop summary. Circulation, 118(11), 1202–1211. https://doi.org/10.1161/CIRCULATIONAHA.108.772715
  • Sermesant, M., Chabiniok, R., Chinchapatnam, P., Mansi, T., Billet, F., Moireau, P., Peyrat, J. M., Wong, K., Relan, J., Rhode, K., Ginks, M., Lambiase, P., Delingette, H., Sorine, M., Rinaldi, C. A., Chapelle, D., Razavi, R., & Ayache, N. (2012). Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in crt: A preliminary clinical validation. Medical Image Analysis, 16(1), 201–215. https://doi.org/10.1016/j.media.2011.07.003
  • Simpson, T. W., Mauery, T. M., Korte, J. J., & Mistree, F. (2001). Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA Journal, 39(12), 2233–2241. https://doi.org/10.2514/2.1234
  • Srinivas, N., Krause, A., Kakade, S. M., & Seeger, M. W. (2012). Information-theoretic regret bounds for Gaussian process optimization in the bandit setting. IEEE Transactions on Information Theory, 58(5), 3250–3265. https://doi.org/10.1109/TIT.2011.2182033
  • Sun, L., Gao, H., Pan, S., & Wang, J.-X. (2020). Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Computer Methods in Applied Mechanics and Engineering, 361, 112732. https://doi.org/10.1016/j.cma.2019.112732
  • Sun, Z., Lau, I., Wong, Y. H., & Yeong, C. H. (2019). Personalized three-dimensional printed models in congenital heart disease. Journal of Clinical Medicine, 8(4), 522. https://doi.org/10.3390/jcm8040522
  • Ten Tusscher, K. H., & Panfilov, A. V. (2006). Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions. Physics in Medicine and Biology, 51(23), 6141–6156. https://doi.org/10.1088/0031-9155/51/23/014
  • Trayanova, N. A. (2011). Whole-heart modeling: Applications to cardiac electrophysiology and electromechanics. Circulation Research, 108(1), 113–128. https://doi.org/10.1161/CIRCRESAHA.110.223610
  • Trayanova, N. A., Doshi, A. N., & Prakosa, A. (2020). How personalized heart modeling can help treatment of lethal arrhythmias: A focus on ventricular tachycardia ablation strategies in post-infarction patients. Wiley Interdisciplinary Reviews. Systems Biology and Medicine, 12(3), e1477. https://doi.org/10.1002/wsbm.1477
  • Vadakkumpadan, F., Gurev, V., Constantino, J., Arevalo, H., & Trayanova, N. (2010). Modeling of whole-heart electrophysiology and mechanics: Toward patient-specific simulations. In Patient-Specific Modeling of the Cardiovascular System (pp. 145–165). Springer.
  • Vagos, M., van Herck, I. G., Sundnes, J., Arevalo, H. J., Edwards, A. G., & Koivumäki, J. T. (2018). Computational modeling of electrophysiology and pharmacotherapy of atrial fibrillation: Recent advances and future Challenges. Front Physiol, 9, 1221. https://doi.org/10.3389/fphys.2018.01221
  • Vigmond, E. J., Aguel, F., & Trayanova, N. A. (2002). Computational techniques for solving the bidomain equations in three dimensions. IEEE Transactions on Bio-Medical Engineering, 49(11), 1260–1269. https://doi.org/10.1109/TBME.2002.804597
  • Villongco, C. T., Krummen, D. E., Stark, P., Omens, J. H., & McCulloch, A. D. (2014). Patient-specific modeling of ventricular activation pattern using surface ecg-derived vectorcardiogram in bundle branch block. Progress in Biophysics and Molecular Biology, 115(2–3), 305–313. https://doi.org/10.1016/j.pbiomolbio.2014.06.011
  • Virani, S. S., Alonso, A., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Chang, A. R., Cheng, S., & Delling, F. N. (2020). Heart disease and stroke statistics—2020 update: A report from the american heart association. Circulation, 141, E139–E596.
  • Weese, J., Groth, A., Nickisch, H., Barschdorf, H., Weber, F. M., Velut, J., Castro, M., Toumoulin, C., Coatrieux, J. L., De Craene, M., Piella, G., Tobón-Gomez, C., Frangi, A. F., Barber, D. C., Valverde, I., Shi, Y., Staicu, C., Brown, A., Beerbaum, P., & Hose, D. R. (2013). Generating anatomical models of the heart and the aorta from medical images for personalized physiological simulations. Medical & Biological Engineering & Computing, 51(11), 1209–1219. https://doi.org/10.1007/s11517-012-1027-0
  • Wong, K. C., Sermesant, M., Rhode, K., Ginks, M., Rinaldi, C. A., Razavi, R., Delingette, H., & Ayache, N. (2015). Velocity-based cardiac contractility personalization from images using derivative-free optimization. Journal of the Mechanical Behavior of Biomedical Materials, 43, 35–52. https://doi.org/10.1016/j.jmbbm.2014.12.002
  • Yang, T., Yu, L., Jin, Q., Wu, L., & He, B. (2018). Localization of origins of premature ventricular contraction by means of convolutional neural network from 12-lead ecg. IEEE Transactions on Bio-Medical Engineering, 65(7), 1662–1671. https://doi.org/10.1109/TBME.2017.2756869
  • Yao, B., & Yang, H. (2016). Physics-driven spatiotemporal regularization for high-dimensional predictive modeling: A novel approach to solve the inverse ECG problem. Scientific Reports, 6(1), 39012–39013. https://doi.org/10.1038/srep39012
  • Yao, B., & Yang, H. (2020). Spatiotemporal regularization for inverse ECG modeling. IISE Transactions on Healthcare Systems Engineering, 1–13.
  • Yao, B., Imani, F., Sakpal, A. S., Reutzel, E., & Yang, H. (2018). Multifractal analysis of image profiles for the characterization and detection of defects in additive manufacturing. Journal of Manufacturing Science and Engineering, 140(3), 031014. https://doi.org/10.1115/1.4037891
  • Yao, B., Pei, S., & Yang, H. (2016). Mesh resolution impacts the accuracy of inverse and forward ecg problems. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 4047–4050). IEEE. https://doi.org/10.1109/EMBC.2016.7591615
  • Yao, B., Zhu, R., & Yang, H. (2018). Characterizing the location and extent of myocardial infarctions with inverse ecg modeling and spatiotemporal regularization. IEEE Journal of Biomedical and Health Informatics, 22(5), 1445–1455. https://doi.org/10.1109/JBHI.2017.2768534
  • Yao, B., Zhu, R., & Yang, H. (2018). Inverse ECG modeling with spatiotemporal regularization for the characterization of myocardial infarctions. In 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) (pp. 120–123). IEEE.
  • Zahid, S., Cochet, H., Boyle, P. M., Schwarz, E. L., Whyte, K. N., Vigmond, E. J., Dubois, R., Hocini, M., Haïssaguerre, M., Jaïs, P., & Trayanova, N. A. (2016). Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovascular Research, 110(3), 443–454. https://doi.org/10.1093/cvr/cvw073
  • Zemzemi, N., Bernabeu, M. O., Saiz, J., Cooper, J., Pathmanathan, P., Mirams, G. R., Pitt-Francis, J., & Rodriguez, B. (2013). Computational assessment of drug-induced effects on the electrocardiogram: From ion channel to body surface potentials. British Journal of Pharmacology, 168(3), 718–733. https://doi.org/10.1111/j.1476-5381.2012.02200.x
  • Zhou, F., & Torre, F. D. l. (2012). Generalized time warping for multi-modal alignment of human motion. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1282–1289). IEEE.
  • Zhu, Y., Zabaras, N., Koutsourelakis, P.-S., & Perdikaris, P. (2019). Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. Journal of Computational Physics, 394, 56–81. https://doi.org/10.1016/j.jcp.2019.05.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.